On January 28, 1986, the United States was shocked by the destruction of the space shuttle Challenger and the death of its seven crew members.

“The decision to launch the Challenger was flawed. Those who made that decision were unaware of the recent history of problems concerning the O-rings and the joint and were unaware of the initial written recommendation of the contractor advising against the launch at temperatures below 53 degrees Fahrenheit and the continuing opposition of the engineers at Thiokol after the management reversed its position. They did not have a clear understanding of Rockwell’s concern that it was not safe to launch because of ice on the pad. If the decision makers had known all of the facts, it is highly unlikely that they would have decided to launch 51-L on January 28, 1986.”—Report of the Presidential Commission on the Space Shuttle Challenger Accident


Today, we’ll look at the three components of persuasion, how to establish credibility in science writing, and the ethics of using persuasion in science.
It’s not all about *truth.*
Today, we would substitute “person” for “man,” but that’s not what Darwin, who was a product of a different place and time, said, and I believe people should be quoted accurately.—cme
Today, we would substitute “person” for “man,” but that’s not what Darwin, who was a product of a different place and time, said, and I believe people should be quoted accurately.—cme
Persuasion is a social interaction, as is doing science and engineering

Persuasion is an essential part of the testing, dissemination, and advance of scientific knowledge

Successful leadership, teamwork, and project management in science and engineering rely on the effectiveness of persuasion

Commercial success depends on persuasion

Research is not complete, no matter how many experiments have been conducted, no matter how much analysis has been done, no matter how many puzzles have been solved, until peers outside of your research team are persuaded that you’ve done something significant, your results are valid, and your conclusions are correct.
Research is not complete, no matter how many experiments have been conducted, no matter how much analysis has been done, no matter many puzzles have been solved, until peers outside of your research team are persuaded that you’ve done something significant, your results are valid, and your conclusions are correct.
Too often, scientists and engineers think of doing research and writing as discrete tasks that have little to do with one another. Today, I’d like you to think of them as a feedback loop, where progress in one informs and drives progress in the other.

From Peter Woodford: “Somehow the discipline of crystallizing a thought into a grammatical sentence with a beginning, a middle, and an end clarifies, sharpens, and delimits the thought.

The first scientist was the first “persuader”

Ρητορική—4th century BCE

Most important single work on persuasion ever written

Established three elements of persuasive argument
Too often, scientists and engineers think of doing research and writing as discrete tasks that have little to do with one another. Today, I’d like you to think of them as a feedback loop, where progress in one informs and drives progress in the other.

From Peter Woodford: “Somehow the discipline of crystallizing a thought into a grammatical sentence with a beginning, a middle, and an end clarifies, sharpens, and delimits the thought.”
Too often, scientists and engineers think of doing research and writing as discrete tasks that have little to do with one another. Today, I’d like you to think of them as a feedback loop, where progress in one informs and drives progress in the other.

From Peter Woodford: “Somehow the discipline of crystallizing a thought into a grammatical sentence with a beginning, a middle, and an end clarifies, sharpens, and delimits the thought.
Next, arrange the points in a logical order so they provide a coherent storyline.

Think of this step as creating a map to guide your reader through your paper, proposal, or talk.

Each one of these points is going to be a signpost along the journey.
First, decide what conclusions you want your “audience” to reach—that the work you did was important, that the method you used was appropriate, that you actually measured what you think you measured, that your results are valid, your assumptions are sound, and your conclusions are supported by the evidence.

Make a list of all the important points that the audience must know.

Marshall supporting facts and explanatory information.

Arrange the main points and supporting details in a logical order, so that each moves the audience incrementally closer to the desired conclusion (outline!).

Think of the structure of your argument as a roadmap that is going to lead your reader to a predetermined destination. Create “sign posts” to guide the reader through your narrative.

“Sign posts” are reader cues such as graphical highlighting (boldface or italic), use of headings and subheadings, arrangement of text on the page, incorporation of figures and tables, and mathematical proofs.
First, decide what conclusions you want your “audience” to reach—that the work you did was important, that the method you used was appropriate, that you actually measured what you think you measured, that your results are valid, your assumptions are sound, and your conclusions are supported by the evidence.

Make a list of all the important points that the audience must know.

Marshall supporting facts and explanatory information.

Arrange the main points and supporting details in a logical order, so that each moves the audience incrementally closer to the desired conclusion (outline!).

Think of the structure of your argument as a roadmap that is going to lead your reader to a predetermined destination. Create “sign posts” to guide the reader through your narrative.

“Sign posts” are reader cues such as graphical highlighting (boldface or italic), use of headings and subheadings, arrangement of text on the page, incorporation of figures and tables, and mathematical proofs.
Use “cue” words to guide the reader

Lead the reader forward incrementally
  additionally, again, further, second, at first, next, finally, then

Cause the reader to stop and compare
  although, however, conversely, despite, compare with (c.f.), refer to (q.v.)

Give illustrative examples
  for example (e.g.), for instance, namely (viz.), to demonstrate

Emphasize
  certainly, clearly, in any case, indeed, note (N.B.), obviously

Repeat to clarify important ideas
  as previously noted, once again, in other words, that is (i.e.)
Use “cue” words to guide the reader

Show a relationship
because of, not only...but also, attributable to, since, arising from, owing to, correlated with, orthogonal to

Introduce conclusions
accordingly, as a result, consequently, hence, therefore, thus

Summarize the main points
overall, in summary, to recap

Use transitional statements and reader cues as sign posts to guide a reader through your logical argument
Science articles—and to a large extent, science talks—follow the same basic structure. Hew to it witlessly.

Title
Abstract
Background and Introduction
Methods
Results
Discussion
Conclusions
Acknowledgments
References
Appendices

Build your logical arguments around this formal (and mandatory) structure.
Step 2: Show you’re trustworthy (H00ς)

Provide a complete literature review to establish your expertise
Demonstrate that you are honest—be objective, open, and even-handed
Cite responsibly (including people who don’t agree with you!)
Disclose all selection or treatment of data
Be candid about assumptions, shortcomings, and limitations
Neutralize objections by addressing them

Add authority to your arguments:

Establish your credibility by demonstrating your familiarity with the problem (background and introduction section).
Cite the work and opinion of experts (references).
Don’t hide things (methods/procedure section).
Don’t overstate your claims or force your data (results section).
Anticipate questions and objections and candidly discuss opposing views (discussion section).
Acknowledge the contributions of others (acknowledgments section).

Evenhandedness is particularly important if your method or results are controversial.
Enthusiasm must be strongly coupled to reality, but a reader is unlikely to be enthusiastic about your work if you aren’t.

Convey that your project is interesting and represented an exciting challenge.

Remember the words of Master Yoda—“Do or do not. There is no try.”
Aristotle was on the right track, but Ms P has a suggestion...

Effective scientific argument must consider three more elements—

σκοπός (purpose)
ακροατήριο (audience)
συμφραζόμενα (context)
Step 4: What is your purpose?
- Report new results
- Reinterpret other people’s results
- Elicit feedback on a new idea
- Promote a new method
- Correct prior work
- Get a job
- Get an order
- Secure research funding

Your purpose affects your style of persuasion
Step 5: Know thy audience!
Who is going to read this paper?
What do they already know? (words, concepts, methods, prior work)
What don’t they know that I will have to explain?
What do they already believe?
Where might they become confused?
What words, figures, plots, tabular data will convince them?
What is their motivation for reading my paper or coming to my talk?
Step 6: Consider the context

What is the medium?
- Peer-reviewed journal paper
- Abstract for a conference
- Technical report for other scientists and engineers
- Product specifications for the sales team
- Proposal to a funding agency or customer
- Formal conference presentation
- Job talk
- Informal seminar

What is the focus and scope?

What are the constraints (time, page limits)
Persuasion is a powerful tool—use it judiciously and ethically

Don’t distort the facts
Don’t choose facts selectively
Don’t exaggerate or give deceptive emphasis
Don’t omit pertinent objections or counter-arguments

But—don’t be afraid to persuade!

Go beyond the “don’t make things up” case.

And if you’re not persuaded...come talk to me!

Celia Elliott
215 Loomis Laboratory
cmelliot@illinois.edu