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~Our ansatz is:
¥ (R) = exp(‘-gz1 Usisj(Iri-rjl))Det(tk(rz)) (2)

where sj represents the type of particle i
{electron or proton), ri the coordinates of
particle 1, ‘Ust(r) the pseudopotential
between pairs of particles of types s and t
and ¢g(r) the kth occupied single particle
orbital. For the electrons in the metal
phase, the orbitals we have used are plane
waves (explikr]) where k lies inside the
Fermi sea (k<kp). These are satisfactory
orbitals for the electron gas and are
expected to be also accurate for metallic
hydrogen since the band is half filled and
from perturbation theory one expects the
effects of the underlying proton lattice will
not be felt near the center of the Brillouin
zone. The lattice periodicity appears in the
electron-proton pseudopotential. For protons
and for etectrons in the molecular phase, the
orbitals used are Gaussians centered around a
set of crystal lattice sites {Z,}, i.e.,
exp[- Cg(r - Z)2]). The lattice used

in the calculations reported here is FCC. We
are also exploring the use of Wannier func-
tions as electron orbitals.

Reasonable approximations to the pseudo-
potentials Uge(r) can be obtained from a
local energy argument using the random phase
approximation as was done in ref. (6) for
Jellium. The Fourier transforms of these
pseudopotentials to lowest order in the ratio
of electron to proton mass, y, are:

eel(k) = =1 + (1 + ay)1/2
Wep(k) = ~ay(1 + ay) -1/2 (3)
2Wpp(k) = {ag/(1 + ay)/y)1/2

Where ay = 12r /k4,k is in units of

a-l, aa- (4wn/§)-17 ., n is the electron
density, rg = a/ag, and a5 is the Bohr
radius. Tﬁe elecgron-eIectron pseudopotential
is identical to that used for jellium and is
known to be close to the optimal./ These
functions have the correct cusp conditions at
r = 0 and hence remove the infinities in the
Tocal energy when ry = rj. In addition

for large r or small k they have the correct
behavior because the random phase approxima-
tion is exact in that limit,

Shown in Table I are result of fixed-node
simulations for several densities for a
system of 108 atoms on a FCC lattice.
Periodic boundary conditions and Ewald image
‘potential are used to eliminate surface
effects. A correction, identical to that
made for jellium, has been made to eliminate
the remaining finite size effects. The first
two columns represent the total energy/
particle in Rydbergs for a static lattice,
Es, (where the protons are infinitely

massive and hence have no kinetic energy) and
with the proper proton mass, E4. The
statistical error is approximately 10-3

Ry. The difference in these two energies is
then the zero point energy of the protons.
Also shown in Table 1 are three representa-
tive theoretical calculations for a static
lattice; correlated basis-function theory
(Ecgp),é many-body perturbation theory
(EperT)9 and lgcal density functional

theory (Eipr).

The numbers reported here are preliminary.
Further studies are needed to judge the
effects of the assumed nodal structure, the
underlying lattice and of a finite-size
system. However, the accuracy appears to be
an order of magnitude better than current
theoretical approaches and can be used to
benchmark them, The simulation method is
uniquely advantageous for studying phase
transitions as the procedure is identical in
all phases. Work is now in progress to
locate the dissociation and metallization
transitions and to study the rotational
ordering in the molecular solid.

TABLE 1
's B B Ecer  Cperr  Eior
1.0 -0.726 - - 0719 -
1.13 -0.892 -0.856 -0.903 -0.884 -0.906
1.31 -1.002 -0.974 -1.017 -0.99 -1.021
1.45 -1.033 -1.013 -1.054 -1.032 -1.059
1.61 -1.053 -  -1.069 -1.044 -1.074
1.77_-1.050 -1.036 -1.068 -  -1.073
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The application of Monte Carlo to hydrogen at zero temperature is discussed.

The

trial function is a generalization of the pair product type used for jellium.
Preliminary results for the metallic phase are given.

Bulk hydrogen at low temperature is the
simplest experimentally available quantum
many-body system. Because of its prevalence
in the universe, its possible high tempe-
rature superconductivity and its importance
in laser fusion, much theoretical and experi-
mental effort has been directed towards its
properties at high pressure.! However such
basic properties as the equation of state
above 100 Kbar and the metallization density
are not substantially improved over the
calculations of Wigner and Huntington.?

Monte Carlo has proven to be a reliable
computational tool for computing ground state
propert;es of many-body systems. Whitlock,

et al.,> have achieved agreement with expe-
rimental results of liquid and solid Helium 4.
Recently, these exact Monte Carlo methods

have been generalized to many-fermion systems.
The present authors have calculated the corre-
lation energy of the jeIIigm and its low
density phase transitions. -5 Hydrogen
affords the chance of computing the proper-
ties of a real many-body system ab initio.
Only the Coulomb potential, and The™mon-
relativistic Schroedinger equation are
assumed., Both electrons and protons are
fully quantum mechanical: no Born-
Oppenheimer, or harmonic lattice approxima-
tion need be made. Let us first briefly
review the solution of the Schroedinger
equation via a stochastic computer simulation.

The Schroedinger equation written in imagi-
nary time is a diffusion equation in 3N
dimensions (N is the number of particles).

To make the diffusion process computationally
stable and efficient, a trial function ¥7(R)
is used. After multiplying by ¥, the
Schroedinger equation can be written in the
form: ’
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Here H is the Hamiltonian and Eg the ground
state energy. It is easily ver?fied that at
large times f(R,t)»>¥7(R)¢g(R) where

#o(R) is the desired exact ground state
eigenfunction. Eg. (1) has a simple inter-
pretation as a stochastic process. An en-
semble of systems is constructed at t = O from
the probability distribution |¥T(R)|2.

Each member of the ensemble is then advanced
in time with three separate processes
corresponding respectively to the terms of
eq. (1): 1) random diffusion, ii) drift by
the trial force, and iif) hranching. By
branching, it is meant, that a particular
system is either eliminated from or dupli-
cated in the ensemble depending on the value
of the local energy E_ (R) = YT™ HYT.

The effect of Fermi statistics can be
accounted for in an approximate though real-
jstic way by eliminating systems from the
ensemble when they cross the nodes of

¥7(R). We refer to this as the 'fixed-

node' procedure. The value of Eo in Eq.

(1) necessary to stabilize the ensemble
population will be a rigorous and accurate
upper bound to the exact Fermi energy. The
exact eigenvalue may be estimated by allowing
systems to cross nodes and account for anti-
symmetry by carrying along a sign with the
system. The algorithms are described in more
detail in refs. (4-5). The computation of
the properties of the many-body wavefunction
has thus been reduced to finding an accurate,
though simple, trial wavefunction and a suffi-
ciently powerful computer, as these are the
two factors which 1imit the accuracy of
method.

Here we discuss our calculation of the
metallic, monatomic phase of hydrogen. A
satisfactory trial function can be obtained

by generalizing the Bijl-Dingle-Jastrow-Slater
or pair product function to a multicomponent
system,
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