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The Green’s-function Monte Carlo method is used to investigate the ground-state properties
of the hep phase of *He with the Lennard-Jones potential. Within the errors of the calculaiion,
about 0.05 K, the equation of state of the hcp phase cannot be distinguished from that of the fcc
phase reported earlier. Other properties are essentially the same as well. The significant '
discrepancies between the experimental and computed equations of state must be due to the

Lennard-Jones potential.

In a previous paper,! the equation of state and oth-
er properties of the fcc phase of crystalline *He were
reported. The stable crystalline phase at zero tem-
perature has been determined experimentally to be
the hcp phase.? Earlier variational calculations by
Hansen® had shown that the differences in energy
between the fcc and the hep phases were small and
were within the statistical errors. Thus we chose to
study the fcc phase since many previous theoretical
calculations had also been done on this phase and be-
cause it was technically easier. However, properties
such as the melting-freezing transition are rather
sensitive to the equation of state. The discrepancies
between our reported results and .experiment may
have been due to the use of an fcc crystal as well as
to inadequacies in the Lennard-Jones two-body po-
tential. In an attempt to address this question, accu-
rate variational and Green’s-function Monte Carlo
computations were performed on the hcp phase of
Lennard-Jones “He. The results of the calculations
are presented below.

The computational methods used to investigate the
hcp phase are similar to those used in our earlier pa-
per. Variational calculations were done to provide
populations of points {R} suitable for starting
Green’s-function Monte Carlo (GFMC) iterations
and to see whether the energies so obtained were in
agreement for the two phases. The major part of the
computations were done using the GFMC method to
solve the Schrodinger equation. With this method, it
is possible to compute exactly the energy and other
propérties of a Bose system, subject to statistical sam-
pling errors. A detailed description of the GFMC
method and the accompanying errors has been given
elsewhere.!"* :

The trail function used in the crystal variational

calculations is

or(R) =TL/ () TT $Crm =5 .
i<j m

where the s, are the lattice sites appropriate to the
crystal order being studied. The trial function is also
used as an importance function to accelerate the con-
vergence of the GFMC method. In both the fcc and
the hep crystal calculations, f(r;) is a function of the
type proposed by McMillan®

u(r) =—Inf(r) =%(b/r‘)5 ,

and ¢(r, —s,) is a Gaussian. The trial-function
parameters used in the fcc computations were those
published by Hansen and Levesque.® A series of
variational calculations was done to find the optimal
parameters for the hcp phase calculations. At each
density, it was found that the same parameters could
be used for both the fcc and the hcp phases with no
loss in accuracy. .

As is our standard practice, the dependence of the
calculated energies on the size of the system was in-
vestigated. We observed a difference in behavior of
the GFMC calculations for the fcc and hcp systems in
this respect. A comparison of the 32-body with a
108-body system for the fce phase yielded energy
values which agreed well within the sampling errors.
Such has not been the case for the hcp phase at all
densities. Table I shows the size dependence of the
energy at two densities. At the lower density, the
difference between the 64-body and the 144-body en-
ergies is well outside the quoted sampling errors.

The basis for such a difference may be understood by
considering the pecularities of the hcp lattice. It is
not cubic and therefore the periodic box used in our
computations is also not cubic. That is, there are
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TABLE 1. Size dependence of the energy of the hcp
phase. The first column gives the density in reduced units.
The energy is in degrees K per particle and N is the number
of particles in the system.

E
pa’ N =64 N =144
0.526 —4.832 +£0.040 —4.671 £0.044
0.589 —2.991 £0.029 ~2.966 £0.011

differing numbers of unit cells in each direction. For
a system with a large number of particles, the depar-
ture from a cubic structure can be slight, but in the
small systems which we have studied the box is far
from cubic. The largest phonon wavelength which is
treated is determined by the shortest box side. Thus
a 64-particle system with hcp order is effectively
smaller than a 32-body system in an fcc simulation.
Also, the tail correction to the energies obtained by
extrapolating g (r) is much larger in the smaller sys-
tem. For a 64-body hcp system, the tail correction
can be at least 15% of the potential energy and is
somewhat uncertain. As we go to the larger systems,
the corrections become minor and we have more
confidence in the calculated energies.

Finally, we would like to comment on the optimis-
tic statistical errors quoted in Table I. These errors
reflect the range of energy values encountered in the
course of the GFMC iterations. Once equilibrium is
attained, the energy of the hcp crystal is stable and
leads to a small statistical error. In our fcc crystal
study, we concluded that the error in using the 108-
body results was less than 0.05 K. A similar analysis
in this case would suggest that the error in using the
144-body results is about 0.11 K, which greatly
overshadows the statistical errors. However, we have
much more confidence in the energy values calculat-

TABLE 1l. Variational energies for the fcc and hep
phases. The first column gives the density in reduced units.
The energies are all in degrees K per particle.

pa? fee hcp
0.468 —4.315 £0.032 —4.337 £0.044
0.496 —4.035 £0.029 —4.100 £ 0.032
0.526 —3.502 £0.072 —3.382 £0.086
0.557 —2.463 £0.062 —2.513 £0.043
0.589 —0.965 £0.075 —0.892 +0.049

ed with 144 particles than with 64 particles, and we
conclude that the error in using the 144-body values
is no more than 0.05 K.

One primary reason for studying the hcp phase of
“He was to ascertain how the equation of state of the
solid and the parameters of the melting-freezing tran-
sition change when hcp order rather than fcc order is
used in the GFMC calculation. Our first computation
was to check how closely the energy values of the
two crystals agreed in variational calculations. This is
essentially a repetition of the work of Hansen and
Levesque and of Hansen, except that we used much
smaller systems. The comparison of the energies of
the two crystals was simplified by cutting off the po-
tential energy at the same value of » in both systems.
Table II lists the energies of the two phases as a
function of density. Within the statistical errors of
0.05 to 0.08 K, the variational energies are the same.

In Table III the crystal energies from GFMC calcu-
lations are given as a function of density. At most
densities, a perturbative estimate of the contribution
of the Axilrod-Teller three-body potential is added to
the energies. The estimated value of the correction is
the same for both crystals. No systematic difference
between the fcc and hep crystal energies is observed.
Use of the hcp energies to derive an equation of state
for the crystal yields numerically equivalent results to

TABLE III. Comparison of the energies of the fcc and hep phases in a GFMC calculation. The
first column gives the density in reduced units. E, is the GFMC energy without the three-body en-
ergy correction and £ is the energy with the correction. All energies are in degrees K per particle.

fce hep
po’ E, E E, E
0.468 —5.50£0.05 —5.20 £0.05 —5.64 £0.032 B
0.526 —4.72 £0.03 —4.30 £0.03 —4.67 £0.04 —4.26 £0.04
0.589 —2.93+£0.09 -2.37+£0.09 -2.97 £0.01 ~2.40 £0.01

This value of the hcp crystal energy was calculated in a 64-body system. All other hcp energies are
from 144-body systems.
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TABLE IV. Moments of the single-particle distribution function. The first column gives the
density in reduced units. The succeeding columns give the second, fourth, and sixth moments of

the single-particle distribution. B= (/*) —~ % (r¥)2. All lengths are in units of o. A measure of the

departure of the single-particle distribution from Gaussian form is 8/ (r?)2.

po? Phase ) 10 (r%) 558

0.526 fce 0.127 £0.002 0.029 +0.001 0.096 £0.006 (0.68 £0.18) x 107
0.526 hep 0.120 £0.004 0.023 £0.001 0.063 +0.005 =10"°

0.589 fce 0.099 +0.003 0.016 £0.001 0.037 £0.003 =10-6

0.589 hep 0.102 +0.002 0.017 £0.001 0.042 £0.003 == 106

that of the fcc equation of state. Thus the melting-
freezing transition remains that reported in the earlier
paper.

To clarify the behavior of the fcc crystal at higher
densities, an additional simulation at po®=0.622 was
carried out. The energy at this density, including
three body corrections is —1.081 +0.088 K and was
used in redetermining the equation of state for the
fce crystal. The revised equation of state is fitted by
the polynomial
2

+C’

3
E

—=A4"+RB' PP
N

P1

p—p
p1

and the new values for the parameters are
A'=-5.680+0.039, B'=18.56+6.5 ,
C'=239+10

and
p1=1(0.429 £0.012) o3

The addition of the higher-density datum has not
changed the equation of state since the new parame-
ters are within the errors of the original parameters.
Use of the new equation of state for the crystal in a
Maxwell construction yields the same melting and
freezing densities as published earlier. That is, the
melting density is (0.515 £0.009) ¢°, the freezing
density is (0.475 £0.011) ¢, and the volume differ-
ence between the solid and the liquid is 1.63 +0.60
cm?/mole.

Other crystal characteristics were also determined
for the two phases. Our investigations of the fcc
crystal had shown that the single-particle density p(r)
is essentially Gaussian with only small deviations
from Gaussian behavior in the tail of the distribution.
A similar behavior is also observed for the single-
particle density in the hcp crystal. In Table IV we
enumerate the values of (r2), (+*), (+), and B for
the two phases. The quantity B is a linear combina-

tion of the fourth moment and the square of the
second moment of p(r) which should be zero for a
Gaussian distribution.

A perusal of the table shows little difference
between the fcc and hep crystals, although higher
moments suggest that the latter may be slightly more
localized at the lower density. From the evidence ob-
tained, we conclude that o (r) is very nearly Gaussian
for the hcp crystal as well as for the fcc crystal in the
density range studied.

Our final comparison between the two phases is to
compare the pair-correlation function and the struc-
ture function. The outcome is that the values of
these two functions for the two phases are the same
within their errors at each density.

The study of the hcp phase of Lennard-Jones *He
was initiated to answer questions raised by the
GFMC simulation of the fcc phase. We were uncer-
tain whether the discrepancies observed between the
experimental values and GFMC values were the
result of using the "wrong" crystal phase; i.e., fcc, in
the calculations or a result of using the Lennard-
Jones potential. Earlier Monte Carlo variational cal-
culations seemed to suggest that the hcp phase and
the fcc phase could not be distinguished when the
Lennard-Jones two-body potential was used. This
conclusion has been borne out by our more accurate
GFMC calculations. The small differences between
the hep and fcc phases are not discernible through a
GFMC computation, and thus the ground state of
Lennard-Jones *“He is accurately described by an fcc
crystal. We conclude that the shortcomings in the
calculated equation of state for solid *He are a result
of the Lennard-Jones potential.
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