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REsumé .- Nous avons généralisé la méthode de Monte Carlo quantique, utilis€e par Kalos, Levesque et
Verlet pour des bosons, pour simuler exactement les propriétés de 1'état fondamental de systimes de
fermions. Nous avons effectué des simalations sur un plasma 3 une composante comportant jusqu'ad 250
€lectrons et déterminé 1'&quation d'é&tat des trois phases : le liquide de Fermi normal (mon polarisé),
le liquide de Fermi polarisé et le cristal de Wigner. Deux transitions de phase sont ainsi observées
: entre le liquide normal et le liquide polarisé a rgy = 75 et entre le liquide polarisé et le cris-
tal de Wigner 2 r, = 100, g4 étant 1'&cart moyen entre particules exprimé en rayon de Bohr.

Abstract. - We have generalized the quantum Monte Carlo method for Bosons of Kalos, Levesque, and
Verlet to exactly simulate the ground state of many-Fermion systems. We have carried out such
simulations on the one component plasma with up to 250 electrons and determined the equation of
state in three phases: the normal (unpolarized) Fermi liquid, the polarized Fermi liquid and the
Wigner crystal. Two phase transitions are seen: from the normal liquid to the polarized at

rg = 75, and from the polarized liquid to the Wigner crystal at rg = 100 where rg is the mean
interparticle spacing in Bohr radii.

For fifty years the phases of the electron energy dominates the kinetic energy, so that the
gas (‘also knowﬁ as jellium or the Fermion one '. electrons must crystallize. Since these early
component plasma) have been the object of calculations, there have been numerous
theoretical interest, which began when Blochl :‘.:xves1:igat1'.ot153""5 of the relative stabilities
discovered that the Sommerfeld model. for of these " three states (paramagnetic,
describing electrons in simple metals will ferromagnetic, and crystal) without any consensus
exhibit a fgrromngnet.ic state in the Hartree-Fock on when or if the ferromagnetic transition would
approximation for electron densities occur and at what density Wigner crystallization
corresponding to cesium metal and lower. In this would occur. The energies of the various phases
approximation, Pauli exclusion is the only are c‘IOse to each other'ovex" a wide range of
mechanism for electrons to cortelat:el so that a densities. To accurat_:ely compute the transition
transition to a magnetic state is expected. A density one must be abie to treat correlation
few years later, Wignerz pointed Oui:, that as 'effects equally well in each phase.

the electronic density is lowered, the potential
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Monte Carlo simiction_ is such a method for
calculating the properties of many-body systems
pccurately.
sufficiently powerful to tackle these quantum
mny—bddy prob}ems. The work of Kalos, ’Levecque,
and Verlet7 on the ground state of“ hard sphere
Bosons is & landmark cul.c;xlation. Similin;
Bc:uons8 hl\;e

simulations of Lennard-Jones

agreed very well with experimental data on the

lov temperature properties of  Helium 4.
Recently, we have generalized the quantum Monte

Carlo method so as to treat Fermion systems and

have performed simulations of the ground state’of'

the electron gas. The details of the method will:

be given elsewhere. Here we wish to summarize
the results that concern the phases of the
electron gas at low density. ’

In the quantum Monte Carlo method, & t:inl
‘function of the Slater-Jastrow fom9 (a product.
of pair correlation factors and a Slater
determinant of orbitnlsi is employed to specify
thc_ symmetry of the particles, to keep the
population of rsndom walks in the import.l.nt
regions of phase space and to 4reduce the vnrinnée
of the calculated energy. The mean value of the
calculated energy will be exactly the ground
state energy. It is in this statistical sense
that the simulation is exact. As witt; most
stochastic methods, the variance of the ene.rgy
will be inversely p;:opor:ional to ehe number. of
‘lt.pl of the random walk.

For the fluid phases

considered, the

orbitals used were plane waves with vectors. lying

within the Permi sea. In the paramagnetic fluid -

the spatial states are doubly occupied; in the

ferromagnetic phase they are singly occupied.

Only recently have computers been’
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Hence, the ferromagnetic fluid ig antisymmetric
with respect to the interchange of all particles;
the _plfamagnetic ‘only. with :respect to like
apin;. In the Boson fluid, the Slater
determxﬁ.nant is not‘used. For the crystalline
phase, the orbits are ‘Gauuinnl‘, centered around
BCC lattice sites.

Table I contains the energy of the four
éhase,s ;:hll: we have studied as a function of
L the m;‘n interparticle spacing in units of
Bohr -radii. The energy difference between a Bose
and Fermi crystal is less than the accuracy of
our calculation. Hence, we cannot d-iscun the
magnetic ordering within the cryn:a}l. In Fig. 1
are plotted the enéigiea relative to the lowest
Boson energy times rz. Plotted in this
manner one can see the small differences in
energy amongst the phases. The Boson system
crystalizes at ‘rs = 160. The i’ermion system
undergoes two phase tranlitionl; poiuriution at
r, " 75 and Wigner crystallization at
r, = 100. 7

The . melting of the Wigner crystal occurs

because, as the density increases, the zero point

motion of the electrons disrupts the lattice.

" Alternatively, the locnliintion energy of the

electrons about the vlattice sites bécomeu larger
than the kinetic energy of th.e' liquid. Table II
conta‘ins Liﬂdemnn's ratio, the tm deviation of
an electron from the nearest littice site in

units of the nearest neighbor distance. This

ratio equals 0.25 at melting for the Boson system

and 0.30 for the Fermion system. This value at

nﬁlting is aboﬁt‘tvicc_ that foynd classically and

8

very similar to that found in solid Helium 4.

The reason why . electrons want to
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M&-I L T T LI L T T T
s Epup Emr. Epr Epce
1.0 1.174(1)
Polarized Fermi fluid
2.0 0.0041(4) 0.2517¢6) 0.4531(1) ———————
5.0 -0.1512(1) -0.1214(2) -0.21653(6) e e————
10.0 ~0.10675(5) -0.1013(1) -0.12150(3) | —-meeeeee
20.0 -0,06329(3) =0.06251(3) |-0.06666(2) m—————ee -
50.0 -0.02884(1) -0.02878(2) |-0.02927(1) -0.02876(1) 200
- - - s
100.0 =-0.015321(5) -0.015340(5) | -0.015427(4) ~0.015339(3) ) XBL 803-526
130.0 -0.012072(4) .—0.012037(2) Fig. 1 The energy of the four phases studied
relative to that of the lowest Boson
200.0 0.008007(3) | -0.008035(1) state times r in Rydbergs versus
: ‘ * ‘ rg in Bohr radii. Below rg = 160 the
Bose fluid is:-the most stable phase,

The ground state energy of the charged Fermi and Bose systems. The while above » the W}gner ctystal ) 1}s_moat
density parameter, try, is the Wigner sphere radius in units of Bohr stable. m‘ energies of the polarized
radii. The nmiuiu are Rydbergs and the digits in parenthesis represent and unpolarized Fermi fluid are seen to
the error bar in the last decimal place. The four phas¢s are: para~ 3 2
magnetic or unpolarized FPermi fluid (PMF); the ferromegnetic or polarized . intersect °£.r3 = 75'. Th? po}arued
Permi fluid (PMF); the Bose fluid (BF); and the Bose crystal vith & BCC . (ferromagnetic) Fermi fluid will be
lattice. ‘ . ! stable between ry = 75 and rg = 100.

‘ Table LI o paramagnetic potential energy approaches that of

the Bose fluid, while the ferromagnetic potential

‘ : Ts Y - energy approaches that of the Wigner crystal.
Thus, the ordering induced by the ferromagnetism
50 0.423
is favored.
100 0.300 . .
In Fig. 2, the radial distribution functions
130 0.283 .
for the various phases at L 50 are plotted.
200 0.248 o L. s .
They are strikingly similar, the functions being
Lindemann's ratio y as a function of the density only different by 10% at the peak. But the
rg in the Wigner crystal. The statistical . . . . .
error is approximately $0.002. slight difference in potential energy is enough

to cause a transition at this density. ‘The

magnetically order at low density can be ascribed _corresponding momentum densities, n(k), defined

t h 4 locali i b . ]
© the fact that the localization csused by the as the number of electrons having momentum k are

increased antisymmetry lowers the potential plotted in Fig. 3 at the same vaiue of . One

energy. . From the virial theorem, the tential . . . .
&y ’ po can still see remnants of the discontinuties at

L=l 2 ' )
d(r°E)/dr . . , .
energy is r, (r. / Tge Mence, the the ideal gas Fermi surfaces as predicted by

otential e relative to that of the B ’ .
potentl nergy ° € Pboson Midgalw. The momentum distributions of the

t i oportional to th 1 f Fig. 1. . . . .
system 1s propor © e slope of Fig. 1 ferromagnetic and paramagnetic fluids are quite

One sees at high r, (low density) the different even at this density.
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2 the energy difference between the various
phases. Although the results are independent of
4
-] the trial wavefunction, it would be wuseful to
8] explore the effects of other trial functions with
different symmetries, for ~example, omne that
P4 -
e describes spin density waves.
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The conciusions of this study are éentative

given ‘the very small energy differences between

- the potential and kinetic éﬁqrgies of the Wignef
crystal and the ferromagnetic fluid in the

density »fnng;i 50 < r, < 100. Longer

simulations with more particles (we have used a

maximum of 242 to date) would be désirable to

confirm these results, since. the  number

dependence of the results is lafge compared to




