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We investigate experimentally the nucleation of superconductivity in a thin 
Aluminium film with a square lattice of microholes in a uniform perpen- 
dicular magnetic field H. It is shown that in a non-zero magnetic field, this 
system has an elevated critical temperature T*(H) in comparison to the 
reference film without holes. This effect can be considered as a generalisation 
of the well known surface superconductivity effect for the case of a finite 
radius of the surface and a multiply connected geometry of the sample. Quan- 
tization of the fluxoid around each hole leads to oscillations in the T*(H) 
dependence with a period approximately corresponding to one flux quantum 
through a hole. Also another type of oscillation with a smaller period which 
is equal to one flux quantum per unit cell was observed. We discuss the 
second type of oscillation in terms of an interaction between the holes. We 
believe that our results can be useful in the analysis of high-T e supercon- 
ductors with columnar defects because, as it is shown here, a comparison of 
the T~(H) dependence before and after irradiation can give some special 
information on the properties of the amorphous tracks produced by high- 
energy ions. While many experimental parameters are different in our system 
and in HTSC we present arguments why this analogy should be correct. 

1. I N T R O D U C T I O N  

In this work we investigate experimentally a superconducting film with 
a lattice of circular holes. Such a system was discussed already in some 
theoretical and experimental publications. ~'m3 Among other things it is 
interesting because a hole in a superconducting film or a cylindrical cavity 
in a bulk superconductor is a simple model of a pinning centre. Moreover  
such well known type of pinning centres as the columnar defects can be 
considered as dielectric cylinders inside the superconductor. 
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In a recent paper of Buzdin ~ an infinite superconductor with a cylin- 
drical cavity is considered in a magnetic field which is applied parallel to 
the cylinder axis. This system is equivalent to a thin enough film with a 
circular hole in perpendicular magnetic field at a temperature near T*. 
A non-monotonous behaviour of the critical temperature T* versus 
magnetic field H is derived from the linearized Ginsburg-Landau equation 
for such a system. According to the calculations T*(H) is higher than the 
critical temperature of the film without holes Tc(H ). This result can be con- 
sidered as a generalisation of the surface superconductivity effect 4 for the 
case of a finite radius of the surface curvature. For  the plane surface in a 
parallel magnetic field it is well known that the critical field is g c 3  = 

1.7.Hc2. In our case the boundary between the superconductor and the 
vacuum (empty cylinder) is not plane so the critical field, Hc*3(T), will be 
bound by H~2 < H*3 < 1.7-He2.1 Another important feature is the multiply 
connected geometry of the sample. Due to this, the critical temperature T*,  
must be an oscillating function of the magnetic field in accordance with the 
fluxoid quantization condition observed for example, in the Little and 
Parks experiment. 5 

Experimentally we use a film with a square lattice of holes (the total 
number is about 2.  105). If the magnetic field is constant and the tem- 
perature is going down then the superconducting order parameter will 
appear first of all around the holes in the form of thin rings of a thickness 
~ ( T * )  at the temperature T*(H). At the bulk critical temperature 
Tc2(H) superconductivity will appear everywhere in the film. For  observa- 
tion of these two transitions we measure the resistance R(T) of the sample. 
If the distance between the holes a is large in comparison with ~(T*)  then 
one can observe two steps at T =  T*(H) and T :  Tc2(H) in the R(T) curve 
while if the holes are close to each other then due to the proximity effect 
the resistance of the whole sample will drop to zero at T =  T*. 

Another interesting property of the system under consideration is the 
interaction between the holes. If a is small enough the supercurrent 
between the holes (caused by the magnetic field for example) can differ 
from zero and the whole system will be similar to a superconducting 
network. In accordance with this we observe another type of oscillation in 
T*(H) with the period corresponding to one flux through a unit cell. 

2. E X P E R I M E N T  

All the measurements are carried out with an aluminium film of 
a thickness 800 ~ prepared by thermal evaporation of pure aluminium 
in vaccum 3 .10  .7 mbar. Four  spirals and the square lattice of holes 
shown schematically in Fig. la are produced using lift-off electron-beam 



Nucleation of Superconductivity in a Thin Film 253 

lithography with Negative-Tone Shipley Microposit SAL-601-ER7 E-Beam 
Resist. The radius of each hole is r0 = 2.13#m and the lattice parameter is 
a = 9.05/~rn. One-half of the same film (right part in Fig. la) electrically 
disconnected from the main sample is used for reference measurements. The 
total array of holes consists of square fields: each field contains 33 x 33 
holes and there are no holes between the fields. In the schematic drawing 
(Fig. la) one can see these fields of holes (in the real sample there are 
five fields between the spirals). The distance between the field edges is 
df = 20#m. 

The film resistance is measured by an AC four-terminal resistance 
bridge at a frequency 33 Hz with a low enough current I =  4#A (current 
density 5A/cm2). For accurate measurements of the critical temperature as 
a function of magnetic field a feedback system is used which maintains the 
constant resistance R 0 of the sample by changing the temperature during 
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Fig. 1. a) Schematic view of the sample. Left part is the 
thin A1 film with the lattice of holes and the right one 
is the electrically independent reference film. Black 
colour indicates the regions where the film was 
removed using lift-off process. Four open circles in each 
part of the sample show the voltage (inside the spirals) 
and the current contacts; b) and c) two usual con- 
figurations of the sample for the four-probe resistive 
measurements. Their disadvantages are discussed in the 
text. 



254 A. Bezryadin and B. Pannetier 

the sweep of the magnetic field (see the details in [6]). If the R ( T )  curve 
exhibits two transitions then one can measure corresponding critical tem- 
peratures independently by choosing the parameter of the feed-back circuit 
R 0 at the middle of the corresponding step. 

Fig. lb illustrates the standard sample configuration for four-probe 
measurements. It is not acceptable for the measurements of the surface 
critical field because the superconducting transition of the edge of the film 
(dashed region marked by an arrow in Fig. lb) at H =  He3 will short out 
the voltage probes. Another possible geometry which is free from the 
previous disadvantage is shown in Fig. lc. Here the boundary of the film 
coincides with the edges of the substrate and it can be as far as we want 
from the voltage and current probes: A1 wires with the diameter 30#m 
ultrasonically soldered to the film in the points shown by open circles in 
the figure. These regions which are ultrasonically soldered usually have 
critical temperature Ta~ different from that of the film. The current between 
the current leads partially flows through the regions of the voltage contacts 
(of course this is true independently on the voltmeter input resistance) so 
their superconducting transition can cause a jump in the voltage. In this 
case the experimentally measured R ( T )  dependence has an additional step 
at T =  Ta~. Interpretation of the results is difficult in such a case. 

Taking into account all these difficulties a special geometry is used for 
the measurements (Fig. la). On the one hand the edges of the film coincide 
again with the edges of the substrate so they are far from the voltage and 
current probes. On the other hand we can neglect the anomalous proper- 
ties of the voltage contacts (open circles in the figure) only if the current 
through them is equal to zero. This condition is satisfied by using spirals 
which are parts of the film (Fig. la). It is clear that the centre of such a 
spiral (where the voltage contact is located) while being electrically con- 
nected to the other parts of the film still has zero current through itself. 
It should be mentioned also that the spirals naturally have the same 
critical temperature as the film except perhaps their edges. In non-zero 
magnetic field the edges start to be superconducting at the higher tem- 
perature T c 3 ( g  ) = T O - ( T  O - rc2 ) * ( H c 2 / g c 3 )  = T O - ( T  O - T~2)/1.7 due to 
the ordinary effect of surface superconductivity. This transition can cause 
some change in the voltage on the potential probes at T =  To3 and it was 
observed experimentally (the peak in the R ( T )  curves of the reference 
sample in non-zero field (Fig. 2, dashed lines)). One can speculate that the 
decrease of the edge's resistance to zero causes some increase in the density 
of the current between the spirals (the spirals attract the current lines) and 
therefore to some increase in the voltage on the potential probes. This 
parasitic effect is proportional to the size of the spirals and can be pre- 
dicted quantitatively. It is hidden in the resistive curves of the sample with 
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Fig. 2. Dependence of the samplme resistance and the 
resistance of the reference film versus the temperature at 
different values of magnetic field (from the right to the 
left): 0, 0.19, 0.37, 0.56, and 0.75roT (each value 
corresponds to one solid and one dashed curve). The 
increase of the field leads to monotonous decrease of 
the transition temperatures. The solid curves corre- 
spond to the sample with holes and the dashed curves 
correspond to the reference fihn without holes. 

holes probably because it occurs approximately at the same temperature as 
the strong decrease of the resistance of the perforated film caused by the 
nucleation of the surface superconducting states (Tc3(H)~ T*(H) when 
H--,0).  In other words the difference between two critical temperatures 
which correspond to the nucleation of the surface superconductivity near 
the plane surface (spirals) and near the surface with finite curvature (holes) 
is smaller than the broadness of the superconducting transition (at least at 
the weak field which is used in our measurements). Eventually we believe 
that the configuration with the spirals is the best for our application and 
it is used for all the measurements. 

2. RESULTS 

In Fig. 2 the dependence of the resistance R = VII versus temperature 
is shown for the sample with holes (solid lines) and for the reference 
uniform sample (dashed lines). The parameter is the uniform magnetic field 
H which is directed perpendicular to the film (each pair of curves is taken 
at the same field). At H =  0 we have a single narrow transition ( ~  3inK) for 
both films at approximately the same critical temperature To = 1.25K. In 
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increasing fields the transitions move to lower temperatures and the form 
of the R(T) curve corresponding to the sample with holes starts to be more 
complex. In particular, one can see two transitions: the first one takes place 
at the upper critical temperature T* and the second one at Tc2 < T* when 
the resistance drops to zero. We neglect in this discussion the small peak 
in the resistance of the reference sample at the temperature close to To3. 
As it was mentioned earlier we believe that this feature could be explained 
if one takes into account the nucleation of superconductivity at the edges 
of the spirals. Let us consider the sample with holes. During the first tran- 
sition at T =  T* the resistance drops to a finite value which is much 
smaller (approximately by a factor of 10) than the initial resistance but still 
it is not zero. It is important to note that the lower critical temperature 
Tc2(H ) when the resistance of the sample goes to zero is approximately 
equal to the transition temperature of the reference film Tc(H). We con- 
clude that at Tc2 we observe the ordinary bulk superconducting transition. 
The difference of about one percent between T~2 and T~ could be explained 
by the difference in the sample quality. We should note in this context that 
RRR (the ratio of the resistance at T =  300 K and T =  4.2 K) is equal to 4.9 
and 5.1 for the part with holes and for the reference part of the film corre- 
spondingly. 

The results of measurements of the critical temperatures T* and Tc2 
versus H by the feed-back control of the sample resistance are shown in 
Fig. 3a. The values of the parameter R0 of the feed-back circuit (in other 
words it is the resistance of the sample which is considered as a definition 
of the corresponding critical temperature) are: Ro = 20 mOhms for T* and 
R 0 = 1 mOhms for T~2. This figure can be considered as a phase diagram 
and therefore each curve maps out the dependence of the critical field 
versus the temperature. There are three regions in the diagram: normal 
state (N) where the order parameter is equal to zero everywhere; ordinary 
mixed state (S) where the whole sample is superconducting except vortex 
cores; and a state of localised superconductivity (LS) in which the order 
parameter differs from zero only in the thin rings around the holes. 
Generally speaking the LS state can have zero or non-zero resistance 
depending on the distance between the holes in comparison to the 
coherence length. In the dependence T*(H) one can see an oscillating 
component which was predicted for the critical temperature of the film 
with the hole 1 (see also the derivative in Fig. 3b). On the contrary no 
oscillations were observed in T~2(H) except one or two cusps near zero 
with the small period corresponding to one flux quantum through a unit 
cell. 
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4. DISCUSSION 

To clearly see the oscillations and for comparison with the theory it is 
convenient to reconstruct the dependence T * ( H )  (Fig. 3a), which can be 
considered as the H*3(T ) dependence at the same time. First of all we 
should mention that for each point of the H - T  plane one can put 
uniquely into correspondence the values of the normalised flux ~b/q~0 = 
Hnr~/r (where ~ o = 2 . 0 7 . 1 0 - 7 0 e . c m  2 is the flux quantum) and the 
second critical field He2 = ~0/(2=~2(T))= (1 - T/To). ~0/(2~. 2(0)). So if we 
follow the curve H*3(T) we can plot the value of the reduced critical field 
hc*3 - H*3/Hc2 as a function of ~b/~b o (Fig. 4, solid curve). In fact the reduced 
critical field is a function of the critical temperature T~*(H):h*3= 
2nTor . H / ( T  o - T*) .  The coherence length r  2500 ~ was deter- 
mined from the initial linear part of the T * ( H )  dependence using the 
relation T*(H)= To(1 -H/H~2(O))= To(1 -27~r and taking into 
account that when H ~  0 one expects the same dependence of the critical 
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Fig. 3. a) The experimental critical temperatures as 
functions of the magnetic field. Two curves correspond 
to the two steps on the R(T) curve of the sample with 
holes. They are measured near the middle points of the 
two transitions, namely at 20mOhms (upper critical 
temperature T*) and t mOhms (lower critical tem- 
perature Tc2); b) derivative of the upper critical tem- 
perature which shows two types of oscillations. 
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temperature versus field for the films with and without holes (Fig. 3a). The 
result of calculations made for the case of a single hole in the infinite film 
(see below) is shown by the dashed line in Fig. 4. In the inset one can see 
the same two curves at a different scale and also an additional experimental 
dependence (the lowest curve) h*3(O/Oo) taken at the lower part of the 
first transition, namely at Ro = 6 mOhms. The monotonously decreasing 
dependence of the coherence length taken at T* versus the flux through the 
hole is also shown. One can see that the coherence length is of the same 
order of magnitude as the distance between the holes (a = 9#m). 
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Fig. 4. The reduced critical field h* 3 ~ H*3/Hc2 versus the nor- 
malised flux through a hole. The dashed curve represents the 
calculation for the case of the boundary between a super- 
conductor and a perfect dielectric (b--* oe), solid curve is 
reconstructed from the experimental T*(H) dependence (see 
Fig. 3a). Inset: magnification of the low field part. Upper scale 
is the normalised flux through a unit cell of the square lattice. 
The additional curve (lowest solid line) is measured at the 
lower part of the first superconducting transition, namely at 
6 mOhms. The cusps of the "collective" and "single-object" 
types are shown by down-directed and up-directed arrows 
correspondingly. The monotonously decreasing curve is the 
value of the coherence length at the upper critical temperature 
(see the right y-axis). 
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Let us consider now the main experimental h*3(qt/~bo) dependence 
(Fig. 4, solid curve). The envelope of this curve is an increasing function 
which is equal to unity when ~b/~b o = 0 and has as the theoretical limit the 
value h*3(oo)= 1.7. This is natural because we consider the critical point 
(T--* T*), so when ~b/~b0 ~ 0  the radius of the hole is much smaller then 
4(T) and the effect of surface superconductivity is negligible. 1 The opposite 
situation is realised when ~b/~b o is big: h*3 ~ H*3/Hc2 ~ Hc3/Hc2 = 1.7. 

The most interesting fact is the oscillations in h*3. In Fig. 4 (see also 
the inset) one can see two types of oscillations with different frequencies. 
Firstly these are well pronounced cusps (shown by up-arrows) with a big 
period in the field. Their amplitude decreases slowly with the field so it was 
possible to observe them in the whole range of fields under investigation 
(0-  1.8 roT). We will name them "single-object" oscillations because they 
reflect individual properties of the holes and in principle can be observed 
in films with a single hole. The first peak (shown by the left up-arrow in 
the inset) of this type can be resolved clearly on the curve measured at 
R o = 6 mOhms where the peaks of the other type with a higher frequency 
are suppressed. This second type of oscillation (shown by down-arrows) 
reflects collective properties of the array of holes or in other words the 
interaction between the holes (we will name them "collective" oscillations). 
They are exactly periodic with the field with the period A H =  0.0247 mT 
which is in good agreement with the expected value ~b0/a2=0.0253 mT 
where a 2 is the unit cell area (see the upper x-axis). Their amplitude 
decreases with the field much quicker in comparison to the "single-object" 
oscillations. 

It is obvious that we deal here with two general types of the critical 
temperature oscillations simultaneously. "Single-object" oscillations were 
discovered by Little and Parks in their experiment with a hollow thin- 
walled cylinder. It was shown in [7]  that a superconducting disk also 
exhibits the same type of oscillations. Their general properties are the 
following (Fig. 5d, solid line): the critical temperature Tc(~/~bo) is maxi- 
mum when ~/~b 0 = m, where m = 0, + 1, _+ 2, ... and its derivative is equal to 

zero in those points; when ~/~b0 -- m + �89 the critical temperature T~(~/~bo) is 
minimum and it has a jump in the derivative (cusp). Under ~ we under- 
stand here the flux through some characteristic area of the object. In many 
cases this area is determined only by the geometry as for example in the 
case of a thin-walled cylinder where ~ = rcr2H (here r o is the radius of the 
cylinder). But in other cases (as an example one can consider the film with 
a hole or the disk) this characteristic area depends on ~(Tc) because the 
order parameter has its maximum not exactly at the geometrical edge of 
the object but it is shifted on the distance ~(T). In this situation the "single- 
object" oscillations are not periodic with the field. "Collective" oscillations 
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Fig. 5. a) Energy of a single particle (with the charge 2e and the mass 
m,) in the film with a single hole at different values of the orbital 
momenta n (solid lines), the dashed line is the lowest Landau level in a 
uniform film without holes; b) corresponding normalised critical tem- 
peratures for the uniform (dashed line) and holed (solid line) films for 
the case when ~(O)/ro = 0.117. c) single-particle energy for a circular wire 
loop (solid lines) at different vaiues of the orbital momenta, thick solid 
line is the minimum energy, and the dashed line is the average energy per 
a unit cell of the superconducting network (see text); d) corresponding 
normalised critical temperatures of the loop (solid line) and of the 
network (dashed line) for the case when ~(O)/ro = ~(0)/~o = 0.117. 

were observed  first in superconduc t ing  wire networks .  6'8 Genera l ly  
speaking  it is a p r o p e r t y  of any  cor re la ted  in phase  per iodic  s tructure.  
Thei r  pe r iod  exact ly  equal  to one flux th rough  a unit  cell (in pa r t i cu la r  this 
is t rue in our  case of the lat t ice of holes). As it is schemat ica l ly  shown in 
Fig. 5d (dashed  line), each m a x i m u m  of Tc(qb/qbo) again  co r responds  to the 
integer  values of the flux ~b/~b o = m (here ~b = H a  2 is the flux th rough  a uni t  
cell) bu t  it coincides  now with the j u m p  in derivative.  O n  the con t r a ry  in 
the poin ts  of m i n i m u m  (~b/~bo = m + �89 the  der ivat ive is equal  to zero. The  
ampl i tude  of the b o t h  types  of osci l la t ions is of the o rder  of (~2(0)/L2) �9 To 
(here L is the lat t ice p a r a m e t e r  for the a r r ay  or  the character is t ic  size of the 
single object) .  The  two types of the cri t ical  t empera tu re  osci l la t ions shown 
in Fig. 5d can be i l lus t ra ted by  fol lowing s implest  examples.  
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The single-particle energy (6) of a superconducting thin wire loop in 
perpendicular magnetic field (see [9]) is equal: 

~2 

E~ = 2 m e t  ~ o (n -- ~b/{b0) 2 (1) 

(the same is true for a thin-walled cylinder as in the Little and Parks 
experiment). Here r0-radius of the loop, ~=rtr2o H,  n-integer number, 
me- the mass of the electron, h-Plank constant. This energy for some values 
of the orbital momenta n is shown in Fig. 5c by thin solid lines. The thick 
solid line is the minimum energy E ~ and the corresponding critical tem- 
perature calculated using the relation (7) is shown in Fig. 5d (solid line). 
The second example is a superconducting network. It can be roughly con- 
sidered as an array of loops with the same relation for the energy (1) 
(r o should be replaced by the value f0N a). But now due to the phase 
correlation between the loops it is not possible for all of them to be in the 
energetically favourable state, for example in the state Eo when 0 < 
~b/q~o < 0.5. On the contrary some of them (namely the part ~b/~b0) must be 
in the state E 1 so the average energy per unit cell ( E )  can be written 
approximately as 

h2 r- 1 
< E ) - - ~ o E I +  - _- 

It is true when 0 < ~b/~b 0 < 1. In general when n < ~b/~b0 < n + 1 then there are 
two possible states for a unit cell: E,  and En+l so it is necessary to replace 
in (2) ~b/q~ o by ~ / ~ o - n .  The average energy is shown in Fig. 5c by the 
dashed line and corresponding critical temperature (7) in Fig. 5d (dashed 
line). 

Now we will consider in more details our particular problem: the 
infinite film with a hole of a radius r0 at the origin with a uniform magnetic 
field perpendicular to the film. ~ The order parameter 0 satisfy the 
linearized Ginsburg-Landau (GL) equation (we neglect the non-linear term 
and assume the field to be uniform because we are interested only in the 
critical temperature now): 

1 _ i h V ) _  A - ~ (3) 
2me 20 2me'Z(T) 

where 

~= �89 E#• z-I, (4) 
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and the boundary condition: 

, /  (5) 

where b is the characteristic boundary length, ~7= ~/171 is the unit vector 
perpendicular to the boundary of the superconductor. 1~ One can solve the 
Schrodinger equation for a single particle with the mass me and the charge 
2e in the same magnetic field and with the same boundary conditions as for 
the order parameter: 

1 -ih~---2e~ Oi= E'tf (6) 
2me c 

The energy of the ground state E~  i) (we refer E ~ as a single- 
particle energy) can be used to find the critical temperature (see for 
example7): 

( 2me~2(O) ) 
Te= To 1 h2 E ~ (7) 

Moreover the order parameter just near Tc is proportional to the 0-func- 
tion of the particle in the ground state. 

The two-dimensional GL equation can be reduced to a one-dimen- 
sional equation if we choose the order parameter in the form ~ = t i p ) .  
exp(inO) (here (p, 0) are the polar coordinates and n is the orbital 
momentum, r - ~(T)): 

d2f l d f ( n O  )2 r 2 
f + - ~ f  = + x dx \ x x_ o 

where x = p/ro; ~b = rcr2H-flux through the hole. 
After the substitution into the first equation:f (x)=xnexp(-�89 . 

w(x) and z = (O/Oo)X a one can get: 

Z - ~ z z + ( l + n - z ) - ~ z -  442 w = 0  

It is the Kummer's equation which has as its solutions the confluent hyper- 
geometric functions (see their properties in ref. 11 for example): 

M(A, B, z)= IFI(A; B; z) and U(A, B, z)= z-A . 2Fo (A, I + A - B ; ; - ! )  
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where A = �89 or A = �89 ~ (A should not 
be confused with the vector potential A), E ~ is the ground state energy (6), 
and B = n + 1. The general solution is the linear combination of the two 
functions: w = C~M(A, B, z) + C2U(A, B, z), but for a hole in the infinite 
film one should keep only the second term to have a finite solution for the 
order parameter in the infinity. Finally we get: 

[ 1 ~b 2"~.U(A,n+I, ~ 2 ~On( p, O)=exp(inO). xn. exp ~ - 2 ~ 0  x ) ~0 x ) (8) 

Using (8) and a differential property of the U-function I~ one can transform 
the boundary condition (5) to the form: 

b ) . g ( A , n + l , ~ o )  - 2 ( J  " (A+l ,n+2 ,~o)=O (9) n ~o ~o " A U  

This equation can be solved numerically. As a result for each value of the 
orbital momenta one can get A(~/C}o) and therefore the dependence of the 
single-particle energy versus the reduced flux: En(O/Oo) (see Fig. 5a, solid 
lines; b =  oo). Substitution of the minimum energy into (7) give us the 
critical temperature T*((~/Oo) (Fig. 5b, solid line; b--0% ~(0)/ro=0.117) 
which can be used to get h*3(q~/q~o) dependence shown in Fig. 4 (dashed 
curve). In fact h*3 does not depend on the ratio ~.(O)/ro and can be obtained 
directly from the energy: 

h.3 l/ O ~ = L  h 2 . 1 1 (10) 
~o mer~ E~ 1-2A 

It is important that A is the solution of (9) which depends only on ~b/~b 0 
and b/ro but not on the ratio ~(O)/ro. Here we can mention that our 
approach to the problem gives in general the same results as the variational 
method used in 1. The only exception is that we found that the state with 
n = 0 is not favourable even at a small field (E o > E 1 at any field) as it is 
clear from Fig. 5a so the first "single-object" cusp corresponds to the tran- 
sition (n= 1 -+ n--2)  while in 1 there is an additional cusp (n=0--+ n =  1). 12 
This discrepancy can be explained by the choice of the trial function ~) = 
exp[ - - cons t .  ( p -  ro) 2] in ref. 1 which has its maximum exactly at the hole 
edge while in fact the maxima of all the states with n > 0 are shifted on the 
distance ~ ( T )  from the edge of the hole at least when ~b/~bo<0.2 (it 
follows from (8)). This shift decreases the energy of the superconducting 
state. It may be useful to mention also that from (9) one can derive (using 
some recurrence relations of the confluent hypergeometric functions 11) that 
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the position of the cusp corresponding to the transition ( n -  1 ~ n) can be 
found from the system of equations: 

0 b).U(A,n+l,~o)_=20~o." (A+l,n+ ~) n A U 2, 
4o 

~ o = n + ~ -  2A - x/2n(I-2A)+(2A-~) ~ +-~+~-ff) r~ [r~ 

While at large values of ~bAbo there is a quite good correlation between 
the experiment and the theory, it is not the case near zero (Fig. 4, inset). 
First of all one can see that in zero field the theoretical curve has a big 
derivative while the experimental one has zero derivative and moreover 
h *  3 = 1 in a finite range of the flux (q~/~bo < 0.1). We think that it is a collec- 
tive effect which can be observed when the field is small enough. As con- 
cerns to one independent hole it was discussed already that in any small 
field the localised state with n = 1 (in other words when there is one vortex 
in the hole) has smaller energy (and therefore higher critical temperature) 
than the delocalised state (Fig. 5a, dashed line) which is realised in a 
uniform film without holes at H =  He2 (in other words E1 is lower than the 
lowest Landau level in a uniform film). On the contrary the localised state 
which contains no vortices (00) has its energy higher with respect to the 
delocalised one (Fig. 5a). Let us return to our lattice of holes and consider 
the region of a weak field when a ~<2~(T). The holes are not independent 
in this case and there phases are correlated. Therefore in the case of a small 
enough field when we have less than one vortex per a unit cell (and there- 
fore less than one vortex per hole in the case of the square lattice) it is not 
possible to have the state n = 1 in all the holes. It means that only those 
that have a vortex inside will have an elevated critical temperature. There- 
fore in small field (considerably smaller than the field corresponding to one 
flux per two cells) when vortices are far from each other most of the holes 
(in fact the regions around these holes) will pass into superconducting state 
only at T--  To2 or H = Hc2. This is a qualitative explanation of the plateau 
in the experimental curve when H ~ 0. 

The positions of the first few cusps of the "single-object" type are also 
far from those theoretically predicted (Fig. 4). Namely experimental peaks 
occur at smaller values of ~bAb 0 and at lower values of h*3. To explain this 
fact we try (following v) to take into account a non-perfect boundary of the 
superconductor inside the holes, namely we assume that b is not infinite. In 
Fig. 6 one can see the experimental positions of the peaks (crosses) with 
respect to the theoretical positions calculated for different values of b. 
Generally speaking each calculated peak (black squares) moves to the 
origin with decreasing b so it is possible to improve correlation between the 
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theoretical and experimental cusps (taking b/ro~ 15 for example). Even 
better correlat ion can be achieved assuming that  b decreases with increas- 
ing temperature (or decreasing flux th rough  a hole). For  each peak there 
is a critical value of b when it disappears. For  example at b/ro = 1 we 
observe disappearance of  the first cusp. After this the min imum possible 
value of the orbital m om e n t a  start to be n = 2 (at any small field) and the 
first cusp corresponds now to the transit ion (n = 2 -~ n = 3). In  the limiting 
case b = 0 the effect of  the surface superconductivi ty is absent and h* = 1 
at any value of the flux. Such a situation can be realised if the hole in the 
film is replaced by a normal  metal disk. 

It  may  be interesting to consider now a high-Tc superconductor  
with co lumnar  defects. These defects which are in fact amorphous  tracks 
produced by high-energy ions can be considered as dielectric cylinders 
inside the superconductor .  While m a n y  parameters  of  H T S C  with colum- 
nar  defects and of the thin A1 film with holes are strongly different, we 
believe that our  results can be used for analysis of H T S C  also. The only 
assumption which we should make is that  GL-equa t ion  is valid in H T S C  

1,6 ~ - r T ,  i p b  , ~  i i  , ,  , i J , ~  , i  , ~  , , i  , ,  ~ l  i ~ ,  i , 

b / ro=  10  ~ 

1 ,5  " b / ro=  15  

,.r~ , 1 ,4  

* ~, 1 , 3  n=4 . " . " . 

:Z::~ ,.1 " �9 . " b / r o = 0 . 9  
1 ,2  >~. n= " " . . 

1 , t  

1 
1 2 3 4 5 6 7 

~ r o  ~ H / ( ~ o  

Fig. 6. Positions of the "single-object" type cusps taken from the 
h*3(~b/~b0) dependence (they are indicated by up-arrows in Fig. 4). 
Crosses show the experimental data while the blak dotes are the 
results of the calculation at different values of the characteristic 
boundary length b/r o = 107, 30, 15, 10, 5, 2, 1.5, 1.2, 0.9, 0.7, 0.55, 
and 0.45. Vertical lines show the change in the cusp positions with 
changing b-parameter. Three horizontal lines connect the cusps 
corresponding to different orbital momenta transitions with the 
same b-parameter. 
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near the critical temperature. As was discussed already the dependence of 
the reduced critical field versus the flux through the hole (or through the 
area of the track in the case of HTSC) shown in Fig. 4 (dashed line) 
is independent on the ratio ~(O)/ro (see 10) so in principle the same 
dependence can be observed in superconductor with columnar defects. 
A possible difficulty is the small radius of the defects: rc~< 50 ~. Therefore 
to observe at least one cusp in the critical field (which takes place at 
H.~r~S~bo~0.5 ) it is necessary to apply field H/> 13 T. At the same time 
when H ~ 0 the theoretical curve h*3((b/Oo) has a big positive slope (Fig. 4) 
which can be observed experimentally if the distance between the tracks is 
so large that there is no phase coherence between the amorphous region 
and superconductor can be characterised in this case by some finite value 
of the boundary length b (see the boundary condition (5)). As one can see 
in the Fig. 6 (see also previous discussion) the decrease of b cause the 
motion of the cusps to the origin and when b = 0 the effect of the surface 
superconductivity is absent and one can observe no oscillations and no 
increase of the critical temperature due to the irradiation. In practice the 
ratio b/rcd should be big. This conclusion is based on the following relation 
of the theory of de Gennes and Werthammer13: 

b-as'[~-dNC~ aN 

To make a rough estimation one can replace the thickness of the 
normal layer dN by the radius of the columnar defect. Taking into account 
that the function in the square brackets always bigger than unity (inde- 
pendently on the value ~N/du) one can see that b/rcd> aS/aN>> 1. This is 
true because the mean free path in the crystal ls always larger than the 
mean free path inside the amorphous columnar defect and the same is true 
for the conductivity: aS/aN~Is/lN>> 1. Note that the roughness of the 
track boundary can also suppress the surface effect. 

Recently there were published some results on the anomalous 
proximity effect in aluminium. 14 It was observed that the resistive curve 
R(T) of a modulated S-N-S structure (S and N perpendicular to the 
current strips are the parts of the A1 film with a little bit different Tc 
produced by reactive-ion etching) shows a single homogeneous transition 
while the calculated coherence length (in the normal regions) is smaller by 
a factor of 60 than the period of the structure and therefore the order 
parameter in the centre of the N-region is smaller by a factor of 1013 than 
at its edge. We think that our measurements can also be considered as a 
test of the proximity effect in aluminium. To see this we should remind that 
the total array of holes (see Fig. la) consists of the square fields with the 
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distance between their edges d f=  20#m (which is much smaller than the 
size of each field). It was observed that the R(T) curve starts to have two 
steps when H=O.09rnT and Tc=0.087To (this transition is not shown 
in Fig. 2). At the same time the order parameter at the centre of the 
normal region between the fields is smaller only by a factor of 100 than at 

the edges: df/2~(Tc) = df/2~(O) x/1 - T~./To = 4.6 therefore 0center ~ @edge' 
exp(-df/2~(Tc)) = 10 -2. We conclude that our result is in contradiction 
with ref. 14 and probably can be described by the ordinary theory of the 
proximity effect which takes into account fluctuation phenomena. Note that 
the plateau in the R(T) curve is higher when the field is lower. This feature 
seems to be in a contradiction with the fact that the coherence length is 
larger at higher temperature (or what is the same at lower field) so the width 
of the normal region should be smaller. We see a qualitative explanation of 
this fact in the fast decrease of the order parameter amplitude near the hole 
edge when T-~ T~*. Due to this the width of the regions with non-zero 
resistance (which can be determined by taking into account thermal fluctua- 
tions) can be an increasing function of the temperature. 

Up to now we discussed only the nucleation of superconductivity in a 
film with a hole. In particular each cusp in the curve T*(H) gives origin 
to two lines corresponding to the second order phase transitions from the 
normal state into a superconducting state with the orbital momenta equals 
n or n + 1 where n is the cusp number. Another principally different 
question is the possibility of transitions below T~* between the states 
with different values of the orbital momenta. For  analysis of such a 
question it is necessary to take into account the non-linear term in the 
Ginsburg-Landau equation. As it is shown in ref. 15 these are the first 
order transitions and corresponding phase boundary is not parallel to the 
temperature axis in contrast to the case of a thin-walled hollow cylinder. 
Experimentally the mentioned above transition can be observed below 
T* by measuring the magnetisation (or the heat capacitance) versus 
temperature at fixed magnetic field. 

In conclusion we present the experimental results on the surface super- 
conductivity in the case of the finite radius of the superconductor boundary 
and the multiply connected geometry of the sample. Namely we observe 
some increase of the critical temperature and its oscillations in perpen- 
dicular magnetic field on the aluminium film with the lattice of circular 
holes. Another type of oscillations caused by the interaction between the 
holes are also observed. Comparison of our experimental data with the 
results of the calculation based on the linearized Ginsburg-Landau equa- 
tion shows some discrepancy which is discussed in terms of the interaction 
between the holes. We consider also a possible application of our results for 
the analysis of high-Tc materials with columnar defects. 
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