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This paper describes the basis of calculations we have made to compute the
ground state properties of many-fermion systems. Elsewhere in this volume Kalos
will discuss the Green's Function Monte Carlo (GFMC) approach to this problem.
Earlier quantum calculations have been reviewed in ref. [1]. These GFMC methods of
which the present method is a variant, are not to be confused with variational Monte
Carlo, as first utilized by McMillan [2]. The latter give properties of model trial
functions, whereas GFMC gives properties of the exact ground state.

We start by considering the Schroedinger equation for N particles written in
imaginary time:
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Here R is the 3N set of coordinates, V(R) is the potential energy function and V0
an arbitrary constant. In order to make a many-body calculation feasible, impor-
tance sampling is introduced by multiplying this equation by a known trial function
WT(R) and making the substitution: f(R,t) =WT(R)¢(R,t). With some algebra we

arrive at the expression:
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where FQ(R) and EL(R) are defined as:
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FO(R) =V log Yy quantum trial "force" (3)
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EL(R) = Yy

Equation (2) can be interpreted as a simple Markov process. Suppose we cOn-

H ¥7(R) = Tocal energy (4)

struct an ensemble of systems (points in 3N dimensional space) with the probability
density F(R,0). Usually the initial condition taken is f(R,0) = ¥ (RIZ. These
systems then diffuse and branch such that their probability distribution is given by
eq. (2). The three terms on the right hand side are interpreted respectively as
random diffusion, drift and branching. By branching, it is meant that a particular
system is either eliminated from the ensemble, if the local energy is less than

Vg, or duplicated in the ensemble, otherwise.




A steady state population requires that V0 be equal the lowest eigenvalue, EO.
It is easily shown that for large time f(R,t) = WT(R)¢0(R) where By is the
exact ground state eigenfunction. TFhe eigenvalue then can be estimated as:
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where <...>means the average over the distribution f(R,t) for large enough t. By

the usual statistical formulas the variance of the energy estimate is given by:
2
var(Ey) = <(E (R) - Eg)"D/M (6)

where M is the number of independent sample points. As usual with Monte Carlo
methods the error bar on E0 is proportional to the inverse square root of computer
time. However by choosing a good trial function W%, we can reduce the coefficient
dramatically. In the limit as WT approaches ¢0 the variance vanishes. In
practice by using Slater-Jastrow trial functions we can eliminate many of the
singularities in EL(R). The importance sampling by WT is also essential in
controlling fluctuations and instabilities in the branching process.

Our algorithm for this process essentially uses a short time approximation to
the exact Green's function. This approximation has been described for a classical
polymer system in ref. [3]. Equation (2) is identical to the classical Smoluckowski
equation except for the presence of the local energy term. In this approximation if
a system has diffused from R0 to R within a time t, then the expected number of

copies at time t will be:

This method is much simpler than the exact GFMC method of Kalos (0), but only exact
in the limit as t -~ 0.

The above method is easily implemented to calculate the ground state properties
of boson systems. But for fermion systems, there are serious and, as yet, not
resolved difficulties. The crux of the problem is that unless ¢F (the exact
fermion eigenfunction) and WT have the same sign everywhere, then f = ¢FWT can-
not be interpreted as a probability density. Hence the nodes of ¢F are required.
Except for one dimensional or few particle problems exact specification of the nodal
locations is an extremely tough problem. However important progress has been made

in circumventing this difficulty for several systems.

The Fixed-Node Method

A simple, though approximate, method of accounting for antisymmetry is simply to

let the nodes of a trial function act as an absorbing barrier to the diffusion.




Suppose WT(R) is an antisymmetric trial function. The nodes of ¥, divide the
configuration space into connected volumes. Using the above Monte Carlo method we
can so obtain the eigenfunctions (¢k) and eigenvalues (ek) inside each nodal

vo lume (Vk) and which vanish outside that volume:

How = e
0 (R) = 0 R§V,

Fach of the eigenvalues ey is an upper bound to the fermion energy, EF’ since
the antisymmetric function:

3 (R) = f(')P 8, (PR) (8)

has a variational energy s where P is a permutation.
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It is easily shown that ¢k is non-zero, since at each point, only permutations of
the same sign can contribute to the sum in eq. (8). Otherwise the volume Vk would
contain both positive and negative regions of W%(R). This variational argument
can be easily generalized to include spin.

In practice the fixed-node method is carried out in the following way. The
initial ensemble is chosen as before, to be f(R,0) = WT(R). If the population
is large enough, all the different nodal regions will be populated. The diffusion
and branching process precedes as in the boson case, except that whenever a system
crosses a node of ¥r that system is eliminated from the ensemble. It is easily
seen that the V0 necessary to maintain a stationary population in the ensemhlz ig

given by e_, = min {ek}. Thus if ey depends on the nodal volume, the diffusion

process wiﬁ? select out those with the lowest e, .

In practice this method achieves a good upper bound to Ep because all of the
correct many-particle boson corre]aEions are in 6k' Because the shape of the
volume Vk is in general incorrect, ¢k is a solution of the Schroedinger equation
everywhere except at the nodes of WT where it has a discontinuous gtadient. (The
discontinuity will not contribute to the integral in eq. (9) since ¢k is zero
there.) By the usual arguments (ek—EF) must vanish quadratically as the nodes
of WT approach those of ¢F. In principle one could vary the nodal locations to
obtain the best upper bound but the highly dimensional nodal surfaces are difficult

to parameterize in a systematic fashion.



Nodal Relaxation

If the nodes of WT
the fixed-node procedure will give the exact fermion eigenfunction. The basic idea

are sufficiently close to those of ¢F’ an improvement in

is that, if the diffusion process begins in an antisymmetric state (i.e., with
configurations carrying + signs depending on the sign of WT) the diffusion
process, including allowing diffusion across the nodes, will maintain the anti-
symmetry and must converge to the antisymmetric ground state. This procedure is
however unstable since a fluctuation of the boson ground state will grow and
dominate at large times.

We can represent the diffusion process, with the importance function WT, in
terms of its Greens function as:

-(H - Vo)t -1 A
£ (R,t) = far, ¥ (R)e vr T (Ry) (R, 0) (10)
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0 is the Green's function for eq. (1). If fA(R,O) is

symmetric and WT(R) is antisymmetric then:

. \*] ‘(EF - Vo)t
lim  f, (R,t) = T(R)¢F(R)e (1)
t >
But the diffusion process can only have positive importance functions--otherwise one
is lead to negative probabhilities; the sign of WT must be taken out as a weight,

Let o(R) = sign (WT(R)) = *+1. Then we can rewrite eq. (10) as
"(H - Vo)t

falRt) = [dR(RIa(RY)| ¥r(R) | e e (R)1 T Fp(Ry,0) (12)

Since the time for which this algorithm is stable is short, it is desirous to take
the initial distribution as close as possible to the limiting distribution in eq.
(11). A convenient choice is the fixnode distribution, fA(R,O) = WT(R)¢(R).

The integral in eqg. (12) can be performed by a very simple extension of the
fixed-node diffusion process. Suppose we wish to calculate the fermion eigenvalue
Define:

£y () =f‘¥TH Y ']fA(R,t) - <o (R)o (Ry
(

£LR) (13)
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Now from our initial conditions EA(O) = ey and from eq. (11) EA(w) = EF'

EA(t) will relax from the fixed-node enerqgy to the fermion energy. Each system

is now assigned a new clock, denoted s. Until a system diffuses across a node for



the first time, s = 0, but as soon as-a system crosses a node of WT then s begins
counting. If a system branches the clock is reproduced in all copies. When s
reaches some maximum value Su» the system is eliminated from the ensemble. The
collection of all systems at all times for which s = 0 is simply the fixed-node
distribution, fA(R,O). The collection of all systems at all times for which s <t
with the weight o(s)o(0) has the distribution fA(R,t), since this collection repre-
sents all the systems which evolved from the fixed node distribution in time t.
Then to calculate EA(t) one merely performs the averages in eq. (13) over all
configurations for which s <t, This will give EA(t) for 0 <t <sy. Since
le| contains nodes, care must be taken in constructing the short time Green's
function so that systems can tunnel through the nodes properly.

Because of the the instability referred to earlier, the number of configurations
needed in order to determine EA(SM) grows with Sy like exp(sM(EF - EO)). Hence
an upper limit to Smp assuming a reasonable computer run, is determined by the
difference between the boson and fermion energies, in other words, the node crossing
frequency. Thus we are limited, by this algorithm, to problems for which the nodes
of WT can be repaired in a time small compared with (EF - EO)'l. The avail-
able evidence on jellium suggests that we have met this criterion; the potential is
soft enough so that the Hartree-Fock nodes are rather good. The situation on 3

He,
at this moment, does not appear as promising; more sophisticated algorithms or

methods may be needed.

Applications

The applications, to date, have been to jellium in two and three dimensions,
Tiquid 3He and hydrogen (as a two component system of protons and electrons). I
will not discuss the latter two systems as our calculations are still incomplete.
The electron gas has been discussed in refs. [4,5]. The following phases were
studied: the boson fluid, the normal paramagnetic fluid, the spin-polarized or
ferromagnetic fluid and the Wigner crystal. The ground state energies as obtained
by the nodal relaxation method are given in Table I with the error bars in
parentheses. Because of importance sampling, the errors are much smaller than usual
with Monte Carlo. Table II contains the energy differences in going from
variational Monte Carlo with a Jastrow-Slater trial function to the fixed-node
energy and then to the exact energy. At low density,‘we find, that the normal

electron gas undergoes a phase transition at r_ = 75 to a ferromagnetic fluid and

S
at re = 100 to a Wigner crystal. The boson system undergoes Wigner crystal-

lization at re = 160 (rs is the Wigner sphere radius in units of Bohr radii).



Table I

rs EpMF EpMF EBF EBcc
1.0 1.174(1) | memmmmmem ] mmmmmmem | e
2.0 0.0041(4) 0.2517(6) -0.4531(1) | --=-=----
5.0 -0.1512(1) -0.1214(2) -0.21663(6) | =-----—-—-
10.0 -0.10675(5) -0.1013(1) -0.12150(3) | -—---==---
20.0 -0.06329(3) -0.06251(3) | -0.06666(2) | ---===--=
50.0 -0.02884(1) -0.02878(2) | -0.02927(1) -0.02876(1)
100.0 -0.015321(5) -0.015340(5){ -0.015427(4) -0.015339(3)
130.0 | =mmmmmmmemem | memmmemmeeo -0.012072(4) -0.012037(2)
200.0 | —mmmmmmmmmem | emmmmmmeee- -0.008007 (3) -0.008035(1)

The ground state energy of the charged Fermi and Bose systems.

The

density parameter, rg, is the Wigner sphere radius in units of Bohr

radii.

the error bar in the last decimal place.
paramagnetic or unpolarzed Fermi fluid (PMF); the ferromagnetic or

polarized Fermi fluid (FMF); the Bose fluid (BF); and the Bose crystal
with a BCC lattice.

The energies are Rydbergs and the digits in parenthesis represent
The four phases are:

Table 11

Tg Spur YpMF S ruir YFMF Sgr SBcc
2 40 9 11.0 — 12.0 | =—----

5 17 2 7.2 - 6.8 | =—--m-
10 11 1 6.5 1.8 5.1 | =—m---
20 6.7 0.7 3.0 1.0 3.3 | -----
50 2.9 0.31 1.6 0.25 1.7 2.0
100 1.7 - 1.2 — 1.2 0.41
130 —==- -=-- --- ---- 1.1 0.30

The error in the variational approximation in 104 Rydbergs for

four different phases.

8= E,

- Eg (the difference between the
Jastrow trial function and the exact ground state energy).

Y= EpN - Eo (the difference between the 'fixed-node' energy with
plane wave nodes and the exact ground state energy).




Errors

Finally, I would like to close with a discussion of the type of errors which
limit the accuracy of a GFMC calculation. They are ranked in order of increasing
importance in the one system we have studied most extensively, the three dimensional
electron gas.

1) Numerical errors. (Truncation errors or the use of a short time Green's
function, round-off errors, use of pseudo-random numbers, etc.) These errors
with a sufficient amount of programming effort can be made very small. For the
diffusion model the exact Kalos algorithm [1] can be used.

2) Convergence of f(R,t) to WT ¢0. With homogeneous quantum systems and good
trial functions the convergence is very rapid, indicating only local diffusion
processes are needed to convert WT into ¢0.

3) Statistical errors. As demonstrated above these errors depend on the fluctua-
tions in the local trial energy and on the number of independent systems that
can be generated. For the electron gas, the Jastrow-Slater trial function is
good enough so that this error is quite small, compared with the accuracy of
other types of calculations, and small enough to determine the phase
transitions. But for more complicated systems the trial functions will be more
difficult to construct.

4) The fermion problem. Our experience with the electron gas at many different
densities suggests that the Hartree-Fock nodes are good enough for the present
method to converge to the exact ground state. But clearly this error is not
under control. We need both better algorithms and more experience.

5) Finite system effects. With present supercomputers we have been able to
simulate up to 250 fermions. For the electron gas, even with periodic boundary
conditions, this is far from the thermodynanic limit. Our simulations show that

-2/3

the correction to the kinetic energy behaves like N and to the potential

energy as N'l. To extrapolate to the limit of large N, we have taken some
simple model, for example Hartree-Fock, with some adjustable parameters and have
analytically calculated the finite system effects. Then using simulations at a
variety of values of N, we have both fixed the adjustable parameters, and tested
the model. The model is satisfactory for the electron gas although the range of
N is rather limited. Faster computers and algorithms will help, both of which

are in the offing.
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