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We have performed fermion Monte Carlo variational calculations to determine the equation of state of the
uniform electron one-component plasma in two and three dimensions. The ground-state excess energies
calculated by the Monte Carlo method are very precise and in agreement with those of other calculations in
the metallic density range and in the very-low-density Wigner crystals. Three phases have been investigated:
the Wigner crystal, the normal or unpolarized fluid, and the polarized fluid. The Wigner crystal has the
lowest energy for r; > 67 in three dimensions and r, > 33 in two dimensions. The totally polarized quantum
fluid is stable for 26 < r, < 67 in three dimensions and for 13 < r; < 33 in two dimensions, and the normal or
unpolarized fluid is stable at higher densities, r, < 26 in three dimensions and 7, < 13 in two dimensions. A
pseudopotential with no adjustable parameters, derived from the random-phase approximation, is found to
give excellent energies. The present results lend support to earlier conjectures that the ground state of the
electron gas will be spin polarized at intermediate densities.

I. INTRODUCTION

In this paper we will give results which depend
on the computational techniques now available to
obtain a variational bound for the ground-state en-
ergy of the fermion plasma. The quantum plasma
with a uniform neutralizing background is a widely
used model in many-body physics. The most com-
mon application is to free electrons in metals and
semiconductors. But if hydrogen is compressed
to very high densities, as in a white dwarf, the
electrons become a relativistic uniform back-
ground. while the protons constitute a cold plasma,’

In recent years several two-dimensional (2D)
plasma systems have become of interest. Elec-
trons trapped above the surface of liquid helium®
are nearly a perfect realization of the 2D one-
component plasma since the movement in the di-
rection perpendicular to the surface is very much
smaller than the electron spacing. The surface
charge density can be varied over many orders of
magnitude by changing the electric field perpen-
dicular to the surface. Another example of a sys-
tem that can be fruitfully modeled by a 2D quantum
plasma is the inversion layer® between a semicon-
ductor and metal oxide.

The phases of the one-component plasma have
received a great deal of attention since Wigner®
pointed out that the plasma would crystallize at
sufficiently low density and temperature in order
to minimize the potential energy. The transition
density at 7'=0 is still unknown. Estimates of the
density vary over six orders of magnitude.® De-
termination of the transition density is difficult be-
cause the energies of both the crystal and the
strongly coupled fluid must be determined to high
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accuracy (1 part in 10%).

At high density the plasma will become an ideal
Fermi gas in order to minimize the kinetic ener-
gy. It has been suggested, originally by Bloch,®
that at intermediate densities a locally polarized
state with all the spins aligned, will have a lower
energy than the normal fluid. Again estimates of
this phase transition are rather scattered.” ®
Other states such as spin-density waves,?'® have
been proposed for the ground state. In this paper
we will consider only three phases: the crystal,
the normal or unpolarized fluid, and the complete-
ly polarized fluid.

The Monte Carlo variational method has been
successfully applied to both isotopes of helium!®
and neutron matter.!’ One assumes that the wave
function is well approximated by the product trial
function and then one minimizes the variational
energy with respect to the correlation function.®
The integrals which arise in finding the variation-
al energy are calculated by the Metropolis™ ran-
dom-walk algorithm. N

II. PRELIMINARIES

In this paper lengths will be given in units of a,
where a is the radius of a sphere (circle in two
dimensions) which encloses on the average one
particle.

-1/2 -
a- {(WP) , d=2 (1)
(47p/3)7/%, a=3

and p is the number density. Energies will be
given in Rydbergs (%°/2ma?), where a, is the Bohr
radius: ao,=7%’/mé”. In these units the Hamilton-
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ian is
/

N 2 N
H-= V2 +— 2
,;/;l : r‘;‘r‘_rl )

where 7,=a/a, and N is the number of particles in
the simulation, d is the dimensionality (either two
or three). The Fourier transform of a function
u(7) is normalized as

L - >
u(® =p f art e Ty, ®)

where L is the side of the simulation cube (square
in two dimensions). R will symbolize the set of
3N particle coordinates.

GNlH

III. VARIATIONAL TRIAL FUNCTION

In this paper we will assume the trail function is
of the Bijl-Dingle-Jastrow™ or product form:

N
¥7(R) =D(R) exp (—Z u([F, - T, I)) . (4)
i<y
The function D(R) is the “model” noninteracting
term and serves to give the trail function the de-
sired antisymmetry. For the fluid phase we take
D(R) to be a Slater determinant of plane waves.
In the unpolarized fluid there are separate deter-
minants for spin-up and spin-down particles. For
the polarized fluid there is a single determinant.
In the crystal phase D(R) is a Slater determinant
of single-particle orbitals centered around the
lattice sites. The “pseudopotential,” u(7) is re-
pulsive and includes in an approximate way the
effects of particle correlation.

IV. PSEUDOPOTENTIAL

The ground-state energy of a quantum system
is known from other studies'®''® to be not very
sensitive to the choice of the pseudopotential
u(r). However, if the form of u(7) is chosen care-
fully an expensive and tedious search for the opti-
mal pseudopotential [which we will denote u*(7)]
can be avoided. Let us review what is known about
the long- and short-range behavior of u*(7).

For small 7, u* will be finite but large: The
value of the derivative of u* is given by the cusp
condition’®:
lim du ( )

r -0

—==lrdz1]™, )

where the upper sign is to be used if the particles
have the same spin, the lower sign for opposite
spins. There is less correlation needed between
parallel spins since the Slater determinant already
provides some repulsion. In this paper we shall
limit ourselves to pseudopotentials which are in-
dependent of relative spin. With this constraint,

the upper sign in Eq. (5) should be used for the
unpolarized liquid, the lower sign for the polarized
liquid.

The zero-point motion of the plasmons deter-
mines the behavior of u* at large . Various ap-
proaches'”’ '® show that the pseudopotential will be
long ranged in order to screen out the Coulomb in-
teraction. In fact

{ 1.4793(rs/7)/% | d=2

lim u*(7) =
(e )2/r, d=3.

(6)
T .
We shall derive these limiting forms in discussing
the crystal pseudopotential.

Gaskell' has found a pseudopotential which com-
bines both the small- and large-» behavior. First
he assumes that the structure function for the in-
teracting liquid S(&) is close to that of the nonin-
teracting liquid and for a small pseudopotential,
u(r), can be approximated by the perturbation
formula

S(k) = [1/S,(k) +2u(k)]™, (7

where u(k) is the Fourier transform of #(). The
variational energy in the random-phase approxi-
mation (RPA) (i.e., neglecting three phonon terms)
can then be minimized with respect to u(k) to

yield

2ugpalk) =

1/2
4 V(k)m) , (8)

1 1

A7) +(So(k)2+ 7
where V(k) is the Fourier transform of the inter-
particle potential. Tallman®® introduces a varia-
tional expansion procedure and gets the same
form to lowest order. Krotscheck®' has shown
that the lowest-order terms in the small-k ex-
pansion are correctly given by Eq. (8).

As a comparison we have performed calcula-
tions with a pseudopotential which is a difference
of Yukawa'’s.

uy(r)=Ae B (1 - e/ F)/r. (9)

This function has been used with good results to
study neutron matter®® and with B =0 the electron
gas.23 -25

V. CRYSTAL TRIAL FUNCTION

In quantum variational calculations for the crys-
tal phase it has been found necessary®® to explicit-
ly bind the particles to the crystal lattice sites
with single-particle orbitals ¢ (). We follow the
usual practice and take ¢(7) to be a Gaussian,

p(r)=e°", (10)

although this function does not have the correct
behavior®” for large 7.
Lattice dynamics shows that the stable crystal
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type in three dimensions®® is body centered cubic
(bcc) and in two dimensions® is the triangular
lattice. We have used these lattice types exclu-
sively in our simulations. Let {ﬁ,} be the set of
lattice points. The crystal trial function is

¥ (R) = exp (— Eu(ﬂ;)) Z (—I)Pﬁ ¢Gi_ﬁ}") ,
=1

i< P&t
(11)

where S(P) is the set of permutations allowed. In
our simulations we have used three choices for
S(P): (a) the Boltzmann crystal is achieved by al-
lowing only the unit permutation; i.e., one does
not antisymmetrize. (b) In the antiferromagnetic
or unpolarized crystal the lattice is divided into
a spin-up lattice, occupying the corners of the
bee lattice, and a spin-down lattice, occupying
the body sites. S(P) consists of the set of permu-
tations which preserve the spin of a site. (c) In
the ferromagnetic or polarized crystal S(P) con-
sists of all permutations.

Because the particles are localized about the
lattice sites, we need a pseudopotential which is
less repulsive than uzpa. The optimal pseudopo-
tential in the low-density limit can be calculated
as follows: if the particles are well localized the
permutations in Eq. (11) are unimportant and we
can use the Boltzmann form (a) with the Gaussian
orbital. The local trial energy defined as

Er(R) = ¥7'(R)H(R) ¥1(R) (12)

can be written in terms of collective coordinates
and displacements from crystal sites as

1 w2\ dcn?
ExlR) = 3 (0= 30 (v -0 ) +45
k

n . =
_m(‘lcz Z (I‘i - flg)2

4Ct RT3 > =
N > uppie’™ Tk (F,- Ry
ki

1 =

+ 3wk K p;*p,,,pk_,,,:), (13)
[Ty

where %, and v, are the Fourier transforms of the

pseudopotential and potential, respectively, (8) and

p, are the collective coordinates

N > >
pr=p_ et (14)
i=1

Now if ¥,(R) were a solution of Schrédinger’s
equation E5(R) would be constant independent of
the collective coordinates and particle displace-
ments. In the spirit of the random-phase approx-
imation we make E;(R) invariant under the pres-
ence of exactly one phonon; this will determine a
unique u(7).

Let the particle displacement be given by
F,-R,;=-€§sin( - R,)/4%. (15)

Then for £ and ¢ less than a reciprocal-lattice
vector and € small it is easy to show that

Pp=—1€/2(8,_q +Op4q) +O(€?) (16)
and the local energy as defined in Eq. (12) is
En(R)=Er(R,e=0)

n? %
+ ész[vq _%((qzuq+q2ui+ 4? + 4Cuq)]
+0(e%) . amn

Then the pseudopotential () which will make
this energy independent of € and § is

2u,(@) = —1-4C/q® + (1 +8C/q? +4mv,/Pg>) /% . (18)

Note that this function equals ugp, for a Bose
liquid (S,=1) when C=1. We have succeeded in
constructing a pseudopotential which is less re-
pulsive than uzp,. For example, at large 7 it be-
haves like

(%73)1/2 - %ZC

, r>1, d=3. (19)
po

u(7) =
Our simulations show that the optimal value of C
is given approximately by C*=0.271/2, Then in
three dimensions the binding to the lattice site re-
duces the long-range part of the pseudopotential
by about 25%.

The situation in two dimensions is quite different.
The second term in u,(q@), ~4C/q?, diverges too
quickly at ¢ =0 for the Fourier transform to exist.
This is because a two-dimensional crystal is un-
stable under the influence of phonons in the ther-
modynamic 1limit.?° Nonetheless the optimal
pseudopotential always exists for a finite system;
we only need to introduce a cutoff. The pseudopo-
tential we used in two dimensions had the form

2u.(q) = -1~4C/lq® + (2n/L)?]
+(1+8C/q% + amv /%)M 2. (20)

With this cutoff u,(7) contains a term, —CIn(rn/L),
for » < L which diverges very slowly as L becomes
large.

The cusp condition is satisfied by u, in two but
not in three dimensions, (where it is in error by
5%). It is rather remarkable that such a simple
argument produces so reasonable a pseudopoten-
tial. We shall see that the variational energies of
ugpa and u, are nearly optimal.

VI. MONTE CARLO SIMULATION

Monte Carlo simulation has been shown'® to be
a powerful way to calculate the ground-state pro-
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perties of many-body quantum systems. Within
the variational approximation it is essentially
exact since the errors which arise can be accu-
rately assessed. The basic idea is quite simple.
In order to calculate any ground-state property
using the trial function ¥,(R) it is sufficient to be
able to sample configurations drawn from the
probability density function |¥4(R) |*/[ dR|¥ (R) |2,
The Metropolis'® algorithm is used to carry out
the sampling of this distribution. It consists of a
random walk through the 3N-dimensional config-
uration space, where each particle is moved one
at a time and the moves are either accepted to re-
jected depending on the relative square of the
trial function at the new point. After the walk
reaches “equilibrium” typically 50 to 200 moves
per particle averages are kept, the most impor-
tant being the variational energy. It takes another
250 to several thousand steps per particle to get
good values for the energy. This method has been
extensively used to simulate classical ensembles
and was applied by McMillan to compute the
ground-state energy of liquid helium. Reference
11 gives technical details on the application of the
Monte Carlo method to fermion systems and on
how to judge the reliability and accuracy of the
calculation.

The electron gas has both a long-range potential
v(7) and pseudopotential #(7). We have followed
the usual way of treating this problem in computer
simulations.?! Periodic boundary conditions are
applied in all dimensions and the system is period-
ically extended. Then the total potential energy is
equal to the sum of the interactions inside the
original cell plus the interaction between the orig-
inal cell and all of the “images” in the extended
space minus a background term. The pseudopoten-
tial is treated in the same way. The details of how
to treat this rather complex interaction numeri-
cally are given in the Appendix.

VII. RESULTS OF THE MONTE CARLO CALCULATIONS

We have performed an extensive series of Monte
Carlo random walks in both two and three dimen-
sions, with the three different pseudopotentials
and with the polarized, unpolarized, and crystal
trial functions. The energies from these calcula-
tions appear in Table I-III. Later we will correct
these energies for their dependence on N, the
number of particles in the simulation.

Table I contains the energies of the liquid as
calculated with the uzp, pseudopotential, Table II
contains the energies with theAshort-range Yukawa
pseudopotential #y. In three dimensions the trial
parameters A and B are identical to those in Han-
sen and Mazighi.** In two dimensions they have

TABLE 1. The Monte Carlo energy per particle as a
function of density computed with the pseudopotential
from the random-phase approximation [Eq. 8)]. The
numbers in parentheses are the standard errors in the
last digit. % is the rms wave vector; the kinetic energy
is given by (% 2/r,)%. The error in % is roughly 0.005.
B is (1/N2J, < V%) /2, the kinetic energy arising
from the correlation portion of the trialfunction. This
would equal% for a Bose plasma. 7} is that value of the
density for whichugp, (%) satisfies the virial relation
(see text).

7 E/N E g r¥

Two-dimensional unpolarized fluid, N = 58.

1.0 =0.429() 1.061  0.469 1.2
2.0 ~0.515(2) 1.167  0.875 2.3
5.0  ~0.2954(6) 1.366  1.010 5.4
10.0 ~0.1691(2) 1.572  1.291 10.1
15.0 —-0.1188(1) 1.814  1.582 14.6
20.0  —0.09181(6) 1.832  1.601 18.9
30.0  —0.,06331(5) 2.005  1.801 27.2
40.0  ~0.04847(2) 2,148  1.955 35.4
50.0 -0.03932(4) 2.252  2.078 43.5
100.0  —0.02028(1) 2.667  2.509 83.2
200.0 -0.010390(5)  3.189  3.071  161.

Two-dimensional polarized fluid, N= 57

5.0 —0.2842(5) 1.617 1.026 8.9
10.0 —~0.1681(1) 1.779 1.302 15.3
15.0 —0.1190(1) 1.893 1.477 19.9
20.0 —0.09209(6) 1.993 1.611 24.7
30.0 —0.06364 (4) 2.128 1.797 31.9
50.0 —0.03946(3) 2.362 2.067 49.2

Three-dimensional unpolarized fluid, N= 162

1.0 1.108(1) 1.492 0.414 0.8
2.0 —-0.0107(5) 1,535 0.598 2.0
3.0 —0,1406(6) 1.584 0.736 3.1
4.0 —0.1584(3) 1.629 0.850 4.3
5.0 —0.1533(3) 1.675 0.950 5.6
7.5 —0,1282(1) 1.788 1.157 8.5

10.0 —0.10672(8) 1.899 1.314 11.5
15.0 —-0.07937(9) 2.060 1.552 17.1
20.0 —0.06311(6) 2.201 1.733 22.0
30.0 —0.04493(4) 2.415 1.996 31.3
50.0 —0.,02865(1) 2.690 2.347 47.4
75.0 —0.019819(7) 2.946 2.636 64.1
100.0 —0.015208(8) 3.137 2.849 80.0
200.0 —0.007920(3) 3.657 3.411 137.
500.0 —0.003291(1) 4.502 4.308 293.

Three-dimensional polarized fluid, N= 81

10.0 -0.1029(2) 2.121 - 1.284 12.0
30.0 —0.0450(3) 2.522 1.938 37.5
50.0 —0,02885(3) 2.749 2.269 49.7
100.0 —0.015302(7) 3.155 2.768 82.5
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TABLE II. Monte Carlo energies and variational parameters computed with the Yukawa
pseudopotentialzy Eq. (9). C is the width of the Gaussians [Eq. (1)] in a crystal trial fun-
ction. d is the dimensionality, % is the rms particle wave vector, ¥ is Lindemann’s ratio
(the rms deviation from lattice sites divided by the nearesf—neighbor distance).

s N d A B C F E/N E %
1.0 162 3 0.65 0.0 0.0 0.75 1.115(@2) 1.503
3.0 162 3 1.05 0.0 0.0 0.50  —0.1394(7) 1.633
0.0 162 3 2.15 0.0 0.0 0.43  —0.10668(7) 1,930
20.0 162 3 3.2 0.0 0.0 0.41  —0.06317(3)  2.219
1000 162 3 8.5 0.0 0.0 0.40  —0.01521(1)  3.353
1.0 58 2 2.0 0.9 0.0 2.5 —-0.422(3) 1.050
10.0 58 2 4.5 1.15 0.0 0.8 —0.1670(2) 1.578
20.0 50 2 5.5 0.8 0.0 0.8 —0.0916(1) 1.731
50.0 50 2 8.0 0.85 0.0 0.4 —-0.03920(3)  2.357
20.0 6 2 5.0 0.8 1.25 0.8 —0.9176(1) 2.128= 0.266
50.0 56 2 6.2 1.1 2.0 0.75  —0.03947(2)  2.515  0.219
100.0 56 2 7.6 0.75 2.7 0.75  —0.02045(1)  2.948  0.185

been found by the reweighting technique.!* A com-
parison of the energies in the two tables shows
that the differences are very small.’®* Where the
difference is greater than one standard error, the
energy of upp, is lower.

Table III contains the crystal energy of the
pseudopotential (7). In contrast to the liquid,
the solid pseudopotential contains one parameter
to be optimized, the localization of the Gaussians
C. Finding the optimal value of C(7,) is quite dif-
ficult since the energy has a rather broad and
shallow minimum, so that the uncertainty on the
optimum value of C is about 20%. Table II con-
tains the results of crystal calculations with uy in
two dimensions. Again the energies from uy are
slightly higher than those from u,.

These results show that the long-range part of
the pseudopotential is not very important in deter-
mining the ground-state energy. However, our
analytic form for the optimal pseudopotential has
proved very accurate throughout the density re-
gion of interest, and for the remainder of this
paper we will use the ugp, pSseudopotential in the
liquid phase and u, in the crystal phase. There is
a great convenience in performing only a single
calculation at each density and N. This gives us
energies which are all consistent, and makes fit-
ting the energies to a function throughout the den-
sity region easier. Finally, the uyp, pseudopo-
tential has a number of exact limiting behaviors
built into it and even though it may not equal the
optimal pseudopotential u*, other properties com-~
puted from uyp, such as the structure function or
the momentum density may be closer to the
ground-state values than those derived from u*.

We have also performed Monte Carlo calcula-
tions with two other potentials in order to test the

validity of ugp, more generally. For the Bose
one-component plasma the energies of ugp, are
the same as those computed by Hansen and
Mazighi®® over a broad energy range. This is to
be expected since the pseudopotentials depend lit-
tle on the statistics of the particles. The other
system we investigated was the “Bethe” poten-

TABLE III. Monte Carlo energy for the crystal
phase. The pseudopotential isuc [Eq. (18)], C is the
width of the Gaussians [Eq. (10)], pol is the polarization;
U unpolarized (-% spin up, -} spin down), P is totally pol-
arized, B is the Boltzmann crystal (no antisymmetry).

v is Lindemann’s ratio (the ratio of the rms deviation
from the nearest lattice site to the nearest-neighbor
distance).

7 N Pol C E/N E y

Two-dimensional crystal

10,0 56 U 0.5 —0.1674(1) 1.767 0,372
15.0 56 U 0.6 -0.1187(1) 1.911 0.346
20,0 56 U 0.7 —0.09198(5) 2.036 0.320
30,0 56 U 0.75 —0.06362(2) 2.206 0.303
40,0 56 U 0.8 —0.04874(2) 2.341 0.297
50,0 56 U 1.0 —0.03955(2) 2.483 0.264
755.0 56 U 1.25 —0.026961(5) 2.733 0.234
100.0 16 U 1.5 -0,02053(2) 2.960 0.216
40.0 56 B 0.8 —0.04874(2) 2.323 0.294
40,0 56 P 0.8 —0.04879(2) 2.361 0.275
Three-dimensional crystal
30,0 128 U 0.8 —0.04454(4) 2.513 0.434
50.0 128 U 1.0 —0.02866(2) 2.842 0.385
50.0 54 B 1.0 —0.028 73(2) 2.802 0.408
50.0 54 U 1.0 —0.02874(2) 2.822 0.389
50.0 54 P 1.0 —0.028 74(2) 2.892 0.366
100.0 128 U 1.75 -0.015331(7) 3.469 0.288
200,0 128 U 3.0 —0.008034(2) 4.255 0.229
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'cial,11 a very simplified Yukawa interaction for
neutron matter. At high densities, greater than
one neutron/F°, ugp, gives slightly lower energies
than uy, perhaps because it includes the 1/7° pho-
non tail not present in #y. However, at nuclear
matter density, 0.17 neutron/F® the energy of
ugrpa is 10 MeV higher than that of uy out of a total
energy of 89 MeV. Comparison of the pseudopo-
tentials shows that uzp, is much larger than the
optimal uy.

The plasmons, apparently, are more influential
in determining the form of the pseudopotential
than are the phonons for the low-density neutron
system. That is, the 1/7 term [see Eq. (6)] domi-
nates higher-order terms in the region 7 >1 for a
Coulomb system while the 1/7% term only domi-
nates further out for the low-density Yukawa sys-
tem.

VIIL VIRIAL THEOREM

The virial theorem for any Coulombic system
takes a very simple form. The pressure is given

by

P2 Ta (21)
where T and V are the kinetic and potential ener-
gies. T and V can be computed from the total en-
ergy by**

2
T= dgsE) , v=2UsE) (22
Ts rsdrs

These equations will be true for variational ener-
gies if all parameters in the trial function having
units of length have their optimal values. Our re-
sults with ugp Will not satisfy these equations as
long as 7, appearing in the definition [Eq. (8)] is
fixed. The variation of 7 can be done after the
fact as follows; suppose we fit the energy to a
function®® e(r,;) and the kinetic energy to (7).
Then the variational energy for the density 7¥
using ugpa(”s) at the density 7, is given by scaling®
to be ’

E("’;‘) :s[e(’rs) - t(rs)] +82t('rs) )

0

where s =7,/7¥ and the value of 7, which minimizes
the energy at 7§ satisfies the equation
(@/ar lrit (ry]

TG ) ety - 0T} @9
Now the scaled kinetic and potential energies
[e.g., trsr*))X (r,/7*)?] will now satisfy the virial
relation no matter what functions #(7,) and e(7)
were used. The values of 7¥(7;) are given in Table
I. Note that the ratio 7*/7, is generally close to
unity. In both two and three dimensions ugp A(7s)
is slightly too large®® at large 7, and too small at

small 7, (although some of the variation at the ex-
treme densities is due to an inadequate fit). It
appears that ugpa(?,) is just right for moderate
densities and this supports our view ugpp, is close
to being the optimal pseudopotential. The energy
is deepened very little by this scaling procedure,
usually less than one standard deviation.

IX. SIZE DEPENDENCE

The dependence of the energy on the size of the
system is the largest error in our Monte Carlo
calculation. However, this dependence can be cal-
culated in both the high- and low-density limits,
and assuming that the error smoothly interpolates
between those limits, we can thereby eliminate the
major part of it.

Consider a perfectly harmonic crystal with m?
= N particles arranged about N simple cubic
(square) lattice sites. For large enough 7 the
symmetry of the particles and the pseudopotential
can be neglected and the difference between the
finite and infinite system potential energy is found
to be given very accurately by the expression

_ - ——w/r 3/d
Vy = Vo=AVy==w/r CN¥! (24)
_ { 0.406, d=2
w =
0.75, d=3,

where C is the variational parameter of the Gaus-
sian [Eq. (10)]. This difference comes from the
interaction of a particle with its own images. The.
radial distribution function g(7) periodically ex-
tended, contains terms 8(T ~fL), where 11 is an
integer vector and depressions around the posi-
tions of these & functions due to the image of the
correlation hole about the particle at the origin.
But the infinite system g(7) has neither these 6
functions nor depressions. The potential energy
of the finite system is lower since its structure is
closer to the perfect crystal.

This reasoning tells us how to correct the ener-
gy in the strong-coupling limit. Using the virial
theorem it is easy to show that for large 7,;, C will
be proportional to /2. Also by the virial theorem
the size dependence of the kinetic and potential en-
ergies should be equal. Hence

Ey-E=-b/r3/?N°/¢, (25)

where b is a constant, independent of 7, and N.
Note that the above argument should still hold for
a strongly correlated fluid.

Now consider the opposite case, a completely
degenerate plasma. The size dependence in the
Hartree-Fock approximation is given by

Ey— Eo=Avy/7y+ Aty /72 (26)
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TABLE IV. Energy and size dependence parameters for the fluid phase. b is the size--
dependent parameter in Eq. (27). &, and &, are the kinetic and potential energies in the
Hartree-Fock approximation. Aty and Avy give the size dependence in the Hartree-Fock
kinetic and potential energies for the values of N shown [Eq. (26)]. By,8,, and o4 are the
results of the least-squares fit to all the Monte Carlo energies. The other a;’s are to be
found by using Eq. (31). f § and f T are the first two terms of the low-density expansion of

the Pade” approximant with these ¢;’s and B;’s.

Dimension 2 2 3 3
polarization U P U P
b 2.0 2.0 3.0 3.0
iy 1.0 2.0 2.2099 3.5080
hy -1.2004 -1.6972 -0.91633 —1.1545
N 58 57 162 81
Aty 0.01607 0.01124 -0.0513 —0.0576
Avy -0.00501 —-0.00762 -0.0363 —0.0647
By 1.0026 0.4215 1.15813 0.9321
By 0.6167 0.1424 0.34455 0.2020
ahy -1.3511 —0.1560 -0.2760 —0.1019
% —2.1909 2.19 -1.7702 -1.77
fi 1.6102 1.4616 2,870 2.839

Aty is an oscillating function of N with an envelope
which decays like 1/N, Avy is always negative and
decays smoothly like N 2/, again because of the
interaction of a particle with its own images. The
necessary values of Aty and Ay, are shown in
Table IV.

To interpolate between the high- and low-density
limit we have used the simplest Padé function in
71’2 requiring the term in 77’2 to vanish at small
7s. Then the size dependence is assumed to be of
the form

Ey—E.=Aty/72+(ry/ Doy - N3/ 32 /p) "1 27

where b is determined by a nonlinear least-
squares fit using the results of several calcula-
tions at different values of N and 7 but within the
same phase. The value of the fitted b is in Table
IV. The corrections in two dimensions are quite
small for N=58, about one standard deviation.
But in three dimensions they are quite large,
ranging from 70 standard deviations at r;=1to 5
standard deviations at 7,=10 (with N=162). We
believe that the error in the procedure is much
smaller than the correction, at least by a factor
of 10, because of our success in fitting the results
of calculations at smaller N.

In the crystal phase no interpolation is necessary
and Eq. (25) was used to determine the size cor-
rection, with b determined from several runs at
different values of N. )

X. EQUATION OF STATE

With the procedures of scaling and correcting
for the size dependence described above, we now

wish to fit the resulting energies to an analytic ex-
pression in order to smooth out fluctuations in the
energies and allow the interpolation between and
extrapolation beyond the Monte Carlo densities.
Padé approximates are a logical choice for an
analytic expression since a great deal is known
about the form of the energy at high and low den-
sities. At high density the Brueckner®’ expansion
about the ideal gas yields asymptotically:

Eo=ho/7i+h /v +0(Inry), 7 <1, (28)

The coefficients %,,%, for the polarized and un-
polarized fluid in two and three dimensions are
tabulated in Table IV. At low density in the Wigner
crystal phase one expects the energy to have the
form?®» 29

, rs rs rs

For the crystal the coefficients f,, fi, f; -are given
by the anharmonic crystal expansion. See Table
V.

TABLE V. Energy expansion in the crystal phase. fg ,
f1, and f, are the coefficients in Eq. (29). b is the size-
dependence parameter in Eq. (25). The numbers in par-
entheses represent the standard error in the last digit
of our estimate of f ,.

d b So fi fa
2 2.5 -2.2122 1.628 0.25(2)
3 3.0 —1.79185 2.65724 -0.73(4)
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In order to have the correct limiting form at
large 7, we choose our Padé variable to be x:'r;/z.
Then a simple form for the fluid energies is

= a,x‘

E(’r ) :_Zlv‘l_(’____ . (30)
TS YY)

In addition we constrain the @,;’s and 8,’s to have

the Hartree-Fock limiting form [up to but not in-

cluding the In7, term in Eq. (28)]. This gives four

conditions:

ay=hy, a,=h,+pBh,,
a,=hB,, a;=hp .

The remaining three parameters (taken ta be
B,,B,, @,) are determined by a nonlinear least-
squares fit®® to the Monte Carlo fluid energies
(after scaling and size corrections). The coeffi-
cients are given in Table IV. The chi-square for
the fits is very good in two dimensions and rea-
sonable in three dimensions. The density range
spanned by our simulations is very large (1 <7
<500) and the error bars on the energy are quite
small, so that the chi-square test is very severe.

Our energy expression must break down at
small enough 7 since it does not have a logarith-
mic term®®; adding a term proportional to In(7)
did not noticeably improve the fit.

Equation (29) fits the Monte Carlo crystal ener-
gies well. In three dimensions our energies agree
with the anharmonic crystal calculation of Carr,?®
thus showing that the terms beyond 1/7% are small
for 74>50. In two dimensions only the harmonic
terms have been calculated®® (f, and f,). f, as de-
termined from our variational energies is shown
in Table V.

For very low densities the fluid energies were
expanded as in Eq. (29). The coefficients called
f¥ (obtained from the @,;’s and B,’s) are shown in
Table IV. Note that /¥ is greater than f, by rough-
ly 0.021, It is this difference which forces the
liquid to crystallize. The second term f¥ is ap-
proximately the same as in the crystal, f,. Hence
the kinetic energy of the liquid and crystal are
roughly the same at the same density. But f¥ is
less for the polarized liquid than for the unpolar-
ized liquid which means that the polarized liquid
will have a lower energy at large 7,.

81

XI. ERRORS

We will now try to estimate the errors in the
Monte Carlo calculation of the ground-state ener-
gy. The total error comes from several different
sources and can be broken down as follows:

"(a) Numevrical errors: This category includes
round-off error and the error resulting from cal-
culating only an approximation to the “image” po-

tential (see Appendix). Various tests indicate that
the cumulative effect of these errors is less than
one part in 1075, '

(b) Convergence evvor: This results from not
allowing the random walk enough steps to equili-
briate and not exploring configuration space fully
enough. For the electron plasma this error has
not proved to be significant. Occasionally the
random walk was allowed to proceed many times
further than normal and there was no unexpected
change in any of the average quantities.

(c) Statistical evvor. This is tabulated in Tables
I-III. The estimate of the statistical error is
computed by dividing the entire random walk into
roughly 10 equal blocks and finding the variance
of the average energy in those blocks. This error
can be roughly summarized in the formula

AE=0.5[E(r,) - V,]/(NM)"2 (32)

where M is the number of moves per particle of
the random walk and V, is the potential energy of
the perfect crystal. Since AE is proportional to
the excess energy, Monte Carlo can be success-
fully used to estimate very small energy differ-
ences. It is interesting to note that if the trial
function is improved the coefficient (i.e., 0.5)
should become smaller.

(c) Size dependence: We have attempted to re-
move this-as discussed above and believe that the
remaining size dependence is of the order of AE.

(e) Nonoptimal choice of the pseudopotential:
Our searches in two and three dimensions indicate
that this error is quite small and of the order of
AE. Use of the virial scaling procedure discussed
above lowered the energy hardly at all. Extensive
searches for a better pseudopotential for Lennard-
Jones helium have produced no significant lowering
of the energy (less than 0.1°K). We know from the
cusp condition, Eq. (5), that the optimal pseudopo-
tential will depend on spin. Stevens and Pokrant®®
have calculated variational energies with and with-
out a spin-dependent pseudopotential and they find
a drop in energy of only 0.0007 at ¥¢=5.4 and a
drop of 0.0001 at »,="7.9. Talman?®® gets roughly
the same drop.

(f) Evrov in choosing the product form for the
trial function: Since the true ground-state energy
is unknown this error is difficult to estimate. In

‘the high-density limit Gaskell'® has shown that

ugpa Will have a variational energy higher than the
ground-state energy by an amount asymptotically
equal to

Egpa—- Ey,=-0.000521n(r,) +0.036 + O(r¢ In(7))
re<<1., (33)

In the density regime where the electrons are
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strongly coupled but still in the fluid phase, the
kinetic energy due to the antisymmetrization is
smaller than that due to the pseudopotential. This
can be seen by comparing %z with EB in Table L
Then it is likely that the error in the variational
approximation for the fermion plasma is about the
same as that in the boson plasma. Exact Green’s-
function Monte Carlo results for bosons interacting
with a Yukawa potential®® show that in the strongly
coupled liquid the variational error is about 5% of
the excess energy (ground-state energy minus po-
tential energy of a perfect crystal). In the case of
the 3D electron fluid this yields

Erpa—E,=0.05x2.87/732, r;»1.  (34)

Finally, the exact results for the boson Yukawa
crystal*® show that the error . in the variational
trial function is smaller than in the liquid, being
about 3% of the excess energy. This difference in
the accuracy of the trial function in the two phases
will cause a major shift in the transition density
as discussed below.

In two dimensions the variational approximation
may be more accurate since the trial function has
the same number of exact properties as in three
dimensions, but the configuration space is much
reduced. In other words, the number of nearest-
neighbor triplets which are left out of the product
trial function, compared with the number of pairs
is roughly 3 times smaller in two than in three
dimensions. Hence the contribution of triplets and
higher-order correlations may be much smaller
in two dimensions.

To summarize: our variational energies as cal-
culated using Eq. (29)-(31) with the coefficients
from Tables IV and V have an error roughly equal
to that found in Tables I-III. This estimate en-
compasses the errors of type (a) through type (e).
But the error due to assuming a product trial func-
tion as estimated in Eqgs. (33) and (34) is much
larger. Hence although we have not found the
ground-state energy we have obtained a valuable
upper bound. The next step in a better calculation
of the plasma ground state will clearly involve
going beyond the product trial function to include
many-body correlations.

XII. COMPARISON WITH OTHER CALCULATIONS

There have been a large number of calculations
of the correlation energy of the three-dimensional
(3D) electron fluid because of its importance as a
model of metals. We will only briefly compare
our results with some of these. In Figs. 1 and 2
the solid line is the correlation energy we have
found (smoothed and corrected). In general, cal-
culations of the correlation energy can be divided

s

FIG. 1. Minus the correlation energy times 74 vs
from our calculation (solid line) compared with other
variational calculations. The correlation energy (E,) is
the Hartree-Fock energy minus the ground-state energy
in Rydbergs. The solid line is from Eq. (30) and Table
IV. The other symbols represent the results of (+)
Becker, Broyles, and Dunn (Ref. 23), @) Monnier (Ref.
24), (A) Talman (Ref. 20), (O) Stevens and Pokrant
(Ref. 25), and (¥ Lee and Ree (Ref. 42).

's

FIG. 2. Minus the correlation energy times 7 vs 7
from our calculation (solid line) compared with pertur-
bational calculations. The symbols represent the re-
sults of (+) the RPA approximation Freeman (Ref. 41),
(@) Hubbard (Ref. 45), (O) Vashishta and Singwi (Ref. 43),
(¥ Freeman (e%) (Ref. 41), and (A) Lowy and Brown
(Ref. 44).
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into two classes: variational and perturbational.
These are shown in Figs. 1 and 2, respectively.

The Monte Carlo calculation of Monnier** most
resembles the present one. However, in that cal-
culation antisymmetry was only accounted for in
an approximate way. It is seen that his results are
significantly lower than ours. It is likely that the
neglect of the angular portion of the “image” po-
tential and of correlations in g(*) for > 3L led to
a systematic error. Stevens and Pokrant®® as-
sumed the trial function was of the product form
and then found the energy using the hypernetted
chain approximation, the convolution approxima-
tion and a “semiclassical” treatment of antisym-
metry. The agreement of the energy is quite good,
although their energies are significantly higher for
7s>5,

In Fig. 2 are shown the results of various per-
turbational calculations. The random-phase ap-
proximation is seen to be quite poor, giving ener-
gies much too low. An improved RPA theory, the
coupled-cluster or e’ method*! gives energies es-
sentially identical to ours for 7,<5, but these en-
ergies are definitely too low at ;=10. A dielec-
tric formulation also gives good agreement for
small values of 7. %5

In the three-dimensional crystal our energies
agree within errors to the predictions of the an-
harmonic crystal series expansion of Carr and are
lower than the self-consistent phonon calculation
of Glyde et al.** by roughly -1.1/75.

The accurate agreement at high and low densities
with other calculations is a strong vindication of
the'procedures used to calculate the energy. Four
quite different methods now give correlation ener-
gies the same to within 0.002 Ry for v4<5. But we
must reemphasize that the Monte Carlo variational
method is least accurate in this density range and
we believe that it is more reliable and accurate
than the other energies shown in Figs. 1 and 2 in
the strong-coupling region (r,>5).

XIII. PHASE TRANSITIONS

Our simulations indicate that at least three
phases are stable in the plasma at zero tempera-
ture. At low density the crystal phase is of course
preferred. We have not investigated the type of
spin ordering in the crystal in detail. Preliminary
calculations indicate (see Table III) that the energy
is insensitive to the spin ordering, in agreement
with the anharmonic crystal predictions of Carr.
As the density increases, the crystal melts (in
both two and three dimensions) and becomes a
totally polarized electron fluid. This occurs at a
density of 7¢=67 +5 in three dimensions (5.4
X108 ¢7cm®) and 7,=33 +2 in two dimensions

(1.0x 10" e~/cm?®). Lindemann’s quantum rule,
which states that the phase transition occurs when
the root-mean-square particle displacement from
the lattice site equals about 0.30 +0.02 of the
nearest-neighbor distance, holds for all quantum
crystal we have examined.*’

At a higher density the normal or unpolarized
fluid is the stable phase. The polarized-unpolar-
ized transition occurs at a density of ;=26 +5 in
three dimensions (9.2 x 10 e~/cm?®) and of ;=13
+2 in two dimensions (6.7% 10" e~/cm®). These
values of 7 are higher than those calculated by
dielectric methods.

The error bars on the above transition densities
include all errors except that resulting from the
assumption of a product trial function. As men-
tioned above, it is likely that the product trial
function favors the crystal phase. If we boldly
extrapolate from the exact results of the boson
Yukawa system (where the excess energy is over-
estimated by 2% in the fluid phase) to the 3D elec-
tron system, the polarized fluid-crystal transition
shifts to 7,=90+20 (2.2X% 10*® ¢/cm®). Hence it is
realistic to say that we have found upper bounds to
the crystallization density.

We have not found a physical argument to explain
why the polarized liquid is preferred over the nor-
mal liquid at low densities in both two and three
dimensions. The energy differences between the
two phases are always quite small and judging
from other phase transitions there must be some
rather subtle changes in the local ordering of the
liquid. Putting more nodes (via the Slater deter-
minant) into the trial function appears to be a
more efficient way of separating the particles at
low density than simply increasing the repulsion
of the pseudopotential.

The quantum plasma with a uniform background
is unstable against collapse at low density. The
energy per particle has a minimum at 7;=1.5 in
two dimensions and 7;=4.2 in three dimensions.
The compressibility is negative at densities below
7s=2.1 in two dimensions and 7,=5.4 in three di-
mensions, hence lower densities cannot even be
metastable. For this reason one cannot meaning-
fully calculate the widths of the phase transitions.
The above remarks only apply if the background’s
internal energy is independent of density. For all
physical systems the internal energy of the back-
ground increases rapidly with density and so sta-
bilizes the total system.

These interesting two~dimensional quantum
phase transitions occur at too high a density to be
observed with electrons on the surface of helium;
the helium surface does not remain flat with such
a charge density. However, they may be observed
among electrons trapped on an inversion layer.
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XIV. CONCLUSIONS

Using the powerful fermion Monte Carlo varia-
tional method we have been able to calculate very
accurate energies for the quantum plasma. The
agreement at low density, with the anharmonic
crystal expansion and at high density with three
other methods is quite reassuring. We have found
that an a priori pseudopotential (ugp,) gives quite
satisfactory energies and considerably reduces
the amount of effort needed in the computer simu-
lation. It is probable that analytic three-body cor-
relation functions could be found which would bring
the trial functions much closer to the true ground
state. One major advantage to the Monte Carlo
method is that the search for better trial functions
can be carried out without any further approxima-
tions. The simulation also generates a great
wealth of information about the ground state. We
intend to publish a study of some of the data we
have obtained from our simulation of the plasma
at a future date (these will include the radial dis-
tribution function, the structure function and the
momentum distribution).

ACKNOWLEDGMENTS

The Commissariat a 1’Energie Atomique has
supported me with a Joliot-Curie fellowship during
the time this research was performed. I wish to
thank the Laboratoire de Physique Theorique et
Hautes Energies at Orsay for the generous use of
their computing facilities and their hospitality and
to D. Levesque for his advice and kindness. I
have also had fruitful conversations with J.-P.
Hansen and G. Patey concerning the research re-
ported here. I am indebted to M. H. Kalos and
G. V. Chester for their many suggestions con-
cerning the manuscript. I have also received sup-
port from the Department of Energy under Con-
tract No. EY-76-C-02-3077*000.

APPENDIX

The Coulomb potential and the pseudopotential
from the random-phase approximation go to zero
very slowly for large distances. The problem of
how to represent them in a rather small box, by
macroscopic standards, with periodic boundary
conditions is solved formally by replacing the
Coulomb potential between two particles with the
“image” potential. Brush ef al.?* were the first to
use the image potential in the Monte Carlo simula-
tion of the classical one component plasma. In
this Appendix we will describe how to handle in a
computer simulation the image potential of any po-
tential or pseudopotential which can be expanded in
inverse powers of » for large 7.

The method is essentially due to Nijboer and
deWette.”® They showed that the “image” potential
between two particles having an original interac-
tion of 1/7" can be written

o) = AIF-Rx )+ 2 g™, (35)
X X
where f(7) and g (k) are the functions

f(r)=T(n, ar®)/TEn)r",

7222 /B)P " I(A(D - n), k2/4 @)
VI(3n) ’
ZTrD/z
[~ @-m)VTGEn)a®7>

k+0

g(k) = (36)

k=0.

% and k3 are the set of lattice and reciprocal-
lattice vectors of the simulation box, Vis the
volume of the box, I'(a,z) is the imcomplete gam-
ma function. The sum in Eq. (36) is independent
of the parameter a which can be varied to change
the relative rate of convergence of the series in
¥ and k 'space. As @ goes to zero we recover the
original sum of the potential over the images of
the other particle and as a goes to infinity the sum
in real space vanishes and we observe that the ef-
fect of the background is to eliminate the 23 =0
term from the summation over the Fourier trans-
form of the interaction. The rate of convergence
of the two series will be the same for

a=1/V?/4, (37)

Adams and McDonald*® observed that if o is
made large enough all but the first term (R3=0) in
the sum over lattice vectors can be ignored. The
sum in & space can then be put into a particularly
convenient form for Monte Carlo calculations. In
a Monte Carlo simulation we need the potential en-
ergy of a single particle. Using Eq. (35) and drop-
ping all terms with R #0 this is

N ¥
wi= Y d(Fy) = Y fryy)

=i i
e :; 8(-)[pr3 exp(-iks - F) = 1]+C,,
' (38)
where
Co= 3 gt5 - 20"*/nT(tn) (39)
K=o

comes from the interaction of particle ¢ with its
own images. The pf are the usual collective co-
ordinates, Eq. (14). The first term in Eq. (38)
uses the N -1 distances 7;; and can be done by
tabulating the spherical function f(#). The number
of nonzero components of g, summed in the second
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term depends on the accuracy needed in the calcu-
lated potential. Let us suppose the vectors in 2
space are summed out to K,,,. Then we have
found that to minimize the error in the potential
one should choose a as

@ = (K ax L/m+1)/3L%. (40)

Note that this choice is independent of both d and
#n. The maximum error depends on z, being
smaller for smaller values of n, but is indepen-
dent of d. If we choose K ,, =87/L the maximum
error in a single term is 10™*/L for.n=1. This
will require 257 points in & space in three dimen-
sions but only 49 in two dimensions.

The random-phase pseudopotential in Eq. (8) or
Eq. (18) is not a simple power law. To apply the
above formulas, the pseudopotentials were ex-
panded in a Laurent expansion about 2=0. In7
space this gives an asymptotic expansion, which

was found to be accurate for large 7 (7 >2) if only
the terms 1/7” were kept where p <d. That is,
the interaction was assumed to be

u(r):{uRPA('r), r<zL (41)
Zﬁi/r’i , ¥>3L.

Then f(r) and g, in Eq. (38) were computed as
ugrpa(?) +Z‘: Bilf(ny,7) =1/7"], 7<iL

A =
0, r>3L

(42)
8= Z Bign(ni)
1
where f(r,7) and g,(n) are defined in Eq. (36). This
method works quite well for any interaction that is

well represented by an asymptotic expansion out-
side the simulation box.
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