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Abstract

we review methods used and results obtained in Monte Carlo calculations on quantum
fluids and crystals. Available techniques are discussed for the computaticn of the
energy and other expectation values by variational metheds in which the absolute
square of a trial function Yr is sampled by the Metropolis method. Recently developed
methods for fermion systems are included. We give a more detailed exposition of the
Green's Function Monte Carlo method which permits exact numerical estimates of boson
ground-state properties. Qur survey of results comprises applications to 34e and
4He, hard-sphere fluids and crystals, spin-aligned hydrogen, the one-compenent
p]asmé for bosons and fermions, and simple models of neutron and nuclear matter.

The reliability of the product form of ¥ in several applications is assessed. A
selected set of related topics is also taken up: Tow temperature excitations, re-
sults obtained by the Wigner B expansion, and evaluations of virial coefficients

and pair correlations at finite temperatures.

In this chapter, we give a survey of the applications of Monte Carlo methods to
the study of quantum phenomena in statistical physics. The emphasis is on the
modelling of many-particle systems which exhibit quantum effects at the macroscopic
Jevel - systems such as liguids and crystals of helium and the electron gas. Such
work is complementary to a vast literature in which more tranditional theoretical
methods have been applied to these systems. Space precludes citing more than the
most striking and significant treatments of that kind.

K = h/2x (normalized Planck's constant)
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4,1 Introductory Remarks

Monte Carlo simulation of quantum many-body systems dates from McMILLAN's obser-
vation [4.1]1 that for a trial wave function having the form of a product of two-
body correlation factors, the integrals required to evaluate expectations — in-
cluding the total energy — can be carried out by the method of METROPOLIS et al.
{cf. Chap.l and Sect.4.2.1 below). The overwhelming bulk of research has been
carried out on this basis. We describe in Sect.4.2 the range of direct applications
of McMILLAN's method to a variety of physical systems as well as some extensions

of the basic idea. We shall see that these simulations have been fruitful, pro-
viding useful results and insight into both physical processes and the structure of
successful theories. In some cases, associated with hard-core potentials, however,
product trial wave functions omit certain important properties of the ground state
and the variational estimates are not accurate enough for quantitative comparison
with experiment. This is true, for example, for the ground state of %e where the
variational estimates of energy are 15-20% too high, precluding critical comparison
of different force laws.

A more powerful — but more elaborate — method has been developed which permits
in principle the Monte Carlo solution of the Schridinger equation. It has come to
be called the Green's Function Monte Carlo (GFMC) and in Sect.4.4 we will describe
its general principles, its practical problems, and the results which have been
obtained with its use.

Some special topics will also be discussed much more briefly: quantum corrections
to classical simulations of 1light atoms, systems with Tow temperature excitations,
and calculations of quantum virial coefficients.

Simulations of quantum spin lattices [4.2,3] will not be discussed as they have
not yet produced many very useful results, although they are potentially interesting.

4.2 Varijational Methods

The variational method has proved to be a very useful way of computing ground-state
properties of many-body systems. Conceptually it is quite simple. The variational
principle tells us that for any function y;(R), the variational energy E;, defined
as

E; = [ Ok v (RHRNG(R)/ [ dRIvp(R) | (4.1)
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will be a minimum when ¢, is the ground-state solution of the SchrBdinger equation
{here R refers to the coordinates of the N particles), and H(R)} is the hamiltonian.
The trial function of course must be either symmetric or antisymmetric with respect
to the coordinates depending on the statistics of the particles. The variational
method then corsists of constructing a family of functions wT(B,g) and optimizing
the parameters a so that the energy (4.1) is minimized for a = a*. The variational
energy is a rigorous upper bound to the ground-state energy and if the family of
functions was chosen well, wT(g,g*) will be a good approximation to the ground-state
wave function.

The problem of constructing a good trial function for a Bose liquid at zero
temperature seems to have been considered first by BIJL [4.4]. Consider a Tiquid
of hard spheres; we shall see later that this is a good model for 1iquid helium.
The wave function clearly must vanish if any pair of particles overlaps. The
simplest way to satisfy these conditions is to make the trial function a product
of two-particle correlation functions, f(|[i - ril). That is the BIJL wave function

u(r..) . (4.2)
<j 1 ]

vy = Ezj f(rij) = exp[- %-§
The "pseudopotential™ u(r) for an isotropic liquid is a function of the radial sep-
aration only. The square of this trial function is completely equivalent to the
Boltzmann distribution of a classical system with u{r) replaced by the interatomic
potentials over kT (hence the name "pseudopoential"). BIJL showed how ¥p arises
naturally from perturbation theory at low densities, and with a proper choice of
u(r), bt will have many of the correct macroscopic properties.

- This form was reinvented by DINGLE [4.5], JASTROW [4.6] and MOTT (4.7] and

generalized for Fermi ligquids

v1 = D(R) exp[— % ”(rij)] (4.3)

<]
where D(R) is the ideal Fermi gas wave function, i.e., a determinant of plane waves.

The form of the product trial function in a quantum crystal was considered by
SAUNDERS [4.8]. His form of the trial function is

by(R) = exp- 2 b u(ry )] sy - sp g o (8.)
3

where ¢(r) is a single-particle orbital about a lattice site, usually taken to be
a Gaussian function, P is a permutation of the pairing of particles to lattice
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sites, s; n is a spinor, and the & signs are for Bose or Fermi statistics, respec-
tively.

The pseudopotential u(r) in these equations, in contrast to the classical si-
tuation, is varied to minimize the energy in (4.1). In practice, the pseudopotential
is chosen to have some functional form with several free parameters which are then
varied. For a hard-sphere system u must be infinitely repulsive for r less than the
hard-sphere diameter. For the optimum pseudopotential it is easy to show that the
variational energy when two particles are constrained to be a fixed distance, r,
apart, Ev(r), is independent of r and equal to the unconstrained variational energy
in (4.1). If the interparticle potential is singular at the origin then one can
determine the small r behavior of the optimum pseudopotential by requiring that
Ev(r) be finite as two particles approach each other. This leads to the condition

2 .
. T o2ucry - L (duy2 2 dy
o {v(r) S ARTORE - OB oy "]l
(4.5)
2
= constant + 0(%5 r g%)

where v(r) is the interparticle potential and o; and o are the spin coordinates.
The "spin coordinates" are in effect always different for bosons since there is no
Slater determinant in their trial function. For fermions the optimum u(r) will de-
pend on the relative spin coordinates.

The large behavior of u(r) can be derived from essentially macroscopic arguments
or with the random phase approximations by demanding that the energy not change if
there are long wavelength density oscillations present. For short-range interpar-
ticle potentials (i.e., not Coulomb), the macroscopic argument gives that

~  MC
u(r) = . 4.6)
pwzhr‘z (

REATTO and CHESTER [4,9] have shown that this pseudopotential will give the correct
linear behavior for small k in S(k) which is believed to be necessary [4.10] for
superfluiditiy. KROTSCHECK [4.11] has shown that for the optimum u, ¢ is an upper
bound to the speed of sound in the exact ground state. For a repulsive Coulomb
system, as is well known, the structure function is proportional to k2 at small k
because of the plasma modes, independent of particle statistics or temperature.
BOHM [4.12] has shown that this implies the following large-r behavior of the
pseudopotential
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ur) Tz %% : (4.7)
We have given some reasons for believing that the use of the product trial func-
tion can be a good approximation for gquantum systems. The task now is to evaluate
the multidimensional integrals to get expectation values, in particular to calculate
the variational energy for (4.1). There have been many approaches to this problem,
practically all of them borrowed from the theory of classical fluids: namely cluster
expansions, integral equations, the Metropolis Monte Carlo method, and even mole-
cular dynamics. The Monte Carlo algorithm [of METROPOLIS, A. ROSENBLUTH, M. ROSEN-
BLUTH, A. TELLER, and E. TELLER [4.13] or M(RT)Z] is particularly well suited to
this problem of calculating multidimensional integrals and has the distinct advan-
tage over the approximate expansions that there are no approximations made that
cannot be tested within the method. Molecular dynamics has been successfully applied
to Bose liquids but almost all results have been obtained using Monte Carlo.

We will now describe the M(RT)2 Monte Cario algorithm for sampling the product
trial function and in some detail show how it is used to find ground state proper-
ties. Then we will describe some of the many calculations that have been made with
this algorithm and what has been Tearned from the -variational studies.

4.2.1 Monte Carlo Methods with the Product Trial Function

The Monte Carlo algorithm M(RT)2 [4.13] which was invented to calculate properties
of classical statistical systems, is an extremely powerful way to compute multi-
dimensional integrals. For guantum systems we want an algorithm which will produce
configurations with a probability proportional to the square of the wave function.
Any measurable quantity can be written as an average over such configurations.
Suppose A is an operator and we wish to compute its exnectation value defined as

[ 4R W}(R) A ¥1(R)

= 4.8)
? (
[ dR[47(R)]
Let {R;} be a set of points drawn from the probability distribution
2
lop(R)| .9)

oy L @
P ) 12

where the integral in the denominator serves here merely to normalize p(R). Then
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for any function f{R), the central Timit theorem of probability gives that

LM [ #(RY v (R)| %R
T4m mZ f(Ry) = 5 (4.10)
Mo 11 [ l47(R)|“eR
and in particular
Tim & T em (R )ARN-(R:) = <A a.11
Mu“@n ) b1 (-'i) (-)WT(-‘i) = <A> . (4.11)
The M(RT)2 algorithm is a biased random walk in configuration space; as usually

carried out, each particle is moved one after another to a new position uniformly
distributed inside a cube of side s. That move is either accepted or rejected de-
pending on the magnitude of the trial function at the new position compared with

the o1d position. Suppose R is the old position and R' the new. Then if |wT(3')|

> [wT(g)F the new point R' is accepted. Otherwise the new point is accepted with

probability q where

e

q = (4.12)
lor(R) 1

It has been shown elsewhere in this book {cf. Sect.1.2) that under certain very
general conditions, the points of the random walk have |w.|.(|3)|2 as their density,
asymptotically as the number of steps increases.

In general the algorithm is very simple to program and test, and follows very
closely a Monte Carlo simulation of a classical system. However, there are a number
of things specific to quantum systems which we wish to draw to the attention of the
reader who is interested in doing such a calculation.

a) Finite System Size

Usually one wishes to calculate the properties of an infinite homogeneous system
but practical simulations are 1imited to about several thousand particles with
current computers. Periodic boundary conditions are used to eliminate surface ef-
fects. Quantum systems, in general, have smaller size dependence than classical
systems {see below, Sect.4.2.2). The two-particle correlation function, g(r), for
liguid helium looks very much like that of a classical gas near its critical point
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in that the correlations are of fairly short range. The energy per particle of 32
helium atoms (at equilibrium density) is only about 0.15 K Tower than for B62 atoms
out of a total potential energy of -18 K. The most serious Tong-range problem is
that posed by the Coulomb potential, but that, as we shall see, seems to be satis-
factorily solved by the use of the Ewald image potential, at least for single com-
ponent systems. There, also 32 particles give reasonably good estimates for bulk
properties and a few calculations with much larger systems, say 256 particles, give
a good idea of the size dependence.

b) The Random Walk

For quantum systems, there seems to be no problem with the random walk converging
to the desired probability distribution. The initial step of the random walk can

be taken with particles on lattice sites, or uniformly distributed throughout the
simulation box, or the last step of another random walk. Then typically 50 to 500
moves per particle are sufficient to ensure that the random walk converges to the
distribution p{R). The step size of the random walk s is adjusted so that the
acceptance ratioc for moves is between 0.1 and 0.7. The smaller acceptance ratios
are probably more desirable to insure rapid convergence and also save some computer
time for Fermi trial functions. After the system has "equilibrated”, the random
walk continues, with various averages being kept, until either computer time is ex-
hausted or the statistics are judged acceptable, preferably the latter.

c) Computation of the Pseudopotential

At each step of the random walk the relative change in the trial function must be
computed to determine q in (4.12). If particle i is being moved and r% is its new
trial position, then for the boson liguid trial function, (4.2), this is simply

ag = exp !} [u(ry - r.) - u(ry - p . % . (4.13)
J

J

Then to move gne particle takes computer time proportional to the number of par-
ticles, If u(r) is a short-ranged function, enumeration of nearest neighbors of
each particle can be used to reduce this time to a constant, for large enough
systems [4.14].

Care must be taken to avoid the use of pseudopotentials which are discontinuous,
since the variational principle requires continuity of trial function and its de-
rivative. A simple way of truncating the pseudopotential at the edge of the bax
is as follows. Suppose L is the length of the smallest side of the simulation cube.
Then a continuous truncated potential is
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A

u(r) - u(ry) r
up(r) = (4.14)
0 s rzrg
where rr is less than or equal to L/2. This potential will have a discontinuous
derivative at re which gives rise to an easily calculated ‘tail’ correction to the
kinetic energy. The same remarks apply to the single particle ldcalization function
¢(r) in the solid trial function [see (4.4}]. It is important to keep ¢(r) smooth
if the particles are only weakly localized about their lattice sites and the system
is small,
On the other hand for charged systems it is often necessary to have a long-ranged
'plasmon' trial function (4.7) and truncation is not desirable, In this case one
can use the Ewald image potential where the sum in (4.13) is over all of the other
particles and all of their images in the periodically extended space. (See the re-
view by VALLEAU and WHITTINGTON [4.15] for a discussion of the theory, implementation,
and difficulties of Ewald sum techniques}).

d) Fermion Trial Function

The presence of the Slater determinant in the Fermion trial function (4.3) compli-
cates the random walk somewhat since one must compute the ratio of two determinants,
in addition to the pseudopotential, at each step of the random walk. The additional
computation can be done in the following way. At the beginning of the random walk
the inverse matrices to the Slater matrices are found (one for each spin degree of
freedom). That is let

Dy = exp{iker) (4.15)

be the Slater matrix and the inverse matrix D is such that

N _
E 1 DyyDyy = 55 - (4.16)

The crucial observation is that when only one particle is moved, just one row of
the Slater matrix changes, the matrix of cofactors for that row is unchanged, and
one can compute the ratio of determinants by a simple scalar product. That is,

N 2

q =4 *




153

where g is still given by (4.13). If the mo;e is accepted, the inverse matrix
needs to be updated and this takes roughly N~ operations on the computer [4.16].
Because of the necessity of storing and updating the inverse matrices, it is more
difficult to do a Targe fermion system than a large bose system. A random walk
with 250 particles is a substantial calculation, but such a system is sufficiently
large for particles interacting with a short-range potential [4.16]. That is, the
dependence of the energy on the size of the system for 250 particles is usually
comparable to the statistical error and much smaller than error of using the trial
function (4.3). The electron gas in the range of metallic densities has important
size dependence, even after using the Ewald image potential. But most of this
error can be eliminated [4.17].

e) Computing the Trial Energy

The most important average to be done with Monte Carlo is the trial energy since
it must be minimized with respect to u(r). Green's theorem can be used to cast the
energy into several different forms and to check on the convergence of the random
walk.

The following relation holds for continuous trial functions with periodic boun-
dary conditions

* _2

2
- J R wq Vg = [ dR|y,l

2
|9 Tnyo| . (4.18)
Then for the boson 1iquid trial function the variational energy can be rewritten as

2
| dRlu (R} Toovirss) + L dPugr, )

- T KJ[ - 7 n - (4.19)

° [ dRlvr(R)]

and the trial energy can be calculated once the radial distribution function, g(r),
is known. For an N body system in volume V,

V(1 = 1) [ lep(®)1% 8(r; - r; - )R
I 1op(R)|%dR

g(r (4.20)

For fermions, different distribution functions can be defined for particles of the
same or opposite spins.
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It does not seem to be generally realized that this transformed estimator for
the energy has a serious drawback. The original form for the energy, (4.1), has a
zero variance in the limit as vr approaches a solution of the Schridinger equation.
That is, for any point R., w;l(gi) HwT(Bi) will always have the same value and there
is no sampling error. In practice, we have found that the standard error obtained
using form (4.1) of the energy is at Teast four times smaller than that from the
transformed form in (4.19) for tiquid helium and the electron gas.

The second relationship, due to FEYNMAN [4,10], is applicable whenever the
trial function can be split into two parts. Suppose

or(R) = A(R)B(R) (4.21)
then

-2 [ dR ABYA-VB = [ dR(|vA|% + AvPA)B? (4.22)

= [ dR(|vB|% + BV B)A?

Together with (4.18) we can transform the kinetic energy of the fermion trial func-
tion into many different forms but again we will in general raise the variance of
the trial energy as compared to the use of (4.1). Expressions (4.18,22) are useful,
however, as a check of the convergence of the random walk.

Finally we should mention that scaling can be used to reiate the value of the
energy at one density to its value at another density. Let 'a' stand for the set
of all parameters in the trial function having units of length. Then clearly the
two-particle correlation function scaies in the following way

glr/2,p",a/2) = g(r,p,a} where 2 = (p‘/o)u3

{4.23)
Now (4.19) shows that the energy for bosons can be written as an integral over

g(r). Of course, the optimum trial parameters at one density will not usually scale
into optimum trial parameters at another density but the scaling helps locate the
minimum energy.

f) The Pressure

For any equilibrium system the virial theorem gives the pressure once the kinetic
energy T and the radial distribution function are known.

p--gk.g [ZT - (o/2) f &3 g(r) r g;] . (4.24)
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This relation has occasionally been used to check the accuracy of variational cal-
culations. But a proof based on a scaling argument quoted by COCHRAN [4.18] shows
that the virial theorem also holds for variational energies. More precisely, the
two pressures in (4.24) will be equal if all lengths in the trial wave function
are considered as parameters and E(p), T(p) and g(r,p) are evaluated at the vari-
ational minimum of these parameters.

g) The Single Particle Density Matrix

The single-particle density matrix n{r) and its Fourier transform, the momentum
density n(k), can be easily computed from the product trial function as sampled by
the random walk. The function n(r) is defined as

[ dR ¢;(E1 + 5,52,.L.,rN)wT([1,r2,...,rN)

. (4.25)
[ dRlyq!

nir) =

For large r in a Bose liquid, n(r) will go asymptotically to the condensate frac-
tion [4.19], the fraction of particles in the zero momentum state, Furthermore,
the probability density for finding a particle with a wave vector k is simply

n(k) = p f & '8 In(r) . (4.26)

An ingenious and very efficient way of carrying out the averages in {4.25,26) is due
to McMILLAN [4.1], A point r' is selected uniformly inside the simulation box where
the random walk is taking place. That point is successively considered to be each
of the particies in turn, displaced an amount r' - r;- Then

Yr{ryse el e sy
n(le' - oyl =<w1(r1 T ...,r:) : (4.27)

1f the calculation is correctly arranged, only one distance and exponential need
be computed for each value contributing to the average of n(r).

h) Reweighting Configurations

If one has available configurations generated from one trial function it is re-
latively simple to calculate properties, such as the energy, of a slightly different
trial function. Suppose {Bi} is a set of configurations drawn from the probability
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distribution le(g,g)lz. Then clearly one can calcuiate averages from a different
trial function ¢T(B,§') as follows

S ¥3(Rs2")A wp(R,a')dR
[ ter(Raa') |5dR

A =

(4.28)
Tin T (2,
Mol Mivr (Bys2"Vup(Bian
- W
W,
;=1 !
where the weights wi are
: 2
R..a'
- H’T("'l e )l (4-29)

i
vr(Ry»2) |

For this procedure to be reliable it is important that 1) there be a large number

of configurations, at least several hundred to eliminate Hbias in the estimates, and
IT) that all the weights be of the same order of magnitude, i.e., the largest weight
be no more than that roughly 5 times larger than the mean weight. If the second
condition is not satisfied it means that there is probably not encugh overlap between
the trial functions for the procedure to be successful. We have found this procedure
allows one to compute the changes in energy due to a change in trial function para-
meters much more accurately and quickly than doing two separate random walks and
subtracting the energies, since in the former case the estimates are positively cor-
related and in the latter they are not.

4.2,2 Application to Systems of Helium

The first reported use of the Metropolis random walk for a quantum system was by
MCMILLAN [4.1]1 for the ground state of liquid helium four. Independent and almost
identical calculations were done at about the same time by LEVESQUE et al. [4.20C].
Since that time simulations have been done for many simple quantum many-body sys-
tems. We will review most of these papers, and indicate some of what has been
Tearned from the studies. The review is organized into three sections: hard-core
boson systems, soft-core (including Coulomb) boson systems, and fermion systems.
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a) Hard-Core Boson Systems

For cur purposes, a hard-core system is one for which the radial distribution func-
tion is essentially zero for small r. It is generally believed that all substances
in nature do not really have a hard core, but at normal densities atomic systems
behave as if they did.

The physical difference between hard-core potentials and soft-core potentials
is the behavior at increasing density. The energy and pressure of hard-core systems
will increase very rapidly as soon as the cores begin to overlap and as a conse-
quence they will solidify. But the potential energy of a soft-core system only in-
creases with some power (less than one) of the density, the kinetic energy becomes
dominant, and as a consequence it will melt at high density. Among atomic substances,
only the lightest show significant macroscopic quantum effects at low temperatures.
They are shown in Table 4.1 (from STWALLEY and NOSANOW [4.21]). The three isotopes
of hydrogen, Ht, Dt and T* are assumed 'spin-aligned’'; a very strong magnetic field
(~ 105 G) forces all of the electrons to have the same spin, thus preventing mole-
cules from forming. The interatomic potentials have all been fit by a Lennard-
Jones 6-12 potential,

vir) = 4sl(g/r)12 - (g/r)ﬁl (4.30)

using virial data (e and ¢ are shown in Table 4.1). The measure n was introduced
by DE BOER [4.22] in his quantum theory of, corresponding states and is given by

n = K mest . (4.31)

Essentially n will be the ratio of the zero-point kinetic energy and the c¢lassical
potential energy and thus determines the importance of gquantum effects at zero
temperature. It is obvious that the thermodynamic properties for any Lennard-Jones
system are only determined by n, the reduced density po3, and the reduced tem-
perature kT/e.

The ground-state energies of all of the atomic systems in Table 4.1 have been
calculated using Monte Carlo techniques. 4!-Ie is the most popular and we will discuss
it first.

b) Liquid *He
McMILLAN [4.1] did the original simulation of liquid 4He and many others have ex-
tended and reproduced his results.
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Table 4.1 The atomic substances which show sizable quantum effects at zero tem-
perature. The hydrogen isotopes are spin aligned, placed in a magnetic field strong
enough so that all electrons are in one spin state. e and ¢ are the parameters of
an effective Lennard-Jones 6-12 potential, n is de Boer's quantumness parameter

Substance  Mass £ ] n=H2/m502 Ground state
Hr 1 6.46 3.69 0.55 Bose gas
Dt 2 6.46 3.69 0.27 Fermi gas or tigquid?
Tt 3 6.46 3.69 0.18 . Bose liguid
3he 3 10.22  2.556 0.2409 Fermi 1iquid
e 4 10.22 2.556 0.1815 Bose 1iquid
BHe 6 10.22 2.556 0.1207 Crystal
Ho 2 37.00 2.92 0.0763 Crystal
Dz 4 37.00 2.92 0.0382 Crystal
Ne 20 36.2 2.744 0.0085 Crystal '

1) Direct Application of Monte Carlo. McMILLAN used the form
u(r) = (bo/r)™ L (4.32)

Notice that if m = 5, u(r) will satisfy, to leading order, (4.5) for the small r
behavior with b = (16/25)/10 = 1,134 (independent of density). Also note that unless
m = 2 this wave function cannot give the correct long-range behavior and S(k) will
not be linear at small k. The pseudopotential admits a very simple form of scaling;
only the moments °n(b) =<(cfrij)n> need be obtained (n = m + 2,6,}2) in order to
scale to any density, while for a general pseudopotential the full g (r) is needed.
McMILLAN found that m = 5 gives the lowest energy, with the value of b = 1,17,
This was confirmed by SCHIFF and VERLET [4.23], and by MURPHY and WATTS [4.24] in
more accurate calculations,

McMILLAN found the zero pressure density to be 0.89 & 0.01 of the experimental
value and the energy at that density was (-5.9 £ 0.1) K. The experimental value
is -7.14 K. The fraction of particles in the zero momentum state (no) was found to
be 0.11 & 0.01.

The size dependence in these numbers was found to be very small. McMILLAN could
find no difference between a 32 and a 108 particle system. SCHIFF and VERLET with
a much larger system (864 particles) again found the same energy within statisti-
cal errors. Combining these results we beiieve the size effects in the energy are
probably less than 0.15 K for a 32 body system.

There are several ways these calculations have been enlarged upon: by looking
at approximate integral equations, looking for better pseudopotentials and trying
to invert the potential.
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11) tegral Equationa. The first comparison with Monte Carlo was done by LEVESQUE
et al. [4.201. Their results showed that the Percus-Yevick equation gives energies
-2 K below the Monte Carlo and has the wrong density dependence (gets worse at
higher densities}. The PYZ equation gives an error of about -1 K. The hypernetted
chain integral equation has energies about 1.0 K too high at p, and 3.4 K too high
at p = 0.028 [4.24,25). The equilibrium density is an extremely sensitive measure
of how well the equations of state are calculated. The HNC gives an equilibrium
density which is only 0.B of the value obtained from Monte Carlo. The g(r) obtained
from HNC is quite reasonable but the relatively large cancellation of potential and
kinetic energy means that for helium one cannot resolve energy differences of less
than 1 K with integral equations. This is a serious Timitation.

I1I) The Optimum Peeudopotential, It is clear from the discussion after (4.6) that
the simple form used by McMILLAN for u(r) cannot be optimal. However, attempts to
jmprove it have generally failed. It is known that for large r, u{r) is proportional
to I/r2 as in (4.6). SCHIFF and VERLET [4.23] tried to add a long-range term using
perturbation theory, the energy was indeed lowered, but apparently the perturbation
theory is not accurate enough as the energy decreases without bound. ZWANZIGER
[4.26]1 actually added a term like

1
u(r) = = 5——p (4.33)
Dnzh e+ llkg

to his trial function in the Monte Carlo calculation using the Ewald image potential.
The results were somewhat inconclusive due to poor statistics but roughly, the op-
timum value of b was unchanged from the value at kc = 0, namely 1.17. c was not
varied but assumed to be the experimental speed of sound. The optimum value for

kc was found to be 0.45/R, and the energy was lowered roughly -0.2 K. The equilibrium
density and superfluid fraction remained constant within the errors. Other authors
have presented other pseudopotentials with different short-range behavior. The one
of de MICHELIS and REATTO [4.271 is notable in having B variational parameters.
However, in no case is the energy lowered significantly (more‘than 0.2 K) 14.20,27,
28,29]. Recently CHANG and CAMPBELL [4.25] have published the best pseudopotential
for the HNC equation, obtained with the use of the 'paired phonon' method. Their
optimized u appears to be a short-range part as in (4.32) and the long-range part
from (4.33) with the same coefficients. Here again, however, the energy in going
from the simple 1/r-5 to the most general form of u only drops by 0.14 K at Py and
somewhat more at higher densities. We conclude that the 1 K difference between the
Mante Carlo results and the experiment is not due to the particular form of the
pseudopotential. We shall see that most of the difference can be accounted for by
going beyond the product trial function to the exact ground state.
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c) Solid *He and He

We -include the two isotopes of helium together since, as we shall see, the exchange
effects are quite small in the crystal phase so that particle statistics have very
little effect on the ground-state properties.

LEVESQUE et al. [4.20] and HANSEN and LEVESQUE [4.30] have done calculations with
the solid product trial function in (4.4), with a gaussian localization orbital,

o(r) = expl-(A72)r (4.34)

and only the unit permutation which appears in the sum of (4.4) is allowed. This
trial function is then neither symmetric nor antisymmetric. They determined that
the localized trial function has Tower energy than the liquid one at high density
and that the transition density is in good agreement with the experimental values
for 3He and4He. .

For solid 4He, a minimum density of 0.4503 was found, compared to an experimental
value of 0.468/03. For 3He the variational result was 0.42/03, close to the ex-
perimental value of 0.41/c3. The other important findings were that the density
distribution around a lattice site is closely approximated by a gaussian and the
rms deviation divided by the nearest-neighbor distance, (Lindemann's ratic: v)
is about 0.27 at melting.

HANSEN [4,31] was able to find the structural transition HCP-BCC in solid 3He
using Monte Cario and found VHCP/BCC:5 21.8 cm3/mole. This agrees well with ex-
periment, VHCP/BCC = 19.8 cms/mole but the calculated pressure is halif the experi-
mental value. Thus the Tiguid and solid product trial functions have been able,
at least qualitatively, to account for the phase transitions in the two isotopes
of helium.

HANSEN and POLLACK [4.32] have investigated a wider class of trial functions
for the solid having the form

) {4.35)

PO

Y = expi- ”(rij) +{r, - s.)G

=1 =3 ='ij(['.] - §j

I
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where 55 is the set of lattice points (BCC) and G is a tensor acting only between
nearest and next-nearest neighbors. One additional parameter was introduced. How-
ever, the additional freedom in the trial function did not Tower the energy signi-
ficantly. They also established that the rms deviations from the Jattice states
were in rough agreement with the experimental values estimated from the Debye tem-
perature, for both isotopes of helium, the variational estimates being 5 to 20%
too small, This kind of comparison which is based on a harmonic model of a solid
is not conclusive,
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d) Interatomic Helium Potential

The interaction between the helium atoms in all of the above was assumed to be
Lennard-Jones with ¢ and ¢ given in Table 4.1, Once a variational calculation has
been done it is relatively straightforward to find the equation of state for a
slightly different potential and thus try to determine from the variational results
at zero temperature the interatomic potential.

A potential can be accepted only if the variational energies are greater than
the experimental energies at all densities. In this way the Haberlandt potential
[4.33] can be rejected from the 1iquid helium variational calculations [4.23].

Also the energy of the Lennard-dones 9-6 potential with the Kihara parameters Ties
below the experimental solid helium energies [4.34]. Another test is to require
that the pressure, estimated using a given potential, agree roughly with experi-
mental pressures throughout a large density range, particularly in the high-density
solid, This assumes that the errors made in using the product trial functions are
roughly independent of density. We will discuss this below. Using this test, HANSEN
[4.32,34] showed that a Lennard-Jones 6-12 potential with slightly changed coef-
ficients (e = 10.2 K, o = 2.62 R). the Morse potential of BRUCH and McGEE {4.35],
and the Beck potential [4.36]1, are significant improvements. There is a significant
improvement in the structure functions with these potentials as weil [4.37].

The potential energy of a group of helium atoms cannot be expected to be exactly
equal to a sum of two-body potentials; three and more body interactions are known
to exist. It is possible to estimate the perturbational effect of a specific form.
The most videly used three-particle interaction is the long-range triple dipole or
AXILROD-TELLER [4.38] interaction

v3(r1,r2,r3) = uo(l + 3 cose, coss, cose3)/r?2r23rg3 . (4.36)

The angles o are the internal angtes of the triangle (rl,rz,r3) and ug = 0.224 K.
MURPHY and BARKER [4.39] have calculated the energy of this term in Tiquid 'He
with the McMillan pseudopotential (4.32) and found it to be 0.14(p/p0)3 K(p0 is
the Tiquid equilibrium density). Their estimate for solid "He is +0.10 (o/pg)® K.
This is a rather small energy compared with the 1 K energy difference between the
various two-body potentials.

e) The Hard-Sphere Potential

The hard-sphere model has had considerable success in explaining the structure
and liquid-solid transitions of classical systems. It is natural to inguire what
the zero temperature properties of a system of hard spheres are. A variational
calculation has been done by HANSEN et al. [4.40] using the correlation function
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exp[- % u(r)] = tanh{[(r/a)™ - 1)1/b™} (4.37)

where a is the hard-core diameter. They obtained a solidification density of 0.23/a3
and a melting density of 0.25/a3. With the choice of a = 2.556 R both the crystal-
lization density and the structure function agree roughly with the experimental
value for helium 4,

KALOS et al. [4.28] have shown that a perturbation formula from classical liquid
theory [4.41] can be used to calculate the energy of a Lennard-Jones 1iquid from
the Monte Carlo results of the hard-sphere liguid. The Lennard-Jones potential is
split into an attractive part w(r) and a purely repulsive part VLJ(r) - w(r). Let

w(r) = {4.38)
viglr) ror

where -¢ is the minimum value of vLJ(r) and m is the separation at which it is
attained. Then they showed that the variational energy of the Lennard-Jones liquid
is given by

ELJ = EHS(aLJ) + {p/2) [ dr QHS("'/BLJ)W“) (4.39)

where EHS and 9ys are the variational hard-sphere energy and correlation function
and the hard-sphere radius a4 is equal to the scattering length of the repulsive
part of the Lennard-Jones potential [de(r) - w(r)], i.e., 0.8368a.

f) Nonuniform Helium Systems

We have seen that bulk helium can be well understood by variationai calculations.
LIU et al. [4.42,43] have treated two nonuniform systems with the variational
method. With nonuniform problems one must generalize the product wave function to
include a one-body term since otherwise a purely repulsive pseudopotential will
cause the particles to fill any volume.

In the "channel" problem hard walls are placed at z = 0 and z = L, with periodic
boundary conditions in the x and y directions. LIU et al. [4.42] chose to model
liquid helium with hard spheres, since they were primarily interested in the struc-
ture of the system. Their trial wave function was the liquid product function
times a singte-particle term to make the wave function vanish at the walls.

1 N
wlR) = exp[- 3 ] v 1] n(z;)] (4.40)



where u(r) is given by (4.37) and
h(z) = tanh9lz(L - z)/Ld] . (4.41)

We now have two additional variational parameters, g and d, to be optimized. The
surface energy was found to be 0.24MZ/ma4 which is in rough agreement with experi-
ment. The most striking features of the results are the pronounced density variations
across the channel. The quantum Tiquid forms a layered structure much like a classi-
cal Tiquid would in a channel. The number of particles in the zero momentum state
remains at 11%.

The second nonuniform system that LIU et al. studied [4.43] was a double-sided
film of helium. Since in order for the film to be stable, the interatomic¢ potential
must be attractive, the potential was assumed to be Lennard-Jones with € and ¢
given in Table 4.1. At zero temperature all of the particles are bound to the film,
so the wave function must vanish if any atom leaves the film. Their trial function
had the form of (4.40) but now u(r) is the McMillan pseudopotential, (4.32), and
h(z) is

1 |z
h(z) = ) (4.42)
2/11 + exp k(2] - 25)"1 1z 2 z4

A
N

v

Zg and x are optimized to find the lowest energy. The surface energy was found to
be 0.21 K/Rz, only 25% lower than the experimental value, 0.27 K/ﬁz. The density
oscillations are much smaller in the film than in the fluid but still apparent.

g) Two-Dimensional Helium

If helium atoms are tightly bound to a surface then one has essentially a two-
dimensional system. The simplest assumption for the effect of the substrate is

that the helium atoms are confined to a plane and the potential felt by the

helium atoms due to the substrate is constant. The helium-helium interaction may

be taken to be Lennard-Jones, (4.30). HYMAN [4.44] using the Monte Carlo variational
technique and CAMPBELL and SCHICK [4.45] using molecular dynamics (both used the
McMillan r'5 pseudopotential) have calculated the equation of state in the liquid
phase at zero temperature of this 2-D system. The two calculations are in agreement
giving an equilibrium (zero presure) density of p = 0.23/02 with a binding energy

E =0.6 K, LIU et al. [4.46] have calculated the energy in the solid phase (by MC)
and determined that the system melts at »= 0.46/02 and freezes at 0.40/a2 in

rough agreement with experiments on thin helium films. They also found that 38% of
the atoms were in the zero momentum state at the liquid equilibrium density. This
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is a much higher fraction of condensate at the equivalent density than in the three-
dimensional 1iquid.

h) Three-Body Pseudopotential

An interesting calculation was done for this two-dimensional Lennard-Jones system
by W00 and COLDWELL [4.47) who included a three-body pseudopotential in the trial
function. That is they calculated the variational energy of the trial function

@ - I expl- 3 utr; )] - xp[+ 3 W(resT i) (4.43)

where u(r) is the usual McMillan pseudopotential and w has the form

Wiras, v -5 ) = (e/Irf + 82 4 (r - )2 (4.44)

This trial function will favor configurations of particles forming equilateral

triangles. Thus the potential energy will be lowered, since particles wiil be in the

potential wells of their nearest neighbors. Configurations were sampled with the

usual two-particle trial functions and then the change in energy was calculated

for a variety of values of ¢ by 'biased selection', They find an energy drop of

0.12 £ 0.06 K but the statistical errors seem rather large. Since the exact ground-

state energy is not known in two dimensions it is difficult to know whether the

form of their trial function is significantly better than McMillan's trial function.
CHANG and CAMPBELL [4.25} using the convolution approximation for the three-body

correlation function have optimized the "(r12’r13’r23) for liquid helium in three

dimensions, The energy drops by -0.44 K at the equilibrium density and more at

higher density when this three-body trial function is included (see also [4.48]).

As we shall see, the ground-state energy is roughly 0.6 X lower than this. Either

the convolution approximation is inaccurate or higher terms than the three-body

function are necessary to describe liquid helium accurately. However, it is clear

that the energy can be significantly Towered by relaxing the two-body approximation.

4,2.3 Other Bose Systems

a) Spin-Aligned Hydrogen

The ground-state energy for spinQaligned hydrogen and tritium has been calculated
by DUGAN and ETTERS [4.49] using Monte Carlo with the Tiquid trial function. The
potential was taken to be the Morse form
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v(r) = efexpl2c(1 - r/rm)] - 2 explc(l - r/rm)]} (4.45)

with ¢ = 6,19 K, ¢ = 6.05 and r = 4.15 R
The pseudopotential which they found to have the lowest energy has the form

u(r) = b1 exp(-bzr) . {(4.46)

The optimal coefficients were within 10% of those which satisfy the small r condition
of (4.5). DUGAN and ETTERS found that at low pressures, spin-aligned hydrogen is
nearly an ideal Bose gas and tritium a 1iquid, most likely superfiuid, DANILOWICZ
et al. [4.50] have calculated the phase transition between gas and solid aligned
hydrogen to be at 80 atm with a volume of 55 cm3/mo1e. At present there are no
experimental values.

The atomic hydrogen potential has been fit to a Lennard-Jones 6-12 potential
by STWALLY and MOSANOW [4.211; <f. [4.51]. They have extended the moment functions
on(b) for McMillan's trial functions (4.32) with m = 5 and fitted them with poly-
nomials. Then the optimum variational energy as a function of density can easily
be obtained from those moment functions. They get good agreement with Dugan for
spin-aligned hydrogen.

A series of papers by NOSANOW et al. [4.52] has treated an entire range of
Lennard-Jones potentials (i.e., the n,p* plane) by assuming the pseudopotential
was always (b/r)s._Points not available from SCHIFF and VERLET [4.23] were evaluated
by additional Monte Carlo calculations.

They have determined that for n < D0.456, the zera pressure phase of Lennard-
Jones bosons is a liquid, and for n > 0.456 it is a gas. There is no ‘coexistence’
region in this hypothetical phase diagram; that is, there is no Lennard-Jones
potential which has as its zero pressure ground-state liquid and gas in equilibrium.
For fermions they believe the equilibrium situation is possible.

Finally the two quantum crystals, molecular hydrogen and neon have been inves-
tigated by Monte Carlo. HANSEN [4.53] found that solid neon is well described by
the Hartree theory and he obtained very good agreement with the experimental
ground-state energy using a Lennard-Jones potential. BRUCE [4.54] also approximated
the potential between two hydrogen molecules by a Lennard-Jones (with the e and o
in Table 4.). He argues that this approximation is not too unrealistic for solid
hydrogen. He finds rough agreement with the experimental equation of state and de-
termines that the harmonic approximation is good at high densities. For a comparison
of these Monte Carlo results with those of lattice dynamics see the review by KOEHLER
[4.55]1,



166

b) Soft-Core Bose Systems

We now turn to Monte Carlo results on soft-core systems. By soft core we mean here
that the interparticle potential goes as +1/r for small r. In contrast to hard-core
systems, the 1iquid or gas phase is favored at high density. There are three impor-
tant systems that have been studied: the Bose one-component plasma, boson neutron
matter, and the related Yukawa potential.

c) Bose Neutron Matter Calculations

Since the late 1960s it has been speculated that the interior of neutron stars and
in particular pulsars is composed of neutron matter which has crystallized. See

the review of BAYM and PETHICK [4.56] for background on this problem, However, dif-
ferent methods gave widely varying answers for the equation of state and transition
density and it was proposed that a common simplified potential be chosen so that
the various many-body methods could be compared. Thus the 'homework' problem was to
produce the eguation of state and transition density of bosons interacting with the
Yukawa potential.

V(I") =€ EXP('Y‘/U)/(T/U) (4_47)
with ¢ = 45389 MeV and ¢ = 0.204 fm

COCHRAN and CHESTER [4.18,57] assumed the pseudapotential had the form of a Yukawa
function

u(r) = A exp(-Br)/r . (4.48)

Using the potential parameters e = 23472 MeV and ¢ = 0.244 fm, they calculated with
Monte Carlo the liquid equation of state. Their solid trial function was the usual
gaussian times product function (4.4,34) but they found solid energies always
above the liquid. They also considered the effect of an attractive tail to the
interneutron potential but again the liquid was the favored phase. PANDHARIPANDE
[4.58] showed that the HNC equation reproduced the Monte Carlo energies for the
homework Yukawa potential within 5%.

The Monte Carlo results were extended to the full (n.p*) plane of the Yukawa
notential by CEPERLEY et al. [4.59] where n is given by (4.31) and p* = po® is the
reduced density but ¢ and o are now parameters of the Yukawa potential in (4.47).
They found that for n > 0.009, no solid will form at any density. For n < 0.009
the solid is the preferred phase for intermediate densities (p* ~ 0.07), and gas
the preferred phase at high and low densities. But the 'homework' potential has
n = 0.022 so that a solid will never be the preferred phase.
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These authors also investigated the Yukawa solid in some detail. Two different
types of trial functions were used in addition to the standard gaussian form. The
first was the periodic solid trial function

#(R) = exp|- 3 ] Ui - 7] )| (4.49)

where ¢(r) is a function with the periodicity of the lattice. The minimum variational
energy for the periodic trial functions are higher than those of the gaussian,
apparently because the periodic function allows a much greater chance of double
occupancy of the lattice site.

To get a feeling for the effect of exchange in the Yukawa crystal a Monte Carlo
simulation of the symmetrized gaussian trial function was carried out. That is

@) = e|- 73 uiryp)| Less|- 7 - 5. )°] (4.50)

<

where §Pi are the lattice sites with a permutation P in the pairing of particles to
lattice sites. To sample this function with Monte Carlo a Metropolis random walk was
done both in coordinate and permutation space. Interested readers can find details
in [4.59]. It was found that at the optimum value of A, very few permutations are
allowed and the energy is unchanged from the unsymmetrized gaussian trial function.
However, at small values of A the energy of the permanent function is slightly
larger than that of the gaussian function and very many permutations can exist. We
conclude that to calculate most properties of the Yukawa crystal it is not necessary
to symmetrize the trial function.

It was also found that Lindemann's guantum melting Taw holds in the Yukawa
crystal. This states that the solid is the ground-state as long as the rms deviation
from a lattice site is less than 0.26 of the nearest neighbor distance. For classi-
cal system this ratio is about 1/7.

Finally, it was found that attempts by others [4.60,61] to model neutron matter
from the hard-sphere or Lennard-Jones Monte Carlo results, as in (4.39), led to a
serious overestimation of the kinetic energy and therefore the total energy of
neutron matter at high densities.

d) Bose One-Component Plasma

The one-component plasma is the other important Boson soft-core system. The par-
ticles interact with a Coulomb potential and a uniform background neutralizes the
total charge. This is a model for helium ions in the interior of cold stars. The

ground-state properties depend only on one parameter rg
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re = (3/4mo)
In order to screen out the effects of the long-range potential, the pseudopotential
must have long range. Consideration of the plasmon modes [4.12] show that it must
go asymptotically to the form in (4.7). This makes the Monte Carlo calculation
somewhat more difficult since the Ewald image potential must be used to calculate
both the real potential and the pseudopotential.

HANSEN et al. [4.52] made the assumption that the pseudopotential was purely
coulombic¢, viz.,

u(r) = a/r (4.52)

Then the variational energy can be computed from the classical one-component
plasma energies. The solid trial function was purely harmonic — the Einstein
model — and using these energies they estimated the Wigner gas-solid transition
as r_ = 390.

s
MONNIER [4.53] used a two-parameter pseudopotential,

u(r)= a(l - e P")/r (4.53)

to obtain variational energies for smaller values of rg. However, more recent work
has not reproduced his results; his method of accounting for the finite size of
the system is 1ikely in error by roughly 10%.

Recently GLYDE et al. [4.64] and HANSEN and MAZIGHI [4.65] calculated the
energies with Monnier's pseudopotential (4.53), using the HNC equation to obtain
the g(r). The HNC equation has proved quite accurate for the classical plasma and
might be expected to be so here since the assumed pseudopotential also has a soft
core. In fact this is true. Monte Carlo simulations [4.65] for the quantum one-
component plasma show that the HNC energies are accurate to about 1% of the total
energy. Using solid energies from the self-consistent phonon theory and liquid
energies from HNC, GLYDE et al. [4.64] found the Wigner transition to be at s =135.

The condensate fraction as computed with Monte Carlo by HANSEN [4.65] is in
qualitative agreement with the prediction of the Bogoliubov theory [4.66]. The con-
densate fraction is rather large even in the strong coupling region, 26% at re = 26
and 1% at rg = 130.

Recent Monte Carlo calculations by one of us [4.17] imply that a more accurate
value of the Wigner transition is re = 100. The pseudopotential used in these cal-
culations is interesting since there are no variational parameters at all in the
1iguid phase and only one in the solid. If one uses the random phase approximation
and demands that the energy of the liquid or solid plasma be constant irrespective
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of the phonons present, one can show [4.17] that the optimal pseudopotentials has
the following form

ur) = 17(2n)% | d3k[- 1-2008 + A+ a2 + 4mv(k)/h2k2] exp(ik-r)  (4.54)

where v(k) is the Fourier transform of the interparticle potential. A is the lo-
calization of the gaussians in (4.34) (zero for the liguid). The variational
energies with this trial function are as Tow as those from Monnier's pseudopotential
(4.53) in the 1iquid and significantly lower than the self-consistent phonon theory
in the solid. They agree well, however, with the anharmonic crystal calculation
[4.671.

4.2.4 Fermi Liquids

We have avoided discussing Fermi liquids up to this point because the Monte Carlo
simulation of fermion systems has lagged substantially behind that of boson sys-
tems. The important Fermi liquids, the electron gas, 3He, and neutron and nuclear
matter, are somewhat similar to, and perhaps more interesting, than their Bose
counterparts. The reluctance to do Monte Carle simulation with the fully antisym-
metric trial function in (4.3) may be a consequence of the fact that there is no
direct correspondence between the trial function and a classical Boltzmann dis-
tribution and also because of the feeling that computing the determinants in the
trial function would be slow,

It has recently been shown [4.16] that carrying out Monte Carlo variational
_ calculations is not substantially more difficult ‘for the fermion trial function
than for the Base case. Furthermore as we shali see it is simpler, more elegant,
and -above all, more reliable than the perturbative approximations made hitherto
in treating Fermi liquids.

A large number of calculations have treated Fermi liquids by applying a per-
mutation expansion due to WU and FEENBERG [4.6B] to the results of a boson cal-
culation. For this expansion, one assumes that the ground-state Fermi wave func-
tion is given by

¥ = Vg D (4.55)

where g is a symmetric wave function and D is the ideal gas Slater determinant
appropriate to the problem. As originally proposed by WU and FEENBERG, Yg Was the
exact boson wave function; in that case the energy for the product assumes a par-
ticularly simple form, namely
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Ep is the exact boson ground-state energy. The second term can be expanded using
methods from c¢lassical cluster series, The first term of the expansion is simply
the energy of an ideal Fermi gas, 3M2k5/10m. The second term is an integral over
the exact Bose structure function, the third term an integral over the exact Bose
three-particle correlation function and so on.

If EB is replaced by the minimum Bose variational energy and the exact corre-
lation functions are replaced in the expansion by the corresponding variational
ones, then one can evaluate the first three terms of the cluster expansion with the
Bose Monte Carlo method. The resulting energy will most 1ikely be an upper bound
to the ground-state energy since the replacement of the exact Bose energy by the
variational 1s the major error for a strongly coupled Fermi Viquid. This approach
has been followed by NOSANOW and PARISH [4.69] for spin-aligned deuterium; and by
MILLER et al. [4.52] for the full range of Fermi liguids interacting with Lennard-
Jones potentials.

However, this way of treating Fermi liquids is not really variational since vp
is fixed to be the wave function of the Bose Tiquid and in general one might ex-
pect to lower the energy by allowing y, to be a different trial function. If one
follows this approach, as suggested by SCHIFF and VERLET [4,23}, then (4.56) no
Tonger holds and one must add more terms to the cluster expansion. SCHIFF and
VERLET used this new cluster expansion for helium three [4.23] obtaining apparently
good convergence. HANSEN and SCHIFF [4.70] extended these results to mixtures of
helium three and helium four. MONNIER [4.63] applied the same expansion to the
electron gas, and HANSEN and MAZIGHI [4.65] have recently redone his calculations.

We have mentioned only those papers using the Wu-Feenberg expansicns with Monte
Carlo Bose energies and correlation functions, There has been a great number of
others which used integral equations to find these guantities [4.71]. Within the
Wu-Feenberg theory it is impossible to judge the errors resulting from the ap-
proximations to the correlation functions and from the truncation of the pertur-
bation expansion,

Recently we have carried out the Metropolis random walk described above for the
fully antisymmetric trial function [4.16]. The liquids studied to date are 3He,
neutron matter, Yukawa fermions and the electron gas in two and three dimensions
{4.17]1. The pseudopotentials used in the trial function were identical in form to
those used in the corresponding boson liquid, that is (b/r)5 for helium three,
the Yukawa function (4.48) for neutron matter and the Gaskell [4.72] pseudopoten-
tial for the electron gas [which is closely related to the form in {4.54)]. The
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variation of the energy per particle with the size of the system is $mall for these
1iquids. The largest system simulated to date contained 162 particles, but that should
not be regarded as a 1imit for the method.

a) Helium Three

Our simulation of liquid e gives fair agreement with experiment (-1.3 K/particle
as opposed to the experimental -2.5 K) and good agreement with the SCHIFF and
VERLET permutation expansion [4.23] energies at the equilibrium density. The con-
vergence of the expansion for the potential energy and kinetic energy separately
is not nearly as good (a first-order error of 0.7 K). Also at a higher density,
the Wu-Feenberg expansion underestimates the variational energy by 1.1 K. Shown in
Fig. 4.1 are the spin dependent structure functions for Tiquid helium three at
equilibrium density.

s(k)

-e2 Fig.4.1 Structure functions S(k)
soTid 1ine), S (k) (1ike spins
-04r 1 y { 1 L upper dashed line), and S{k)-5_(k),
2 4 € 8 0 12 (lower dashed line) for liqujid
k(c™" He-3 at a density of 0.237/03

b} Neutron Matter

Simulations on neutron matter show that the Wu-Feenberg expansion underestimates
the variational energy at all densities. Variational calculations have been carried
out with the homework potential and two different Reid potentials. The fermion
"homework' system does not crystallize at any densify. A recently developed integral
equation called the Fermi HNC gives good agreement with these Monte Carlo results
[4.73,74] at Tow density (< 0.3/fm3). At higher density the three different forms
for the kinetic energy give widely different results indicating that the approxi-
mation has broken down. Monte Carlo calculations have provided a crucial test of
these approximations [4.741.
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Figure 4.2 gives the momentum distribution. Dne can see the residual effect of
the discontinuity at the Fermi surface caused by the determinant of the trial
function. The interaction excites about 23% of the particles above the Fermi sur-

face.
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¢) Yukawa Fermions

We have very roughly located the gas-solid phase boundary for a system of particles
interacting with the Yukawa potential (4.47) and determined that if n > 0.014 the
system is always in the gas phase, This critical value of n is very near that of
the homework potential (nHw = 0.022); hence it is not hard to see why other, more
approximate methods, might predict that the homework system solidifies.

d) The Electron Gas

The electron gas is perhaps the most studied many-body problem. Many years ago
WIGNER [4.75] predicted that the system would crystallize at low density, but a
consensus of opinion on the transition density has not yet been reached [4.76].
The two-dimensional electron gas is also interesting since it appears that elec-
trons on the surface of liquid helium are nearly a perfect realization of this
system [4.77] and the Wigner transition may experimentally be seen there,

A series of Monte Carlo variational calculations for this system in two and
three dimensions has been carried out [4.17].

The pseudopotentials used were of two types: Monnier's form (4.55) and GASKELL's
random phase' pseudopotential [4.72)

u(r) = (21)" [ d% [—1/so(k) + ﬁ/so(k)2 + 4mv(k)/ﬁ2k2:|exp(ii_<-)'_') (4.57)
p(2w
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where So(k) is the ideal Fermi gas structure function and v{k) is the Fourier
transform of the interparticle potential. Gaskell's pseudopotential has energies
as low as those using (4.53) but with the added advantage that there are no vari-
ational parameters and hence less computation. The best pseudopotential for the
crystal had the form of (4.54).

Among the results for the electron gas [4.17] are the following:

1) The dependence of the energy on the size of the system is more important for
the electron plasma since very small differences in energy are important. It was
found [4.17] that this size dependence could be removed by interpolating between
exact size dependence in the high and low density limits.

I1) After the size dependence was corrected, the Monte Carlo correlation ener-
gies agree quite well with other calculations [4.78] in the metallic density range,
2 g rg £ 7.

II1) As BLOCH [4.79] predicted many years ago, using the Hartree Fock energies,
the totally polarized 1iquid (all spins aligned) is the preferred phase at inter-
mediate densities. In 3 dimensions the polarized-unpolarized transition should
occur at re = 26 + 5 and in 2D at r_ = 13 & 2. This is at a substantially lower
density than that predicted by other theories [4,80,81].

1V) The crystal energies are in good agreement with those calculated with the
anharmonic ¢rystal method [4.57] but substantially lower than those from the self-
consistent phonon method [4.64].

V) The polarized 1iquid-crystal transition occurs at about r. = 67 £ 5 in three
dimensions and about r. = 33 ¢ 2 in 2D. If the electrons are constrained to be un-
polarized then the Tiquid-solid transition would occur at r_ = 47 5 in 3D and
re =18+ 2 in 2D. These variational estimates probably represent lower bounds to
the true transition density since it is likely that the solid trial function is
better than the liquid. For example, the 'exact' Bose Monte Carlo results for the
Yukawa system [4.59] show the excess energy (above the perfect crystal energy) is
overestimated 2% more in the liquid phase than in the crystal phase. If we shift
the excess energy in the 3D electron plasma by the same percentage the polarized
Tiquid-crystal transition goes from r. = 67 to ro = 90.

4.2.5 Monte Carlo Techniques for Low Temperature Excitations

Monte Carlo can be fruitfully used to calculate properties of systems which are
close to the ground-state although this subject is largely unexplored.

As an example PADMORE and CHESTER [4.82] have calculated the energy of an ex-
citation of a phonon or roton of wave vector K assuming the excited state wave
function had the Feynman-Cohen form [4.83]

¥(B) = ¥o(R) § exp[iE' (r,- * A§ fij/‘"?j)] '
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Here wD(B) is the ground state wave functicn and A{K) is a variational parameter.
The energy of this trial function can be found from (4.56). PADMORE and CHESTER
assumed wO(B) is approximated by the McMillan trial function'and evaluated the
integrals for the calculation of the energy by Monte Carlo. They were able to find
the roton gap accurately in both 2 and 3 dimensions at several densities and re-
produced within 20% the experimental excitation spectrum.

Two other examples of this sort of calculation can be cited. Recently SASLOW
[4.84] computed an upper bound to the superfluid fraction in solid helium by a
variational method suggested by LEGGETT [4.85]. The superfluid fraction in solid
Yukawa bosons has been calculated in the same way, but using Monte Carlo results
(4.59]. Unfortunately the bound computed this way is rather large (~ 15%) as com-
pared with the experimental upper bounds (10'4). Finally MEISSNER and HANSEN
[4.86] have computed the sound velocity in solid neon, as a function of direction
and density by using Monte Carlo.

4.3 Nearly Classical Systems

For systems which are almost classical, the WIGNER [4.87] A expansion can be used
to correct classical results for gquantum effects. For example, if A® and g%(r) are
the classical free energy and radial distribution function computed from Monte
Caric or molecular dynamics then the quantum free energy is

AN = AS/N + o8k%/2a m [ d&¥r oC(r)vPu(r) + oK%y . (4.58)

The term in h4 involves averages over the 3 and 4 body classical distribution
functions and can be evaluated with Monte Carlo [4.88]. This series seems to be
quickly convergent for most fluids near their critical points. However, for very
Tow temperatures and below the lambda transition in liquid helium it probably
breaks down completeley. It is this purely quantum situation which we have been
concerned with in this chapter. For a more complete discussion of the Wigner K ex-
pansion see [4.89].



175

4.4 The Green's Function Monte Carlo Method (GFMC)

a) Schridinger's Equation in Integral Form

Consider the Schrodinger equation for a many-body system.

]

= E\U(El!rzs- . er)

2

V? W(Egsrpanenaly) + V(0 aeearg ) |00y srps sy

™=
=

(4.59)

For convenience we set H2/2m = 1 and Tet R denote the point ([1,52,...,5N) in 3N
dimensional configuration space. Then {4.59) can be written succinctly as

[-v20(R) + V(R)IW(R) = E¥(R) . (4.60)
Suppose for the moment that

V(R) 2 -Vpi

we shall note later the consequences of removing this restriction. Then
[-7 + V(R) + VpI#(R) = (E + VoJu(R) . (4.61)

We seek an integral formulation of the Schrddinger equation. Accordingly, we con-
sider Green's function for the operator on the left side of (4.61), namely

[-v% + V(R) + V4IG(R,Ry) = 6(R - Ry) . (4.62)

Appropriate boundary conditions for the problem must be contained in G. For the
treatment of an isolated system of interacting particles, G(B,Bo) vanishes as the
separation of any pair of particles |[1 - rji increases without limit. On the other
hand in calculations modelling a large system by the use of a finite number of
particles in a box of side L, ¢ and G must be multiply periodic in the sense that

W(R + B5) = ()

G(R + Ej;Bo) = 3(8380)
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and Ej is a vector all of whose 3N components are zero except the jth which is L.
Finally in treating a system with hard-sphere forces,

¥(R) =0 if |ri - 5j| <2, foranyi#j;

a is the hard-sphere diameter. In this case we require that G(B,BO) which also
vanishes when hard spheres overlap.

Substitution of the Green's function of (4.62) in (4.61) yields an integral
equation

B(R) = (E+ Vg) [ GRR'IW(R )R’ . (4.63)

Let a succession of functions be defined for some initial w(o)(g) by

" Ry = (£ + ) [ R M ROaR (4.64)

When the spectrum of the hamiltonian is discrete near the ground state yu(R) of
the Schrédinger equation (4.59), then yy(R) is the limiting value of w(N)(R) for
large n. It is possible to devise a Monte Cario method — in the general sense of
a random sampling algorithm — which produces populations drawn in turn from the
successive w("). Suppose that a set of configurations {R(U)} is drawn at random
from the given function g 0 (R). Then for each configuration Bio), let new con-
figurations Bil) be selected at random from the density function (E+V0)G(B£1),
K
The expected number of configurations appearing in a unit neighborhood of R,
averaged over all possible B&O) is

)conditiona] on Bﬁo). Note that the number of configurations is not conserved.

(E+vp) [ a(RR 0@ = o) (4..65)

which is identical with (4.64) for n = 1. Thus the sampling of G(Bgl),}_'\_'i((o)) produces
a population of configurations {R 1)} drawn from w(l . Clearly, repetition leads to
a population whose density is ¢(2) and further iteration to samples drawn from w(")
for any n. We call the population drawn from m(n) the nth “generation".

Unfortunately, ED, the exact eigenvalue of the ground state, is not known in
advance. Fquation (4.64) requires the correct eigenvalue to yield w(n) asymptotically
constant. On the other hand it is equally clear from (4.64) that if one uses, for
computational purposes, a trial eigenvalue Et larger than EO, the w(n) wii] grow in
normalization reflected in a growth in the population of configurations. If E, is
too small the population declines. Thus the distribution of configurations has the
correct marginal distribution and, in addition, the eigenvalue E may be estimated
from the change in population size
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(E, + Vo) o\ (R)OR

E+ V., = 4.66
O oM R)ar (860

A Monte Carlo estimator for E, is then El given by
Ep + Vo= (Ey + VN /Ny (4.67)

where Nn is the number of configurations in the population drawn from w(n) according
to (4.64) and the symbol ~ indicates that the estimates is biased. A source of bias
is a consequence of the asymptotic character of the result. Ancther expresses the
fact that the expected value of the quotient of two integrals is not the quotient

of the expected values. An estimator, E2 for which the second kind of bias is smaller
is

. i) n,
(E, + V) = (Eq + Yp) E_n M/(E Nk+1) ) (4.68)
1

In any case the magnitude of the bias must be evaluated or bounded in obtaining
practical results. Including the size of more generations decreases the bias as a
consequence of the increased statistical correlation and reduced fiuctuation of
humerator and denominator.

The second bias can be eliminated completely and the first frequently reduced
in magnitude by the following method. Multiply (4.60) by some known wT(B) which
satisfies the boundary conditions. It has been found effective to use a trial
function which minimized the energy in a variational study of the same problem.
Upon integrating over the full space of R and using the Hermiticity of the hamil-
tonian, one obtains

[ 4p(RI-% + V(R) Iy (R)IR
E = . (4.69)
 ug(R)er(R)GR

If one samples a population Ei""’BN from the density function wO(B)wT(B) then

E3 ;% E WT(Bk)-l('VZ + V)'bT(Bk) (4.70)
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is an unbiased estimator of E. It has the property that as wT approaches Voo EB
becomes exact, independent of the values of R,. Thus one expects that for "reason-
able" ¥1s the estimator E will be less biased than E2 before the convergence of

(") to w( ) and it may we]] have less variance. We will discuss practical results
below. Estimator E2 is called a "growth" estimate, E3 a "variational" estimate.

The iteration process (4.64) does not converge to Ur¥o but, formally at least,

it is easy to change it so that it will do sc. Simply multiply (4.64), through by
¥(R) and introduce wT(B')/wT(B') into the integral. The sequence

w6 ™Ry = (B, + Vg) [ v (RIG(RLR')/9p(R')]
(4.71)
< (R )" (R )dR®

can be sampled random]y"as before and converges to wTwO where wo is the lowest
state not orthogonal to Y1 The estimator (4.68) may also be used with Nk referring
to the size of the population generated with the bias bre Clearly this is a prac-
tical thing to do when the sampling is carried out according to (4.71). We shall
see below that this is theoretically advantageous.

We now consider the question of treating infinite attractive potentials such as
peccur in a two-component plasma. Suppose one writes

V(R) = V,(R) - V_(R) (4.72)

and with V_ unbounded from above, and V_ has lower bound -V, . Then (4.61) becomes

192 4 V,(R) + Vglu(R) = V_(R)S(R) + (E + V)w(R) - (4.73)
Using Green's function for the operator on the left, we have

W(R)} = [ G(R,R")V_(R")w(R'}dR' + (E + Vo) f G(R,R")¥(R')dR" (4.74)
or

V_(R)U(R) = | V_(R)G(R,B'IV_(R')¥(R")dR"
(4.75)

+ (€ + Vo) [ V_(RIG(R,R' )V (R W_(R")y(R")dR

an integral equation for the new dependent variable V_(R)w(R) which must be inte-
grable. In some applications it is best to arrange the decomposition so that V0 is
zero and transpose Ey to the left to be incorporated into Green's function.
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b) Sampling Green's Functjon by Random Walks

The development of the preceding section rests upon a crucial technical assertion,
that it is possible to sample (Et + VO)G(B,B') or (Ey + Vo)wT(R)G(B,B‘)/¢T(B‘) for R
conditional on R'. Now for some simple problems - e.g., a particle in a box - one
can construct the analytic form of G and hence an algorithm for sampling it. For
interesting problems of statistical physics this is not possible, but we now sketch
how it is possible to sample G(R,R') without knowing it explicitly. This algorithm
is, of course, the heart of the method.

Let D be the full domain in configuration space in which the particles move. Con-
sider some Do(go) < D and suppose that

Uy 2 V(R) + vy for ReD (4.76)

0

We introduce the Green's function on the domain DO’ a "partial" Green's function
2 - -
(2% + UgE,(R).Ry) = 8(R; - Rg)  for  RyuRg € D (4.77)
with the boundary condition
Gy(RsRg) = 0 for  Ry,R, ¢0, - {4.78)

In principle U0 could be a function of R, but in practice only constant values have
been used. The Green's functions introduced here are symmetric because of the
boundary conditions. Equation (4.62) can be rewritten for a source at R, as

(=75 + V(R)) + VgIG(R,Ry) = (R - By) - (4.79)

On multiplying (4.77) by G(R,Ry), {4.79) by GU(Bl,BO), subtracting and integrating,
one finds

G(R.Ry) = Gy(R.Ry) + (=7, B(RsRp)IG(R,Ry)AR)

360(30) "
: (4.80)

oo (W = VIR - Vol/Ug (B B SR,y 48,
0(Bg)

This last equation shows how the full Green's function is related to a "partial®
Green's function satisfying (4.76-78) on a subdomain. This relation may be under-
stood in the following way. First observe that if (4.77) is integrated over DO(BO),
we have



/ ['Vn!Gu(Eligo)]dB' + UO I Gu(Blago)dB' =1 . (4.81)

3Dy (Ry) Do(Ry)

Since GU(B;BO) and therefore -vn.GU(B',BO) are non-negative, they may be interpreted
as probability density functions for a move in a random walk which may go either
to some R' € DO(BO) or to R' € aDO(BO), respectively. Equation (4.80) may be re-
lated to expectations of random processes of this kind. In particular it expresses
the fact that G(B,BO) is the sum of GU(B,BO) for the subdomain plus the expected
value of G(B,Bl) taken over an ensemble of random events. These events comprise one
of the following two possibilities: I) a move at random with density -anGU(gl,Bo)
to Ry on the boundary 3Dy(Ry); or II) a move at random with density UsG(R;,R,) to
Ry on the interior of DO(BO) with the averaging of G(B,Bl) carried out with prob-
ability [U0 - V(Bl) - VO]/UO' It is true that in either case G(R,R;) is not known
but we may now construct a domain DO(BI) containing Bl' Then G(B,Bl) may be ex-
pressed as in (4.80) as the sum of GU(B’Bl) plus the average of G(B,BZ) taken over
points R, reached by random steps to the boundary or interior of DO(BI). The process
may be iterated leading to a sequence of Bn with each chosen from its predecessor
Rh-1 by a move to R on the boundary of Dy(R,_;) drawn from 'VnGU(Bn’Bn-l) or to
R, on the interior of DO(Bn_l) drawn from G(Bn,Bn_l) and propagated with probability
[Ug-V(R )-Y51/Ug. G(R,Ry) is the expected value of the sum of all the G,(R.R,) for
the R that are generated in this random walk. Each of these terms potentially
makes a contribution to the next "generation" as in (4.64). That this procedure
yields G(E,BO) can be proved formally, but we justify it here by a "physical"
argument. Equation (4.62) has as its solution the expected density for observing
at R an object which was started at EO and which diffuses subject to an absorption
process whose rate is V + VO. Now at any stage of the diffusion process a domain
DO(R) < D can be constructed. Green's function defined in (4.77,78) describes a
diffusion in DO(B) subject to an absorption rate that is too large in the domain
- cf. (4.76) - and to perfect absorption at the boundary. Diffusion continues
until the first passage across that boundary. To describe the diffusion in the full
domain such a first passage merely defines a surface source for subsequent dif-
fusion, In addition the excess absorption owing to U0 is compensated by the rein-
troduction of a fraction {[UD—V(R)—VU]/UO} of those objects absorbed in the interior.
The details of the construction of the DO(B') and the estimation of the upper
bound UO(B‘) are rather technical and depend upon the problem at hand. It has been
found useful to construct DO(B) as a cartesian product of subspaces, one for each
particle. Taking each subspace to be a sphere is especially convenient. Then sep-
aration of variables permits the explicit calculation of Gy @s a product and this,
in turn, leads to an explicit algorithm for sampling GU.
The treatment of ([4.28) does not include the absorption UO’ but the generalization
is trivial. Let
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(<% + IG;(R.R'st) = (R - R')

(4.82)
(-7 + Uy + )G (RR',E) = 8(R - B')
with G, and G, vanishing outside D(R') as before. Then
Gy(R,R") = é Gy(R.R'st)dt = é‘ exp(-Ugt)Gy(R,R",t)dt . (4.83)

By sampling t from U, exp(-Uot) as well as the times described (3.11) in [4.28] the
sampling of GU is accomplished.

¢} Importance Sampling

The sampling algorithm embodied in (4.80) yields a population drawn from G(B,BO)

for any BO' It must be altered to sample wT(E)G(B,BO)/wT(BO) as indicated in (4.71).
Again, formally this presents no particular problem. Equation (4.80) can be trans-
formed by multiplying by wT(B) to produce

wT(B)G(Blgo)/‘PT(Bo) = ‘pT(B)GU(B'BO)/wT(BO)

# [ ou(Ry )y By Bl w(Rg) ey {BIG(R-By /oy ()R
v

# ]IV + Vg ghr(R, )6y ;o) e (Bo)
0

x 4p(RIG(R,R; )/ 47(R; )Ry (4.84)

to produce an integral equation for ¢T(B)G(B,30)/wT(BO). The new equation can also
be sampled by a random walk in which the kernels which describe the passage from
R' to R are modified by factors yr(R')/y(R) - cf. the discussion following (4.80).
We now show that the use of Ut is of very great potential in increasing the effi-
ciency of the method,

To see how this may be possible, we define ET(B) by

(-5 + V4 V)ur(B) = [ECR) + Volur(R) (4.85)

Combining this with (4.77) which defines Green's function G, we obtain
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[ ep(R')-Y, 6 (R Ry 1w (Ry) JR!
QDO(BO) T n'-U 0] T -0

*] oy WGV )V lin(R)G(R Bo)ur(Bo) 1R (4.86)
o(Ry)

=1-7 {[E7(R") + Vglur(R')Gy(R',Rq) /¥y (Rq) IR
Dy(Ry)

Comparing with (4.80) we see that the first integral on the left is the expected
number of steps to the boundary of DO(BD) which will be made when such steps are
generated with density wT(B')[-vn.GU(B',Bo)l/wT(go) in a random walk which generates
¢T(B)G(g,50)/¢T(BO). The second integral on the left gives the expected number of
corresponding steps to the interior of DO(BO).

When EL(R) + Vg2 0 (a weak condition since V(R) > VO), the right side cannot
exceed one, Thus the expected number of steps to boundary or interior of DD(BO)
made in the Green's function random walk is generally less than one and the random
walk terminates at some stage.

Now we recall that the nth step in the random walk makes a contribution of
V7(R)G,(R.R, ) /¥ (R, ) to the full weighted Green's function wT(B)G(B,BO)/wT(BO) and
that each such partial contribution potentially contributes to the next generation
of configurations. If ET(B) is replaced by E, then the integral on the right side
of (4.86) is exactly the expected number of -configurations in the next generation
which results from the contribution of GU(B,BO) for domain DD(BO) to the full
G(B,Bo). Now if yr were Vg the lowest eigenfunction, then E; = Eq > Vi, and we
have the result that three possible events have probabilities that add up to one;
the events are a move to the boundary, a move to the interior so as to continue
the Green's function random walk, and the event that produces a configuration in
the next generation. A1l three may then be sampled as mutually exclusive and ex-
haustive events. Thus one may arrange the algorithm so that the random walk ter-
minates when.and only when & next generation configuration is produced. Under these
circumstances, viz., vr = ¥ and Et = EO’ the random walk produces exactly one new
configuration and is guaranteed to terminate.

In addition, if (4.85) is combined with (4.62) defining the full Green's function,
and the periodic and any other boundary conditions for Y are used, the result is

J ALEL(R) + Vplur(R)G(R,By)/yp(Ry)IdR = 1, (4.87)
Again, if ¥p(R) = yy(R) and E¢(R ) = Ep,

[] Lo RIG(RARG)¥o(RQ)IGR| ™ = £y + Vg (4.88)
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The integral on the Teft in (4.88) is simply the expected size of the total popu-
lation, say NZ’ which results in the next generation after one configuration at
BO(N1 = 1) as in (4.68). With Et + VO =1 in (4.68) we see that the energy estimate
from growth of generations is identically Ej, independent of Ry or any distribution
used in sampling Ry. The estimate of E then has zero variance, as does (4.69). Of
course this ideal result requires knowing bp» but we expect that "reasonable" Vs
such as those which prove useful in variational calculations will reduce the
variance significantly. Much experience has borne this out although it is not ne-
cessarily true that the vy in some class of trial functions which minimizes the
energy also minimizes the variance. An important example will be discussed below.

d) Quantum Mechanical Expectations

In the preceding sections we have shown how the energy of the ground state can be
estimated efficiently. But other expectations are also of considerable interest.
These have the form

SV RIFWR)R

- {4.89)
[ lw(R)]4dR

[ opbf(R)w/vdR

(4.90)
[ (wpu){w/vg)dR

The second of these assumes a real eigenfunction, that F is merely multiplication
by f(R) over some domain and casts the result in the form suitable for evaluation
by Monte Carlo given a population of configurations drawn from wT(g)w(B). The extra
factor or "weight" w(B)/wT(B) must be included. Now the completeness of the eigen-
functions of the hamiltonian implies

Ewﬂmwmw#@wwmw=sm-sw : (4.91)

It one uses §(R - R') = y;{R}y (0)(R) in the iteration (4.71) one sees easily [4.90]
that the coefficient of the asymptotic value of ¢ w(") contains, aside from constants,
the factors

ll’T(R)wo( WT (R N’U(R )
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s0 that the asymptotic generation size, conditional upon R', is wy(R')/¥;(R'). Thus
for each configuration, say Bk’ drawn from wT(Bk)w(Bk), further sampling can, in
principle, yield statistically independent estimates of the weight to be given to
Ry

Unfortunately, although importance sampiing significantly accelerates this process,
the computations have had to be carried to substantially greater length for reason-
able estimates of quantities other than the energy by this method. That is, the
variance of the weight is large for large numbers of generations.

If one assumes that wT(B) is close to wO(B), then a convenient estimate from a
perturbation theory is possible. Let us define a "mixed expectation" as

[ oghrvi FurdR [ ygFugdR

<F>M = = (4.92)
[ wrvgdR [ wpogdR
and write
(R} = wr(R) + e¢(R) (4.93)
[ wrFu dR e j' [ #uqdR [ woFudR )
<F>y = + $Fyp-dR - + 0{e")
M T =
[ vidR [ yZdR [ vhdr
(4.94)

™ <F>T + EFl + 0(52)

where <F>T is the purely variational estimate. A similar calculation yields for the
true ground-state expectation

o = <o + 2eF) + 0(c7)
from which we derive an "extrapolated estimate"
2
F>, = 2oy - Frpo= <Fop + 0(e7) {4.95)

This method applies as well to the calculation of off-diagonal matrix elements
(cf. Sect.4.4.1 below) and therefore to the treatment of condensate fractions and
momentum distributions.

This estimate has been tested by comparing with values estimated from the asymp-
totic method, based on (4.91) and, more convincingly in certain cases, by carrying
out calculations with different Ur and finding consistent extrapolated estimates
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for expectations. Where the "extrapolated estimate” is unambiguous, it is preferable
to the asymptotic results since it requires substantially less computation.

e) Implementation

The sampling of GU [except for the extra step of sampling UO exp(-UOt)] in cartesian
product spaces is discussed in [4.28]. In particular it is shown that if each D0

is taken as a product of one sphere for each coordinate then the algorithm reduces
to the joint sampling of Green's functions far three dimensional spheres. The cal-
culations of [4.28] were concerned with hard spheres only; the sphere radii were

set simply by the condition that any pair of particles moving in or to the surfaces
of their spheres could not approach closer than the hard-sphere diameter.

For calculations with a continuous potential, at least in part repulsive, the
problem is somewhat more complicated. Although, in principle, any choice of domains
DO(B) that can cover D may be used, the choice of size of domain and corresponding
upper bound U0 can strongly affect the efficiency. In treating potentials of the
Yukawa type [4.59,91] the dominating factor is the r'l singularity of the potential.
There it was found reasonable to set U0 = ;V(BD) where ¢ is a constant greater than
one and to tabulate radii (as a function of nearest neighbor separation) such that
moves in such spheres would not permit V(R) to exceed UO' Some experiments showed
the computational efficiency not sensitive to £ in the neighborhood of ¢ = 2.

In later computations of the Lemnard-Jones potential, the method was somewhat
more involved; U, was set to V(BO)+ Vis Vp 2 constant determined from computer ex-
periments. The average computing time required to sample completely a single iterate
of the homogeneous (4.64) depends upon constants such as ¢ and V1 although average
answers do not. These parameters may be varied in short auxiliary calculations to
determine values which approximately minimize the computer time. In addition the
value of VO was set to be about twice the minimum potential observed in practise,
rather than a rigorous lower bound, with no complications arising.

Some discussion is worth giving here on the effect of the importance function
upon the sampling of moves, that is, sampling wT(B)GU(B,BO)/wT(BO) rather than
GU(B,BO). If one expands wT(B) about 30 through the first term, one has

vr(R)/up(Bg) = 1+ (R - Bg) » Vr(Ro)ur(Rg) - (4.96)

The unmodified Green's function GU is isotrapic for each sphere. Thus the effect of
(4.96) upon the marginal distribution of all variates except direction is nil.
But the gradient of the log of by indicates a relative preference for some direc-
tions over others, e.g., a preference for a close pair to move apart,

In later evolutions of the method the practical effect of (4.86) on the sampling
was recognized: for sampling steps which generate G from GU, left side of (4.86),
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the factor [ET(B) + VO] on the right acts as an effective "absorption" rate in de-
creasing the probability that the random walk continues when it is at R,.

Finally we note that the periodicity of the Green's function and of the wave
function are ensured by the usual computational device [4.92] of moving by = L
any particle which leaves the domain at * L/2. In this context this corresponds to
using an infinite series of images (in the sense of potential theory) of the point
Ro-

We find that convergence to the ground state takes very roughly 50 generations
starting from a population of configurations sampled from |wT(R)[ . The convergence
does depend upon the accuracy of 2 to some extent and care must be taken to
assure that convergence is complete. Indeed the principle complication and consumer
of computer time is the necessity for computing accurate eigenvalues and expectations
well beyond the point of apparent convergence to be sure of convergence to the re-
quired precision, With programs improved to the current state 64 body problems with
Lennard-Jones forces require about 30 hours of time on a CDC 6600 to converge and
give an average energy of better than 1%. For Yukawa forces the time is about a
factor of 10 less.

4.4.1 Results

Early applications of the GFMC method included very simple few-body nuclear problems
[4.93] and the helium atom [4.94]. A calculation [4.95] of 32 particles with Lennard-
Jdones forces of the de Boer-Michels type was somewhat more interesting. It used no
importance sampling and was consequently very inefficient; it was the failure of
that particular program to give anything reasonable for a system of 256 particles
that gave the impetus to the development of importance sampling. But even with 32-
particles, the result—later amply confirmed —that the energy of an ensemble of
bosons with Lennard-anes forces is substantially deeper than found variationally
was first obtained.

In accord with the insightful suggestion of VERLET, the GFMC method was next
applied to a hard-sphere quantum system, and the methodology considerably enhanced
in the process.

The results [4.28] for the energy were somewhat (3-5%) deeper than found vari-

ationally, [4.40] and the radial distribution somewhat more structured. The im-
provement of agreement with experimentally measured structure functions was
striking. Crystal calculations were made using 2 for the form given by (4.4).
With the help of the perturbation theory also developed in [4.2B], the energy for
a Lennard-Jones system was estimated. A minimum of about -6.8 + 0.2 K was cbtained
at a density of p = 1.0 2 0.1 of the experimental density. The observed energy is
-7.14 K.
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The study of an inhomogeneous system of hard-sphere bosons was undertaken by
LIV et al. [4.90]. Their system was periodic in two directions, but boundary con-
ditions appropriate to hard parallel walls were applied in the third. This problem
had also been studied using variational methods [4.42], where in the interior of
the system a weakly layered density profile was found. These layers were strikingly
enhanced in the GFMC results, as shown in Fig.4.3, In addition the interior struc-
ture was found to depend sensitively upon the width of the channel. New Tayers
appear whenever the channel becomes wide enough to accommodate another peak of the
ordinary radial distribution function. Interestingly the authors investigated a
¢lassical channel system at an appropriate density and found similar effects. PERCUS
[4.95] was able to use a perturbation theory to relate quantitatively the channel
results to the structure seen in a homogeneous system.
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LIU and KALOS [4.96} investigated the density profile of a film of bosons with
two free surfaces using a hard-sphere plus square-well potential. This too showed
fairly convincing evidence of layered structure near the surface, Unfortunately
the model potential was not well suited for 4He and the statistical errors in the
density profile left something to be desired. This was a consequence mostly of the
poor importance function wT used to describe the homogeneous system.
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Recently, WHITLOCK et al. [4.97] have returned to a direct calculation of 4He

with the de Boer-Michels form of the Lennard-Jones potential. This work is still

in progress so only preliminary data are available. One important result is clear
already: the potential used does indeed give a substantially deeper minimum than

the variational results, confirming the previous results of KALOS [4.92] and of
KALOS et al. [4.281, and in particular the perturbation theory of the latter paper.
The newer resuylts have much improved accuracy; a preliminary result for the equi-
librium energy of liquid 4He is -6.85 & 0.05 K. This is uncorrected for three-body
forces and correlations introduced by zero point motian of long wave-length phonons.
These effects are being evaluated and appear to be about equal and of opposite sign.

The discrepancy in the energy as compared with the predictions of the product
wave function (4.2) is even larger than one would expect from the error in the
kinetic energy (as seen in the hard-sphere results) and the error amplifying effect
of the cancellation by the negative potential energy. It seems likely that the
neglect of three-body and higher correlations is the root of the problem [4.25].

The newer results on 'He show again a more structured S(k) as compared with
variational results — see Fig.4.4 — and reascnable agreement with recent experimen-
tal data for the momentum density in liquid 4He obtained by MARTEL et al. [4.98]
and by WOODS and SEARS [4.99]. The latter authors estimated the condensate fraction,
Ngs at 1.1 K to be 6.9 + 0.8% and extrapolated to 10.8 ¢ 1.3% at T = 0. The result
obtained with GFMC [4.97] was 11.2 & 0.2%. These are to be contrasted with the ex-

perimental results of 0.024 + 0.01 and 0.018 £ 0.01 reported by MOOK et al. [4.100]
and by MOOK [4.1011, respectively.

20 30
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Fig.4.4 Comparison of structure functions for He-4 at equilibrium density. The
3017d 1ine shows the smoothed experimental data of ACHTER and MEYERS [4.111] with
bars indicating one standard deviation. S(k) computed variationally (Lennard-Jones
6-12; McMillan trial function) is shown by triangles. The circies show the results
computed using GFMC
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In the recent calculations of WHITLOCK et al. certain technical questions have
been carefully investigated. In one case it was shown that the estimate of g(r) ob-
tained from asymptotic weights [cf. discussion following (4.91)] is consistent with
those obtained by extrapolation, (4.95). Also it was found that consistent energy
values could be obtained when parameters of Y were changed Even more notable was
a series of calculations at a density of 0. 3648/(2 556 R the experimental equi-
1ibrium. At this density, product trial functions with pseudopotentia1s of very
different character are available. GFMC calculations have been made with 128 having
the McMillan form [4.1] and with the “a” and "g" functions suggested by de MICHELIS
and REATTO [4.271. It was found that use of the g function (constructed so as to
agree well with experimental S{k) at the expense of a high energy value) reduced the
variance of the energy estimates of the GFMC by a factor of 7 as compared with
results obtained with McMillan's Ye- Thus the variational optimal is not necessarily
the minimum variance Yrs although in no case was a y; derived from variational
results a poor choice. A1l three give consistent energy values. Most significant
are that "extrapolated" estimates of g(r}, S(k), <¥> and Ny {the condensate fraction)
agree very well although the variational and "mixed" estimates, (4.94,92), respec-
tively, are rather different. The validity of the extrapolation procedure is amply
confirmed here.

CEPERLEY et al. have reported two investigations [4.59,91] on boson systems with
Yukawa potentials. The variational calculations of these papers were described above
in Sect.4.4. GFMC calculations were performed as well as a test of the accuracy of
the energies and other quantities calculated. In general the variational energies
are accurate; in the earlier paper [4.91] they are less than 1% above the GFMC re-
sults. Other expectations do not agree as well. The radial distribution is of the
order of 10% more structured as caiculated more exactly. In the second paper some-
what larger discrepancies were noted. One generally important point emerges from
these results. Generally speaking, the energies deduced variationally for a crystal
are more reliable than those found for the liquid, presumably owing to the simpli-
fication in the character of the wave function which results from crystal order.
Thus the estimation of the location of melting and freezing transitions from
variational energies is 1ikely to be systematically biased.

In these papers also, additional verification of the independence of GFMC re-
sults to changes in 12 is given. In particular {4.59] compares calculations of
energy with y, of the gaussian type (4.34) or periodic (4.49). These give rather
different variational energies but the GFMC results with the different b1 agree.
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4.5 Virial Coefficients and Pair Correlations

FOSDICK and co-workers have published several papers [4.102-104]1 in which path
integrals formulated to give the density matrix of a guantum system have been ap-
proximated by discrete paths and the resulting many dimensional integrals carried
out by Monte Carlo, A review of the theory and an introduction to this class of
approximations has been given also by BRUSH [4.105].

JORDAN and FOSDICK [4.102] calculated the second virial coefficient and pair
correlation for a Lennard-Jones interaction. They regarded 2 K as a lower limit
for the practical application of the method. Virial coefficients agreed within
2-3% of numerical values obtained from phase shifts. They calculated exchange
contributions as well as direct, but at 2 K the exchange contribution to the pair
correlation function showed very poor statistics.

In a second paper [4.103] the same authors included the effect of a third
particle upon the pair correlations and estimated the third virial coefficient.
This paper is technically interesting in that a version of the M(RT)2 method {4.13}
was used to sample paths representative of those required for the potential and
the temperature involved. They reported results from 5 to 273 K but no permutation
effects were included. The truncation errors {owing to replacement of continuous
by straight paths) were made small compared to the Monte Carlo errors on say the
pair distribution which ranged from a few to of the order of 20% in 20,000 samples.
Interestingly, they found fair agreement with HENSHAW's data [4.106] for the pair
distribution in liquid helium at 5 K.

Very recently WHITLOCK and KALOS [4.107]1 have taken up this class of problems,
using the GFMC method to generate the quantum mechanical density matrix. They have
formulated the general problem of treating a many-body system at finite temperature
(including permutations to treat Bose or Fermi statistics) and treated in detail
the pair correlation and second virial of a hard-sphere system. The general methods
of Sect.4.4 above are followed except that an additional variable, the "pseudo
time" = l/kBT, is included in the full and partial Green's functions. An importance
sampling transformation is introduced: there is an optimal importance function,
namely the correct density matrix, which guides the random walk to the right place
at the right "time". They found that approximate trial forms for the density matrix
make the computation feasible but that improvements in that function improve the
Monte Carlo efficiency in a drastic way. They were able to calculate direct and ex-
change pair correlations and virial coefficients from about 0.2 to about 10 K. The
direct contributions were computed to about 7600 K. It is noteworthy that at high
temperatures the difference between the quantum and classical pair correlations
and virials is statistically significant. The worst error in the direct virial co-
efficients was obtained at low temperature —the standard error was 3% for 104
samples. The exchange virial grows worse at high temperatures and the best data at
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8 K with the same number of samples give an error of 3%. All results were within
statistical errors of those obtained by LARSEN [4.108] and by BOYD et al. [4.109]
using partial wave expansions.

4.6 Conclusions

What, then, has been learned from these studies of quantum systems? First, it has
been found that the product trial function is a good first approximation to the
ground-state wave function of quantum 1iquids, and, with the gaussian locaiization,
a good description of quantum solids. The variational method is able to predict
qualitatively all of the zero temperature phase changes of helium and the quanti-
tative energies are fairly close to the experimental values. The actual form of

the pseudopotential is not very critical for computing ground-state energies but

is important for other ground-state properties. The ‘optimum' pseudopotential re-
sulting from the 'paired-phonon’ calculation of CHANG and CAMPBELL [4.25) is quite
simple, consisting of the solution of the two-body Schridinger equation for small r
and the phonon pseudopotential of CHESTER and REATTO [4.8] for large r. The hyper-
netted chain integral equations are relatively accurate for quantum systems but are
usually not reliable enough to predict phase transitions. In addition they are
seriously inconsistent in estimating the kinetic energy.

The variational calculations have verified the intuitive picture of a crystal;
the atoms move about the jattice sites with a gaussian density distribution. The
ground-state energy is influenced very little by exchange effects.

Hence for most purposes one can regard the particies in crystals as distinguish-
able. The crystal becomes unstable if the rms displacement around a lattice site
is greater than 0.27 of the nearest neighbor distance, this ratio depends only
weakly on the interparticle potential and particle statistics.

There are many remaining unexplained problems for which quantum Monte Carlo is
a powerful tool. First, it has been proposed [(4.110] that all groups compute the
equation of state of a more complicated neutron matter potential involving spin
and tensbr interactions. Monte Carlo can again provide a check on the various
integral equation and cluster expansion techniques. Second, there are a number of
interesting problems concerning quantum fluids and solids in restricted geometries
which can be treated variationally as was done by LIU et al. [4.43,46]. Mixtures
are also largely unexplored. Related to this are finite body problems such as nuclei,
atoms, molecules and droplets which can in principle be approximated by product
trial functions and for which Monte Carlo is particularly well suited since there
are no periodic boundaries and hence no finite system size problems. The possibi-
Tities for the fermion Monte Carlo in molecular systems are interesting since it
is radically different from present methods of calculation.
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The variational method can be used to explore excited states. The product wave
function in (4.3) is valid for excited states, where D is now an excited state of
the ideal gas or harmonic crystal. The reweighting technique can be used to cal-
culate accurately small differences between excited states.

Monte Carlo can also be used to explore a wider class of trial functions as was
done by W00 and COLDWELL [4.38] for two-dimensional helium. FEYNMAN [4.83]1 has
suggested a trial function incorporating back flow in Fermi liquids which is pos-
sible but perhaps tedious to sample with Monte Carlo.

The utility of GFMC is only now becoming apparent. It is true that it is not
yet as convenient and economical a tool as variational studies. In careful studies
of systems of %He such as the assessment of the effect of different potentials on
the equation of state and other cobservable properties, it is likely to prove indis-
pensable. In other research it should continue to be used to provide at the least
critical "benchmarks” far the validity of less accurate methods.

As far as this review goes, the major Tacuna is the absence of an exact numerical
method, possibly of the GFMC type, for treating fermion systems. The fact that fer-
mion wave functions have nodal surfaces whose character cannot usually be specified
in advance is a major stumbling block but not necessarily an insuperable one.

We believe that the extension of GFMC to the treatment of equilibrium many-body
problems at temperatures other than zero will be feasible and extremely useful. For
the distant future the most remote speculations are for the development of a method
capahle of treating quantum many-body systems evolving in time,
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