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The Bitter decoration technique is used to study the trapping of single and 
multiple quanta vortices by a lattice of circular microholes. By keeping a thin 
superconducting layer (the bottom) inside each hole we are able to visualise 
the trapped vortices. From this we determine, for the first time, the filling 
factor FF, i.e. the number of  vortices captured inside a hole. In all cases the 
sample is cooled at a constant field before making the decoration. Two 
qualitatively different states of the vortex crystal are observed." (i) In case 
when the interhole distance is much larger than the coherence length, the 
filling factor averaged over many identical holes ( < FF> ) is a stepwise func- 
tion of the magnetic flux (o f  the external field) through the hole, because 
each hole captures the same number of vortices. The density of  fluxoids inside 
the openings is higher than in the uniform film, but much lower than it should 
be in the state of  equilibrium. We claim that the number of trapped vortices 
is determined by the edge superconducting states which appear around each 
hole at the modified third critical field H~ > Hoe. Below He: such states 
produce a surface barrier of a new type. This barrier for the vortex entrance 
and exit is due to the strong increase of the order parameter near the hole 
edge. It keeps constant the number of  captured vortices during the cooling at 
a fixed field. (ii) An increase of the hole density or of  the hole radius initiates 
a sharp redistribution offIuxoids: all of them drop inside holes. This first 
order transition leads to a localization of  all vortices and consequently to a 
qualitative change of  the transport properties (TAFF in our case). In the 
resulting new state the filling factor is not any more the same for neigh- 
bouring holes and its averaged value is equal to the frustration of the hole 
network. 

1. INTRODUCTION 

While considering the vortex pinning by parallel (to vortices) dielectric 
cylindrical microchannels (columnar defects for example) or by microholes 
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in a thin film, one can distinguish two qualitatively different limiting cases: 
(1) The London limit (LL) takes place when the external magnetic field 
(H) is much smaller than the second critical field Hc2(T ) (T is the tem- 
perature). In this case the order parameter modulation is negligible and 
vortices can be introduced as g-functions in the right part of the London 
equation. The vortex distribution and the pinning can be found from the 
London free energy which includes the kinetic energy of supercurrents and 
the energy of essentially non-uniform magnetic field. In the LI_ one should 
assure that the channel radius is much larger than the temperature depend- 
ent coherence length (~=~(T)) .  (2) The opposite case when H~Hc2tT)  
can be referred as the Ginzburg-Landau limit (GLL). In this case the spatial 
modulation of the order parameter is crucial and one should use the 
Ginzburg-Landau (GL) free energy to analyse the vortex distribution and the 
pinning by empty channels (or by microholes~. At the same time the magnenc 
field modulation inside the sample can be neglected in this limit. Note that in 
both cases we assume that the Ginzburg-Landau parameter K = )~/~ ~> 1 (here 
and below 2 = 2 ( T )  is the magnetic screening length~. In the GLL the 
coherence length is of the order of the channel radius (R1 if ~cR2H ~ cbo I where 
~b 0 = 2 . 0 7 . 1 0 - 7 0 e .  cm 2 is the flux quantum). Also. it is remarkable that the 
problem of the vortex distribution in the Ginzburg-Landau limit is similar to 
the quantum mechanical problem of a single charged particle confined inside 
the volume of the sample under consideration and exposed to the same 
magnetic field. Indeed, at the critical field the vortex positions are given by 
zeros of the single particle wave function of the ground state: the critical tem- 
perature is determined by the energy of the ground state. 

The vortex pinning in pierced superconductors and the problem of the 
multi-quanta vortices has been analysed in many theoretical 1'2'3'4 and 
experimentalS06 papers, but usually in the London Limit. The Ginzburg- 
Landau limit is not so well developed. It was considered for the first time 
theoretically by Ovchinnikov. 7 

In our present work we analyse experimentally the vortex distribution 
in a film with a lattice of circular holes in the GLL. It should be emphasized 
that our experiment is an indirect one because the Bitter decoration can be 
done only at low temperature when the applied field is already much 
smaller than H<.2(T). Nevertheless we wilt argue that the freezing effect 
should take place, in other words the vortex distribution once determined 
at the nucleation temperature is not changed significantly during the field 
cooling. In this sense the obtained results are relevant to the properties of 
the system at Hc2(T)~ H (GLL) when the coherence length is comparable 
to the radius of the holes. 

It is well know that near the surface of a superconductor a non zero 
order parameter persists till the third critical field/tc3(T) --- 1.695H<.2(T). It 
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is the usual effect of surface superconductivity s which can be observed if the 
applied field is parallel to the sample surface. Similar effects were predicted 
for an infinite superconductor with an empty cylindrical channel (of 
arbitrary radius) if the field is parallel to the channel. 9, 3 In such case the 
critical field near the cavity (modified third critical field H* 3 =H*3(T)) is 
still higher than Hc2 but lower than He3. Due to the fact that the sample 
is multiply connected, the critical field is an oscillating function of the 
radius similarly to the Little-Parks effect, s In our previous work l~ it was 
shown experimentally that the enhancement of the critical field takes place 
also in a thin film near the edge of a microhole when the field is per- 
pendicular to the film plane. In fact these two configurations: a thin super- 
conducting film with a hole in perpendicular magnetic field and a 3-D 
superconductor with a cylindrical empty channel in coaxial field are equiv- 
alent in the GLL (if the thermal fluctuations are negligible). As in the usual 
effect of surface superconductivity, 11' 12 a region of strongly enhanced order 
parameter exists near the hole edge both above and slightly below Hc2 (just 
because the critical field is higher near the edge). Of course this maximum 
is essential only near Hc2 (more precisely, when H c 2 - H ~ H *  3-HC2 , or 
when H>H~2),  while at lower fields (in the LL) the order parameter is 
almost uniform in the sample. In fact the important difference between 
GLL and LL is that in the GLL the interaction of vortices with holes 
(repulsion if FF> 0) strongly dominates the interaction between vortices 
themselves because of the strong maximum of the order parameter around 
holes (it can be much higher than the averaged order parameter far from 
the hole). This maximum creates a new type of surface barrier (0-barrier) 
for the vortex entrance and exit which helps (together with the intrinsic 
pinning in the film) to conserve down to T =  0 K approximately the same 
number of vortices inside each hole as have been nucleated at T*. The last 
statement is a hypothesis which we will verify experimentally. Note that 
T* = T*(H) and Tc2 =-T~2(H) are temperatures when the applied field is 
equal to H*3(T) and Hc2(T), respectively. An important difference of the 
introduced above 0-barrier (which exists only in GLL) and the well known 
Bean-Livingston barrier is the scale on which the barrier is localised. The 
Bean-Livingston barrier is due to the competition of the image force and 
the Lorentz force caused by the current circulating around a hole if at least 
one vortex is captured already. Its thickness is of the order of 2(T) (in thin 
films 2(T) should be replaced by ,~2/df where df is the film thickness). In 
contrast, the thickness of the 0-barrier is about ~(T). In amorphous films 
or in HTSC it can be a very small value (20 A for example), much smaller 
than 2(T). Such difference of this two barriers should be important for the 
quantum tunnelling of vortices in the holes which depends exponentially on 
the barrier thickness as well as on its height .  
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Here we use the Bitter decoration technique (Section 2) to visualize 
individual vortices in a perforated superconducting Nb film after a cooling 
at a constant perpendicular magnetic field. A not fully completed perfora- 
tion is used to create so called "blind" holes. This approach made possible 
the Bitter decoration of vortices trapped by the microholes. The results are 
presented in Section 3. Mostly we are interested in the number of vortices 
which can be captured by a hole of a given radius during the field cooling 
(this number will be named "filling factor", FF ). Two qualitatively different 
regimes are analysed: the limit of independent (Section 41 and strongly 
interacting (Section 5) holes. Earlier the capturing of multiple quanta vor- 
tices was considered theoretically from the energetic point of view but we 
will show that a strongly non equilibrium vortex distribution is realised 
after the field cooling. The previous experimental results 5' ~' are concerned 
only with averaged properties of the ensemble of vortices in a sample with 
a lattice of holes while here a microscopic approach is developed. 

The last part of the paper as devoted to collective effects. We discuss 
(in the Section 5) the origin of the transition in the film with a lattice of 
holes observed in our previous work. t~ It was found that the critical tem- 
perature T~(H) of the perforated film is an oscillating function of the field. 
When the field is high enough, the critical temperature exhibits so-called 
"single-object" oscillation with a relatively large period determined by the 
hole area and with down-directed cusps as in the Little-Parks experiment. 
At low fields, a so-called "collective" oscillation is found with a small 
period determined by the distance between the holes and up-directed cusps 
as it is usual for the critical temperature of superconducting wire 
networks. 13 The transition between these two types of behaviour takes 
place at such field when the coherence length at the critical temperature 
T*(H) is approximately equal to the interhole distance. From the general 
point of view, each cusp of the "collective" oscillation in T~*(Ht corre- 
sponds to the formation of a periodic superlattice of vortices commensurate 
with the lattice of holes. An important question arises whether the vortices 
of the superlattice sit inside holes or in the interstices. The Bitter decora- 
tion shows that all vortices are in the holes. A brief analysis of  transport 
properties just below the transition lin the GLL/  is also presented in the 
Section 5. 

2. EXPERIMENTAL TECHNIQUE 

The principle of the Bitter decoration which is used here to visualise 
vortices in the superconducting film consists in the evaporation of a small 
amount of a ferromagnetic metal (60 ktg of Ni in our case) near the sample 
surface. The resulting smoke of small ferromagnetic particles (their 
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size is of the order of 100 •) is attracted by the magnetic field gradient 
which is due to the vortex currents. Finally the positions where the vortices 
cross the sample surface are marked by the particles and are visible in the 
electron microscope as white spots after the sample is heated to the room 
temperature. 

All magnetic decorations 14 are done at Talc ~ 4.2 K and at a pressure 
of 0.6 mbar of the thermal exchange gas He after cooling at a fixed field of 
the order of 10 Oe. A thin Nb film (Too = 9.2 K) of a thickness df= O. 17 pm 
with a triangular lattice of circular holes is used as a sample. The holes are 
organised in arrays. Each array contains about 50 identical holes which are 
forming a regular triangular lattice. The difference between the arrays is the 
hole radius or the lattice constant. The Nb epitaxial film is produced by 
electron beam evaporation of pure Nb at high vacuum (base pressure 
10 -l~ mbar) on a sapphire monocristalline substrate maintained at 550 ~ C. 
The holes are made by the reactive ion etching (R1E) with the gas SF 6. 
Before the RIE, the film was covered with an electron sensitive resist 
(PMMA) and patterned by the e-beam ' lithography. The lattice parameter 
(the distance between the hole centers) is a=3.2, 6.1, or 12#m, the hole 
radius is swept from R = 0.15 to R = 2.2 ~tm. 

A serious problem in the magnetic decoration of artificial 
microsystems, for example superconducting wire networks, 14 is the 
extremely weak magnetic field modulation. Really the amplitude of the field 
modulation (which determines the contrast of the resulting images) above 
a hole with one vortex is about AH = Oo/R 2 while for a vortex in a uniform 
film it is AH= ~bo/22. In our experiments R >> 2 so the direct decoration of 
holes is ineffective. To eliminate such difficulty we put our system on a thin 
superconducting layer ("compression" layer) which changes very weakly 
the vortex distribution 15 but helps to visualise and count vortices captured 
inside holes. This method can be named "flux compression" because the 
large coreless vortices with a weak magnetic contrast captured inside 
relatively large holes are transformed inside the "compression" layer into 
compact Abrikosov vortices with a strong magnetic contrast which are 
routinely observed by the magnetic decoration. Technically the sample is 
prepared by decreasing the time of RIE. After the incomplete etching we 
obtain holes with a bottom (blind holes) which plays the role of the 
"compression" layer. Note that in such case this layer is a part of the 
system and naturally in a good electrical contact with the perforated film. 

An important point in the usage of the "flux compression" method is 
to ensure that the displacement of vortices in the "compression" layer with 
respect to vortex positions in the sample is small with respect to the inter- 
vortex distance (such displacement can take place due to the intrinsic 
pinning in the "compression" layer). The smallness of the displacement is 
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achieved by making this layer to be very thin and in a perfect electrical 
contact with the sample. The last circumstance is important because if there 
is an insulating film between the system under investigation and the 
"compression layer" (even a very thin film) then a relative displacement of 
vortices in the sample and in the layer leads to the creation of a Josephson 
vortex parallel to the "compression" layer. The increase of the total energy 
is very weak in such case so the displacement can be large: In our geometry 
we can definitely distinguish between trapped vortices and vortices outside 
holes. 

On the other hand the "compression" layer should not be thick 
because it can, in principle, change the vortex distribution in the sample. 
It was found that the Nb film thickness as small as 200/~ is already enough 
to visualise vortices by the decoration. In our experiments we use holes 
with a bottom of thickness db = 650/~ (36 sec. of RIE). Some experiments 
are done with open holes (through holes without any bottom). In such case 
the captured vortices are not visible and one can determine the filling factor 
only by counting the rest of vortices outside holes (see below). 

3. EXPERIMENTAL RESULTS 

Micrographs of two parts of the sample: with and without holes are 
shown in Figs. lb and la respectively. The average density of vortices is 
much smaller in the perforated part because some of them are captured by 
holes and invisible. Close to each hole there is a region which is almost free 
of vortices. The vortex lattice is disordered due to the intrinsic pinning in 
the Nb film. When all vortices in the micrograph are well defined, it is 
possible to determine the averaged (over many identical holes) filling factor 
(FF) by counting the total number of vortices in two pictures with and 
without holes (Figs. lb and la) having the same size and magnification arid 
by division of the difference by the number of holes. Mathematically it can 
be expressed by a simple formula 

( FF) -P~"- P~P (1) 
Ph 

where p~ is the vortex density in the uniform film without hotes (in fact 
p~,=H/4)o),pvp is the density of vortices in the perforated part of the 
sample (here only vortices outside holes which are visible as white spots in 
Fig. lb should be counted), and Ph is the density of holes. Such method can 
be successfully applied only when the density of holes is not much smaller 
than the density of vortices. In the opposite case a small error in the 
counted vortex number causes a large error in the filling factor. 
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Fig. 1. Images of vortices (white spots) obtained with SEM after the magnetic decoration at 
4 .2K in the perpendicular field H = 6 . 3 7  Oe (Figs. a, b, and c from the top to the bot tom 
correspondingly), a: uniform Nb film of thickness 0.17/~m; b: the same film with a lattice of 
open holes of radius R = 1.1 #rn. Both pictures are obtained at the same conditions; c: Nb film 
of the same type with blind holes (bottom thickness db=0.65/lrn),  each hole capture five 
vortices, R = 1.49 #m. 
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Fig. 2. Averaged (over about 50 identical boles) number of trapped vortices versus the hole 
radius, T = 4.2 K, H = 6.37 Oe; "~"-open boles, a = 6.1/zm; "x'-blind holes, d b = 0.065/xm, 
a = 6.11 pro; "+"-d b = 0.65/~m, a = 12/zm; " �9 "-d b = 0.65 txm, a = 3.2/~m; the solid stepwise 
curve denotes the equilibrium filling factor at zero temperature. 

The ( F F )  value is de termined by  using the expression (1) in a number  
of hole a r rays  with the same a = 6.1/~rn bu t  with different R var ied  in the 
interval  0.25 p m  < R < 1.4 pro. The exper imenta l  points  (Fig. 2, solid rhom-  
buses) are concent ra ted  near  integer numbers .  

As it is shown in Fig. lc, cap tu red  vort ices can be observed directly if 
each hole has a thin superconduct ing  b o t t o m  ("flux compress ion"  method) .  
We find tha t  each hole cap ture  the same number  of  vort ices (five in the pic- 
ture)  while the vor tex  lat t ice is d i sordered  outs ide the holes. Inside holes 
vort ices are a r ranged  quite regular ly  (one can say to maximise  the  inter-  
vor tex  dis tance)  and  "a t t rac ted"  to the hole edge. I f  F F  is larger than  7 (for 
sufficiently large holes)  then one vor tex  can be at  the hole center  (not  
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shown) while others are always near the edge. Note that the bottom thick- 
ness is uniform with an accuracy of 3%. 

The decoration of blind holes shows that the bottom of a thickness 
about rib=0.065/zrn changes very weakly the filling factor (the shift is 
about 10%). This is clear from Fig. 2 where we plot the averaged (over 
about 50 holes) value of the filling factor versus the hole radius for open 
(rhombuses) and blind (crosses) holes. This fact is in an agreement with 
the theoretical consideration 15 (se also the discussion below). Also one 
should take into account the possibility that the critical temperature of the 
bottom is slightly lower with respect to the film (due to the RIE process 
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Fig. 3. Averaged (over about  50 identical holes) filling factor versus the reduced magnetic flux 
in the hole. The decorations are carried out  after the sample has been cooled down to 
T =  4.2 K at a constant  field: H = 3.66 Oe (crosses) or H =  9.55 Oe (squares). Each experimen- 
tal point corresponds to a new sample with some definite radius of holes. 
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and the small layer thickness). In such case the influence of the bottom on 
the filling factor should be even weaker. 

A very good correlation between two curves corresponding to 
a =  6.1/~rn and a = 12/~m (different types of crosses in Fig. 2) shows that 
the holes are practically independent because the increase of the lattice 
parameter by a factor of two does not change the filling factor. On the con- 
trary in the case of the smallest period of the hole lattice a = 3.2 ,um l solid 
dots) there is a strong collective effect which is discussed in the Section 5. 

An interesting fact (Figs. lc, 2, and 3) is the quantization of the 
averaged (over many holes) filling factor. Really in some definite ranges of 
R all the holes capture the same number of vortices while being surrounded 
by disordered external vortices. The ( F F )  value is very close in such case 
to an integer number (see stepwise curves in Figs. 2 and 3). These special 
ranges of R are field dependent and in fact there is only one parameter 
which determines the (FF) .  This is the reduced flux of the external 
magnetic field through the hole area d/H) o = ~R2H/~o (4o is the flux quan- 
tum). The last statement is clear from Fig. 3 where we present two curves 
obtained at different fields: H =  3.66 and 9.55 Oe {note that to sweep the 
flux we change the hole radius but not the field or. in other words, each 
experimental point corresponds to a new sample with a particular radius of 
holes). The curves practically coincide so one can conclude that only the 
flux determines the filling factor. 16 

For comparison with the theory it is useful to determine also the 
minimum value of the filling factor (FFmin), i.e. the minimum number of 
trapped vortices found among 50 identical holes of each array. This value 
(which is integer by definition) is equal to the ( F F )  when ( F F )  is integer 
because in such case all holes capture the same number of vortices. In all 
other experimental cases 0 < ( F F )  FFmi n < 1. The experimentally found 
values of FFmin (for H = 6.37 Oe) are shown in Fig. 4a by solid circles. 

4. F I L L I N G  FACTOR OF AN I N D E P E N D E N T  H O L E  

In this section we consider the case of a large separation between holes 
(much larger than the coherence length) when they are independent. The coin- 
cidence of the (FF)  for arrays with a = 6.1 #m and a = 12/~rn (different crosses 
in Fig. 2) shows that such regime is achieved when a > 6/Lm (and R < 2/~rn). 
The effects due to the interaction between holes are discussed in Section 5. 

4.1. Comparison with London Limit at Low Temperature 

Let us compare firstly the experimental value of the ~FF~ with the 
equilibrium (at the moment of decoration) filling factor which corresponds 
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to the minimum of the energy of the system. At low temperature when 
the decoration is done the system is in the London Limit because 
Taec ~ 4.2 K ~ T*(H)  at any value of H used in our experiments. The dis- 
tance between the vortices (av) is much larger than the screening length 
(av ocl prn; the screening length in our Nb films 17 is 2(4.2 K ) ~ 2 ( 0 )  
1000 h)  so the interaction between vortices is negligible. The thickness of 
the film (dr= 1700 A) is larger than 2(0) so the result for an empty cylindri- 
cal channel in a 3-D infinite sample will be a good approximation. At last 
the size of holes (R >~ 1500 A) is much larger than the coherence length 17 
(4(4.2 K) ~ 3(0) ~ 200 A) so the energy of vortices captured inside a hole 
can be found by using the London equation. The case of the equilibrium 
vortex distribution under the above conditions (in the LL) is considered 
in. 3 It is shown there that the trapping (by a hole) of a second vortex 
reduces the free energy of the system "hole with one trapped vortex" + 
"independent Abrikosov vortex at infinity" only if R > Re(2) = ~ (note 
that the introduced here critical radius for the double quanta vortex 
nucleation Rc(2 ) is independent on the magnetic field if a~ > 2). In our case 
the hole radius is always much larger than Re(2) g 0.06/~m, so in the equi- 
librium state the filling factor should be ( F F )  i> 2 in all cases. Experimen- 
tally we find ( F F )  = 1 till R > 0.5 pm > R C (see Fig. 2). 

With the same assumptions one can easily find (using the approach of 
ref. 1) the critical radius Re(FF) for transitions F F -  1 ~ FF (entrance of 
one vortex into a hole with F F - 1  vortices inside). This critical radius 
follows from the condition that the free energy of a channel where FF 
vortices are trapped is equal to the energy of the same channel with F F -  1 
vortices captured plus the energy of a flee vortex at infinity. It is given by 
the following equation: 

- 2 F F -  1 (2) 

where Fo=(H2J4zc)(Dr/tc2)(O.1 +inK) is the energy of a free vortex at 
infinity, Hc is the thermodynamic critical field, lc = 2/4 is the Ginzburg- 
Landau parameter, 

FI(R/2 ) H~ zc K~(R/2) [ 2 KI(R/2)I  
= 4~  K --5 (KI(R/2) + RKo(R/2)/2) 2 1 + R/2 Ko(R/2)J 

is the energy of single vortex trapped in a cylindrical channel of radius R, 
and K o and K1 are modified Bessel functions. The result of the numerical 
calculation of the equilibrium (at zero temperature) filling factor is shown 
in Fig. 2 by the stepwise solid line (we accept 2(0) = 1000 A). Evidently the 
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filling of holes found in the experiment is far from the equilibrium. In such 
case one should consider higher temperatures, in other words the sample 
history, to explain the experimental data. 

4.2. Edge States and Sample History 

If a constant field is applied perpendicularly to the film and the tem- 
perature is decreased then a non-zero order parameter will appear ~br the 
first time at T =  T~*.3(H) near the hole edge in a thin belt of thickness 4(T). 
The order parameter 0(p, 0) decreases exponentially inside the super- 
conductor: (p2H~ 

t) oc e *"~ exp F 4 ~ ; j  (3) 

where (p, 0) are the polar coordinates. One can define the number of vor- 
tices trapped by a hole at the superconductivity nucleation temperature as 
the increase in the phase of the order parameter (divided by 2~) after one 
turn around the hole: FF=n. The orbital number n in the formula (3) 
should be chosen to maximise T* .  In principle to find the value of ( F F )  
at T = 0  one should determine the probability of the vortex entrance (or 
exit) at all intermediate temperatures. 

4.2.1. Region Below the T~2 

Let us consider the region below Tc2(H ) when all the film is super- 
conducting. In such case any increase of the filling factor corresponds with 
necessity to an approach and entrance of an Abrikosov vortex. If such 
motion of the vortex is not possible near the hole than the FF will be con- 
stant. Actually it is the case as we will see below. 

Firstly, one can argue that the strong maximum of the amplitude ]Of 
takes place near the hole edge not only above To2 but also slightly below. 12 
Numerical calculations 18 show that the order parameter amplitude near the 
hole edge at H=Hc2 is very strong: I~,Ip=R~H=~2~0.5 l~'lg=o. At the 
same time at To2 the superconductivity appears everywhere in the film as 
the Abrikosov vortex lattice but the amplitude of the averaged order 
parameter (and therefore the repulsion force between the vortices) is small 
in comparison to the IOlp =R and proportional to the ~ 2 -  T (note that 

the [O[p = R is proportional naturally to the ~ / T *  - T so it is finite even at 
T =  T~2). The increase of [~1 (when p ~ R ) gives rise to a strong surface 
barrier because it leads to an increase of the condensation energy in the 
vortex core if the vortex approaches the hole, and therefore to a repulsion 
force acting on the vortex near the hole. It is evident that in such case 
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(more exactly when T~.2- T ~  T* - T~2 or Hc2-H~H73 -Hc2) the inter- 
action between vortices is negligible with respect to the interaction between 
a vortex and the edge superconducting state. Note that due to the repulsion 
between vortices and the edge sate we find a region free of vortices around 
each hole (Figs. lb and lc). It is conserved down to 4.2 K due to the intrin- 
sic pinning. 

Secondly, at temperatures considerably lower than Tc2(H) (in the LL) 
when the described above barrier is not efficient, the intrinsic pinning in the 
film is very strong, what is clear from the strongly disordered distribution 
of vortices in Fig. la. It implies that the filling factor should be constant 
also at low temperatures because vortices are pinned so they can not 
approach and enter the holes. 

At last, another factor which helps to keep FF constant (at all tem- 
peratures) is the Bean-Livingston barrier. It is due to the supercurrent cir- 
culating around the hole if at least one vortex is already captured.1 In this 
context one can remind that at the decoration temperature the condition 
a~ ~> 2 is fulfilled, so the repulsion between vortices is negligible. Finally we 
come to the conclusion that the filling factor of an isolated hole should be 
constant during the field cooling from T~a(H ) down to zero temperature. 

4.2.2. Region Above Tc2 

To analyse possibilities of transitions between different n above To2 let 
us consider the phase diagram 18 of a film with a single hole in per- 
pendicular field (Fig. 4b). The superconductivity nucleation near the hole is 
shown by the thin solid line (or by the dotted line for a blind hole with 
db/dj= 0.382). Temperatures when the free energies of states with orbital 
numbers n and n + 1 are equal to each other, are shown by dashed lines (in 
the diagram the temperature is replaced for convenience by the tempera- 
ture dependent coherence length 4(T) = 4(0)(1 - (T/Tco)) -1/2 normalised 
to the magnetic length given by the relation ~ L 2 =  ~b0). The boundaries 
between states with different n are not parallel to the temperature axis so 
even if the field is fixed, the cooling can cause a first order phase transition 
with an increase of the filling factor by one. Note that no more than one 
such transition is possible in the interval To2 < T < T~*. It is clear that even 
if all possible (above To2) first order transitions are realised, the curve 
FF(~/~o ) will have only a small shift to the left (about 10%) which is inver- 
sely proportional to the slope of the dashed lines in Fig. 4b. The shift can 
be larger if the screening effects are considerable (the first order transition 
boundaries shown in Fig. 4b are found in the limit of zero film thickness 
when the magnetic field is uniform inside the sample). Also a supercooling 
process is possible. 



86 A. Bezryadin and B. Pannetier 

5 
4 
3 
2 
1 
0 

a) 

- . . . . . . .  ; : : : U ' : :  - 

~, b) normal state 

~ 1,4 ~ 

C'~ n 

/ ~  state 0f localiSed I 
~ =  1,2 t ,, t = 1 ~ ................. A 
~ = I ......... .............................................................. ,,' super~~ ............ : " ..... t!l] 
c . , I  1 , ,I , , ~ , , , ~ , I . . . .  t . . . .  t !  

0 1 2 3 4 

010o 
Fig. 4. (a) The solid circles denote the minimum value of the filling factor (found experimen- 
tally among 50 holes for the case a =  12/xm, H=6.37 Oe, db/dr=0.382 ) versus the flux. The 
calculated number of vortices which nucleate inside each hole at T~* is shown by the solid line 
for open holes and by the dashed line for blind holes with db/df= 0.382. Note that the 
moments when the theoretical value of the FF increases by one simply coincide with the posi- 
tions of the cusps in the critical field (b) Phase diagram for an open unique hole. Solid Curve 
is the reduced critical field (or what is the same, the coherence length at Y<* normalised to 
the magnetic length). The same function for a blind hole with djdf= 0.382 is shown by the 
dotted curve. Dashed lines show (for an open hole) the first order phase transition boundaries 
between states with different orbital momenta n. 

From the above consideration it is clear that in general the filling fac- 
tor is determined at the moment of the nucleation of superconductivity 
near a hole. At the same time there is some probability that the F F  is 
increased by one during the field cooling. Therefore it is more convenient 
to consider the minimum possible (experimental) value of the filling factor 
FFmi n for holes of each radius. This value should be closer (than ( F F } )  to 
the number of vortices which nucleate inside each hole at T~. In Fig. 4a we 
compare the experimental data for FFmi n (solid circles) with the theoretical 
filling factor F F =  n (solid line) which is determined from positions of the 
cusps in Fig. 4b and corresponds to T =  T~. One can see a good agreement 
between the theory and experiment. The averaged experimental value of the 
filling factor (FF}  is somewhat higher than the F F  calculated for T = .7<* 
but the difference is small (about one). It can be explained by first order 
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phase transitions in the interval Tc2 < T < T~*. For a more accurate quan- 
titative treatment of this effect one should find exact positions of the first 
order phase transition boundaries by taking into account the screening 
effects and also by analysing possibilities of such transitions at T <  Tc2(H). 

4.3. Stepwise Behaviour of the <FF') 

Our important experimental observation is the quantization of the 
averaged (over an array of holes) filling factor which reflects the fact that 
each hole capture the same number of vortices and this number is constant 
in some finite intervals of R. Such a "coherence" between remote holes is 
especially surprising if one takes into account that the experimental values 
of (FF> are very different from their equilibrium values as it is shown 
above. The explanation naturally follows from the consideration of the 
edge superconducting states. Really we have seen (Fig. 2) that the interac- 
tion between the holes is negligible if a > 6 #m. Therefore the same number 
of vortices should be nucleated at T* in each hole. This number can not 
be influenced by such fluctuating from one hole to another factors as the 
intrinsic pinning in the Nb film or the relative position of the hole with 
respect to the Abrikosov lattice (just because there are no Abrikosov vor- 
tices at T~*). The subsequent cooling can cause the first order phase trans- 
ition, but it increases the filling factor only by unity and should take place 
in all holes at the same time. Below T~2 a change in the filling factor is not 
probable because of the strong maximum of the order parameter near the 
hole edge at high temperatures and due to the intrinsic pinning at lower 
temperatures (see the above discussion). We come to the conclusion that 
the filling factor in the field cooling experiments should be determined only 
by the magnetic flux of the external field through the hole (in the agree- 
ment with the experimental result shown in Fig. 3), because this is the only 
parameter which determines the nucleation (and evolution in the GLL) of 
the edge superconducting states (Fig. 4b) . 

The role of the hole bottom in the nucleation process is analysed in 
details in <ls~ where it is shown that the critical field is very sensitive to the 
ratio db/d / while the number of vortices which nucleate inside a hole 
decreases very weakly with the increasing bottom thickness. This fact is 
illustrated by the proximity of the two theoretical curves in Fig. 4a for open 
(solid line) and blind (dashed line) holes (see also Fig. 4b for comparison 
of the critical fields of blind and open holes). 

5. TRANSITION INTO COLLECTIVE STATE 

Till now we considered holes as independent objects but if the distance 
between them is comparable or smaller than ~(T) then the interaction is 
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important and in the limit R --, a/2 we come to the opposite case of a dense 
hole network which is similar to the wire network. 13 Let us discuss here the 
influence of such interhole interaction on the vortex distribution and on 
the transport properties just below the superconducting transition (in other 
words in the GLL). 

5.1. Visualisation of Vortex Distribution 

In the Fig. 2 (solid dots) one can see the dependence of (FF)  versus 
the hole radius obtained on hole arrays with the smallest lattice parameter 
a = 3.2/zm. When R is small enough, the data for a = 3.2 #m and for well 
separated holes with a = 6.1 r or a = 12 r coincide with each other. An 
increase of R leads to a more rapid growth of the ( F F )  in the array with 
the highest density of holes. Finally at R c ~a/4 the system comes to a 
new, "collective" state when the filling factor is saturated and equal to 
the frustration (FR) of the lattice of holes: ( F F ) = F R .  The frustration is 
the averaged number of vortices per a unit cell: FR = ~aiH/~o, ~ = 1 for the 
square lattice and 0~ = x / ~  for the triangular lattice. Note that the trans- 
ition into the "collective" regime takes place when the distance between 
hole edges is approximately equal to the hole diameter 2R i.e. when the 
edge superconducting states of neighbouring holes are considerably over- 
lapped at the nucleation temperature, 19 but much earlier than the  holes 
touch each other geometrically. The character of this transition is clear 
from Fig. 5 where we present images of two samples, one before and one 
after the saturation of (FF) ,  decorated at the same time and at the same 
conditions. The only difference between them is the hole radius (the dis- 
tance between the holes is the same). When the radius is small we find the 
"single-object" behaviour when almost each hole capture the same number 
of vortices (in Fig. 5a each hole capture two vortices while residual vortices 
are outside holes), and consequently the (FF)  in such state is an integer 
number determined by R and H in accordance with the phase diagram of 
a single hole. is The increase of R initiate the transition into the ,collective" 
state when all vortices are captured (Fig. 5b), and the filling factor depends 
only on the relative positions of holes ( (FF))  ~-c~a2H/c~o) but not on their 
individual characteristics such as the radius. 

5.2. First Order Transition 

A simultaneous entrance of all free vortices inside holes at some criti, 
cal value of the coherence length or at some critical hole radius is, by 
definition, a first order phase transition because it leads to a finite change 
of the state of the vortex crystal, but not only of its symmetry. 2~ 
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Qualitatively speaking, the transition can be found from the comparison of 
the free energy of an additional probe vortex located inside a hole (Fo) and 
in the middle between neighbouring holes forming a unit cell (F1). The con- 
dition for the "single-object" state is F a < Fo. Evidently it is fulfilled if the 
filling factor and the interhole separation are big enough, because the vor- 
tex energy in interstices is proportional to the order parameter amplitude 
and therefore decreases exponentially with the increasing a. At the same 
time the energy of a trapped vortex rises with the filling factor, if FF is suf- 
ficiently large. The transition into the "collective" state appears when 
F1 = F0). Experimentally we have found (Fig. 5b) that at sufficiently large 
R all vortices are trapped so the condition F1 > F 0 is fulfilled. It is in a 
qualitative agreement with the well known theoretical result that vortices 
do not exist in a film thinner than the coherence length 21 (if the field is 
parallel to the film). In our case the coherence length should be compared 
with the size of the superconducting region confined between neighbouring 
holes. The "superheating" line can he determined from the condition that 
the minimum of the energy in interstices (F~) becomes a maximum. It 
should he emphasised also that the first order transition corresponding to 
the entrance of an additional vortex inside a hole analysed in ref. 18 is a 
different phenomenon, because it corresponds to a single isolated hole and 
initiated by the decreasing temperature. Now we are discussing a collective 
phenomenon which takes place in a periodic lattice of holes. The transition 
from the "single-object" to the "collective" state takes place when the 
coherence length exceeds the separation between the holes, what leads to 
the expulsion of all vortices from the superconducting material to the holes. 
An increase (but not a decrease) of the temperature should lead to such 
redistribution. 

5.3. Critical Temperature Oscillation 

The above described transition helps to understand the results of our 
resistive measurements carried out on thin A1 films with a square lattice of 
holes (all the experimental conditions are the same as in ref. 10). Firstly let 
us consider the critical temperature T*(H) of the perforated film/1~ In the 
derivative shown in Fig. 6b one can distinguish two types of oscillation. 
The large period found at high fields corresponds approximately to the 
increase of the magnetic flux through the hole area by one flux quantum. 
The structure at low fields is periodic peaks; the period exactly corresponds 
to one flux quantum through the area of a unit cell of the hole lattice. 
The sharp transition between these two types of the critical temperature 
oscillation can be completely explained if one takes into account that at 
the moment of superconductivity nucleation the system can be either in the 
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Fig. 5. Micrographs of two parts of the sample with arrays o f  hole s of different radius 
(R = 0.6/~m and R = 0.83 #m). The distance between holes in both cases is a = 312 gin. An 
increase of the hole radius leads to the transition from the "single-object" state (top picture, 
a) when the holes are independent and capture the same number of vortices into the "coltec, 
tive" state (bottom picture, b) when all vortices are inside holes and the averaged filling factor 
is equal to the frustration of the network of holes. The decoration is done after the cooling 
at H = 6.37 Oe down to Tde ~ = 4.2 K, The vortices are visible as white spots. 
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Fig. 6. (a) The coherence length at the transition temperature # [T~(H)]  in the A1 perforated 
film used for the critical temperature and transport measurements (but not in the decoration 
experiments). It should be compared with the period of the hole lattice a = 9.05/Lm and the 
hole radius R = 2.13/an; (b) The derivative of the critical temperature versus magnetic field 
for the same At film. It shows the fast "collective" and the slow "single-object" oscillation; 
(c) The amplitude of the peak in the derivative of the A1 film resistance versus the tem- 
perature (the experimental points are shown by triangulars). The horizontal axis is the exter- 
nal magnetic field, which is perpendicular to the film plane, Solid lines are the mean square 
fits, 
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"collective" or in the "single-object" state. The oscillation of T*  with the 
large period corresponds to the "single-object" state when each hole cap- 
ture the same number of vortices. A synchronized entrance of an additional 
vortex in each hole causes, similarly to the Little-Parks effect, a cusp in the 
critical temperature and a jump in the derivative. Naturally such trans- 
itions are repeated when the flux through the hole area is increased 
approximately by one flux quantum. At small fields the ~[ T*(H)] is suf- 
ficiently large in comparison to the interhole separation, what leads to the 
realisation of the "collective" state (the coherence length at the nucleation 
temperature is plotted in Fig. 6a). In this state, if H is arbitrary chosen, the 
FF is no more the same for different holes (as in Fig. 5b) since all vortices 
are inside holes and their total concentration is determined by the applied 
field. Now singularities in the critical temperature appear, as in wire 
networks, when FR is integer because in such case the FF is again the Same 
for all holes. Therefore the period of the oscillation in the "collective" state 
is exactly equal to one flux quantum per the area of the unit cell of the hole 
lattice. Moreover if FR is a simple rational number, then the vortices are 
forming a commensurate superlattice. 22 

5.4. Transport Properties (TAFF)  near Superconducting Transition 

An analysis of the thermally assisted flux flow (TAFF) 23 just below the 
superconducting transition gives another experimental evidence of the 
transition from the "collective" to the "single-object" state, which is 
governed again by the coherence length. Experiments are carried out on 
the same A1 perforated film as in the pervious case and as in the ref. 10 I. 
They show that the magnetic field can cause not only the shift and the 
splitting of the resistive transition, but also its broadening ~see Fig. 2 in the 
ref.10). This broadening is due to the thermally activated motion of vor- 
tices in the direction of the Lorentz force. It is linear with the driving 
current (when the current is small enough) so one can introduce the 
resistance of the sample (9t). From the general point of +lew, one can 
expect that the capturing of all vortices inside holes should lead to a 
qualitative change of the transport properties, in particular of the TAFF 
(which is considerable only near T*). To characterise the broadening of 
the transition we use the derivative dgl/afT. It has a peak when the super- 
conductivity appears in the system; the amplitude of this peak is inversely 
proportional to the broadness of the transition and therefore should be a 
good characteristics of the TAFF. The result is shown in Fig. 6c. where we 
normalise this derivative by the sample resistance in the normal state (NN). 
One can see two different behaviours: at low fields when the coherence 
length at the superconducting transition ~[ T~(H) ]  is big, the "collective" 
state is realised. It implies the total capturing of vortices by holes, a weak 
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TAFF, and consequently a high peak in the derivative which decreases 
linearly with the field. Starting from some critical field, which in our par- 
ticular case is Hc~ ~ 0.3 ktT, the height of the maximum decreases with the 
power law (oc H 3/2). The simplest explanation of this change of the 
TAFF is to assume that at H =  Hc~ the system switches to the "single- 
object" state. This means that a part of vortices exits the holes, what gives 
rise a rapid increase of the TAFF (because the vortices between the holes 
are weakly bounded) and to the broadening of the transition. The disap- 
pearance of the "collective" oscillation (which is also explained by the delo- 
calisation of vortices in the previous paragraph) takes place approximately 
at the same field/tc~ ~ 0.2 lint (see Fig. 6b). The difference can be explained 
by the fast decay of the oscillation of the critical temperature, which is a 
usual phenomenon in the wire networks made of relatively thick wires. 13.24 
It should be mentioned that the result presented here is a preliminary one. 
Additional measurements of transport properties of perforated samples in the 
GLL should be of interest. For example one can expect to observe a reen- 
trance effect. Namely the increase of the temperature leads to the increase of 
the coherence length and therefore to the transition into the "collective" state 
when all vortices enter the holes. Therefore the critical current of the per- 
forated film should exhibit a jumpwise increase with increasing temperature. 
A re-entrant flux creep rate behaviour due to the multiquanta vortex for- 
mation was found recently in 25 in a perforated film, but probably this 
phenomenon is not related to the spatial modulation of the order parameter 
amplitude and should be discussed in the framework of the LL. 

6. CONCLUSION 

The Bitter decoration technique was used for the direct observation of 
the vortices trapped inside microholes. We have found that the number of 
fluxoids inside an isolated hole is determined by the edge superconducting 
state at T~* and changes weakly during the field cooling due to the strong 
surface barrier and the intrinsic pinning. The density of fluxoids is much 
higher inside holes than outside and moreover the dependence of the 
averaged filling factor on the magnetic flux is stepwise. If the holes are close 
enough to each other so the separation between their edges is of the order 
of the coherence length, then the transition from the "single-object" to the 
"collective" state is possible. This transition is characterised by the sudden 
entrance of all vortices inside holes and corresponding saturation of the fill- 
ing factor. It is found both in the decoration experiments and also by 
measuring the resistance of a perforated film when the above mentioned 
transition leads to a qualitative change of the TAFF process and of the 
critical temperature dependence on the magnetic field. The presence of a 
thin bottom in holes does not change the physics of vortex capturing but 
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provides a direct way to determine the number of trapped fluxoids (by the 
Bitter decoration). This method of the "flux compression" should be useful 
in the decoration of wire networks and others artificial mesoscoplc systems. 
Our results show that the analysis of the vortex pinning near the second 
critical field by a system of empty channels or by the columnar defects is not 
possible without taking into account the surface superconducting states or in 
other words the strong nonuniformity of the order parameter. 

We are very grateful to O. Buisson, A. Buzdin, A. Eichenherger, J. L. 
Genicon, B. Grebenschikov, A. Neminskii. and Yu. N. Ovchinnikov for 
many useful discussions, to M. Ferlet for help in the decoration, and to 
D. A. Lisachenko for the careful reading of the manuscript. The work is 
supported by the CEE "SUPNET" contract ERBCGRCT920068. 

REFERENCES 

1 G. S. Mkrtchyan and V. V. Shmidt, Soviet Phys. JETP 34, !95 (1972). 
2. B. Khalfin and B. Ya. Shapiro, Physica C 202, 393 (1992). 
3. A. I. Buzdin, Phys. Rev. B 47, 11416 (1993). 
4. L. D. Cooley and A. M. Grishin, Phys. Rev. Lett. 74, 2788 (1995). 
5. A. T. Fiory, A. F. Hebard, and S. Somekh, Appl. Phys. Lett. 32, 73 (1978), 
6. M. Baert et al., Europhysics Letters 29, 157 (1995). 
7. Yu. N. Ovchinnikov, Soy. Phys. JETP 52, 923 (1980). 
8. P. G. De Gennes, Superconductivity of Metals and Alloys, W. A. Benjamin, Inc., New 

York (1966). 
9. Yu. N. Ovchinnikov, Soy. Phys. JETP 52, 755 (1980). 

10. A. Bezryadin and B. Pannetier, J. of Low Temp. Phys: 98, 251 (1995). 
11. D. Saint-James and P. G. de Gennes, Phys. Lett. 7, 306 (1963). 
12. H. J. Fink, Phys. Rev. Lett. 14, 309 (1965). 
13. B. Pannetier, J. Chaussy, and R. Rammal, Phys. Rev. Lett. 53, 1845 (1984); B. Pannetier, 

in Quantum Coherence in Mesoscopic Systems, Plenum, New York, 1991. 
14. K. Runge and B. Pannetier, Europhys. Lett. 24, 737 (1993). 
15. A. Bezryadin, Yu. N. Ovchinnikov, and B. Pannetier, to appear in Phys. Rev. B. 
16. At very low fields ( H <  1Oe) a considerable deviation (not shown) from the curves in 

Fig. 3 is found. It is probably related to the fact that at such low field the difference 
between T~*.3(H) and Tc2(H) starts to be smaller than the superconducting transition width 
(about lmK). 

17. K. Runge, Ph.D. Thesis, Joseph Fourier University, Grenoble (1993). 
18. A. Bezryadin, A. Buzdin, and B. Pannetier, Phys. Rev. B 51, 3718 (1995). 
19. The coherence length at T =  T~* if n ~ 1 is approximately equal to the hole radius: ~ ~ R. 

See the phase diagram for a single hole in Ref. 18. 
20. L. Landau and E. Lifshitz, Statistical Physics (Pergamon Press, London, 1979). 
21. M. Tinkham, Introduction to Superconductivity" (McGraw-Hill, New York, 1975), 

Chap. 4-10.2, p. 135. 
22. A. Bezryadin, A. Buzdin, and B. Pannetier, to appear in proceedings "Macroscopic Quan- 

tum Phenomena and Coherence in Superconducting Networks," 2-5 March 1995, 
Frascati, Italy. 

23. M. Tinkham, Introduction to Superconductivity (McGraw-Hilt, New York), Chap. 5-7.1; 
p. 175; P. M. Kes et al., Supercond Sci, Technol. 1, 242 (1989). 

24. S. P. Benz et aL, Phys, Rev. B 38, 2869 (1988). 
25. M. Baert et al., Phys. Rev. Lett. 74, 3269 (1995) 


