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Quantum Monte Carlo

DAvID CEPERLEY AND BERNI ALDER

An outline of 2 random walk computational method for

Schridinger equation for many interacting -

the
icles is given, together with a survey of results
achkvedwgrmdofappﬁmdmthatrunainmbe
Monte Carlo simulations can be used to calcu-
hydeogen, heiam, and. ipfer 4 well 1 she ropertesof

um, and um as well as the

the isolated atoms ard of molecules made up from these
clements. It is now possible to make reliable predictions
of the behavior of these substances under experimentally
diﬁmltoondiﬁons,suchashighprmure,andopr
ties that are difficult to measure imentally, such as
the momentum distribution in su id helium. For
chemical systems, the stochastic m has 4 number of
advantages over the widely used variational approach ro
determine ground-state properties, namely fast conver-
gence to the exact result within objectively established
error bounds. :

N THE EARLY DAYS OF QUANTUM MECHANICS, P. A. M. Dirac
-] obscrved that the physical laws necessary for the mathematical
theory of a large part of physics and the whal of chemistry are

' eomplew!yknownandthatitisocﬂynwcssarytpﬁndprxdca!

methods for the solution of the equations for complex systems (2).
One could have expected that the advent of modemn, high-speed
computers would have by this time made it possible to perform such
computations. However, the endeavor implied by Dirac’s statement
of principle remains largely unfulfilled. Many of the existing numeri-
cal methods provide only a qualitative understanding of the proper-
ties of isolated atoms and molecules or of their collective behavior in
the condensed state. These methods are quantitatively inadequate
either because the approximations they embody cannot be further
refined or because the numerical scheme converges too slowly.

A numerical method developed relatively recently to solve the
Schrédinger equation for many interacting particles has the poten:
tial to realize Dirac's goal. This method is,a departure from the
conventional approach 1o many-body problems in mathemarical
physics; namely, it does not reduce a system with very many degrees
of freedom by an approximation to equations of much reduced

ty. .
‘Alternate numerical methods thar do not invoke such an approxi-

~ mation, such as the configurational interaction method in quantum

chemistry, nevertheless expand the wave function in a complete set
ofom-bodyﬁmmtiom,sodmumeagainon:ontyhasmdu]wim

- low-dimensional mathematical objects. Morcover, the functions

used for the expansion are generally restricted, so that the low-
dimensional integrations that appear in the theory can be performed
analytically. The price paid for these restrictions is that, even with
a large number of terms (frequently running into the millions),
the cakulations do not converge with the accuracy desired for

7 FEBRUARY 1986

In the new numerical techniques, called quantum Monte Carlo
methods, the Schrodinger equation, which exactly describes nonrel-
ativistic particles, is represented by a random walk in the many-
dimensional space in such a way that physical averages are exacty
calculated. Monte Carlo or statistical methods are in fact the oily
general methods known for exacdy solving problems in many
dimensions, provided oaly that the problem can be formulated in
terms of probabilities.

Such a numerical has only become possible since the
advent of high-speed computers. In fac, it is particularly adaptable
to these machines because algorithms are simple and highly repeti-
tive, characteristics that can take full advantage of the fast arithmetic
‘capabilities of modern computers. Furthermore, these methods can
be casily adapted to a variety of computer architectures. They yicid
exact results within staristically determined error bars that decrease
with the length of the computer run. The principal goal in develop-
ing algorithms is thus to find ways of increasing the efficiency of the
calculations. This can be done in a straightforward way through a
technique called importance sampling, which uses previous knowl-
edge to provide a good starting approximation.

The application of staristical methods to quantum mechanical
problenis is not withou difficultics of its own, the most serious
being the calculation of systems that have 2 wave function that is not

+ everywhere positive. Nevercheless, considerable progress over the

past few ycars has enabled us o carry out realistic simufations of
systems composed of the light elements. We intend o show here
that there is no practical impediment to realizing Dirac’s program
for many other many-body systems, although these applications will
require considerably more efficient algorithms and faster computer
hardware.

Diffusion Monte Carlo

Around 1945, Fermi remarked that stochastic methods could be
used to solve the Schridinger equation (2). The earliest recorded
implementation was carried out in 1949 by Donsker and Kac (3) for
the hydrogen atom, but the results were unimpressive because the
lack of an importance function led to very low efficiency. For the
same reason, an unpublished calculation by Rosenbluth (4) a few
years later for the ground state of liquid *He gave unsatisfactory
results. Meanwhile, stochastic came increasingly to be
used in the study of neutron mansport and classical condensed-
matter systems. An i t step for quantum Monte Carlo
methods was maded by McMillan (5} in 1965 when he used a
variational method to simulate helium. He showed thar a one-to-
one correspondence to a classical simulation could be made if one
assumed a pair- product wave function. In the same period, Kalos (6)
developed what is known as the Green’s function Monte Carlo,
which in 1974 culminated in an exact algorithm for calculating the
ground-state properties of the hard-sphere boson fluid (7). We will

The authors are at Lawrence Livermore National Laboratory, University of California,
Livermore p4s30. :
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' describe & simplified version of Green's function Monte Carlo,
known as diffision Moate Carlo.

© The basis of diffusion Monte Carlo is that the Schridinger
equation written in imaginary time, £, will converge to the ground
staee exponentially fast. That equation for the wave function $(R, 1)
]

WED . _gy.3 gv, s-VR -Ede )
where sy, is the mass of particle §, V(R) is the votal potential energy,
R refers w the 3N set of particle positions, and N is the number of
particles (# is the Hamilconian operator). A constant, Er, the trial
encigy, has for convenience been subtracted from the potential
energy. From a formal expansion of the wave function in a complete
set of cigenvectors and cigenvalues, it can be readily demonstrated
that all excited stares decay exponentially fast with a decay constant
given by the excitation energy from the ground state. The rate of
convergence to the ground state is hence governed by the lowest
excited stare that has 2 component in the initially chosen wave
function.

If it is assumed chat ${¢) is non-negarive, as is the case for bosons
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adiﬁ:gunhabkpamdsmdnm:dmdnmnﬁ:m
mbcdnmdynmuprewdsnpmhd:dnydmxy so that Eq. 1 can
be interpreted as a diffusion and process in 3N dimen-
sions. A useful analogy is to bacteria randomly diffising in a puddle
with a diffission constant of A%/2m, in which the growth conditions
are uncven and depend on the position in the puddic (that is, on the
potential energy), which determines the rate of growth or decline of
the bacterial population there. The bacteria do not interact with
each other since the Schriidinger equagion is linear. Then Eq. | gives
the evolution of the distribution in time. Alternative numerical
methods that rely on tabulating the distribution everywhere (for
cxample, in a grid) will consume an exponentially large amount of
computer time and memory as the dimensionality of the space (the

- number of particles) increases. Direct simulation by random walks,
which samples the distribution sclectively, appears to be the only

E;:cralwayofnmnmczﬂyaolvmg&equamnmmmy-bodyprob-

Such a computer calculation is set up in the following way (Fig.
1). An initial ensemble of systems is constructed, usually from a
classical Monte Carlo calculation with some trial wave function as
proposed by McMillan (5). An ensemble consists of a number of
“snapshots” of the coordinates of all the particles, let us say of all the
electrons and nuclei. In acrual caleutations, the ensemble is made up
of about 1000 such snapshots. The evolution is accomplished by
considering cach snapshot in turn, d:splamgadzofdncpamdaby
amdomunmunw:d\amnsquarednplacunmtgwmby
h?%/2m, where 7 is the time step. Then is done; 2 number
of copies of the snapshot equal to the integer part of {exp[—1/
2{Vog + Vaew)] + #} is made, where » is a uniformly distributed
random number in [0,1]. Thus a new ensemble is generated with a
different number of snapshots. As the ensemble is evolving and its

population is varying, the trial energy Ey must be adjusted with a
feedback mechanism so that the population remains stable. If the
population becomes too large, Er is. made smaller, and if the
populationdiminishcs,ETisi:msed.nlcvahxeafETncocssarym

- stabilize the population is then the ground-state encrgy. The

generated once steady state is reached (thar is, when
/3t = O)arcthensampicsofdtcground-statcwweﬁnrnon

Importance Sampling

For most problems the above algorithm is nor satisfactory because

. the branching process is wicontrolled. Whenever the potental
-energy becomes large and negative (as it will, for example, when an

clectron approaches a nucleus), the branching process blows up, and
a huge number of copies of that snapshot is created. Luckily, there is

a very simple and clegant way of solving this problem: importance

Impon:anoc sampling means changing the underlying probability
distribution in a known way so that the calculation will spend more
time in the important regions. For this purpose the trial function,
br, i inroduced as an approximation to the -state wave
function (derived, for example, from a Hartree calculation), and
LR, 1) = &r(R)B(R, ¢) is defined. The Schrisdinger equation can be
written in terms of f by some algebraic manipulations (8), resuling
in the importance-sampled equation

L E,z,,,!v,{vf £Vt 101 4717 - (Hbrbr — Ef @)
which has a structure very similar to the original Eq. 1 but with
some important differences. The first term on the right-hand side is

thegradxmtofsunethmg dmﬁ‘oreuconwvspmbabﬂnymd
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does not camse branching. It represents diffision with a superim-
powddﬁ&.lnmmalosy,dmwmhdnwddkismmiﬂhuh
steady motion, carrying the bacteria around the puddic while they
md:iﬁuing.'l‘lumndmmagaingimr'uw ing, but

now the rate s determined by the local encrgy Ep(R) = Héyldr
" = Eq.

The process of simulating this equation proceeds as follows (Fig.
1). An initial population is generated according to Igri’. This
ensemble is evolved by cxamining cach snapshot and diffusively
displacing cach coordinate, as before, but in addition displacing cach
position by a drift term equal to TA*Viln dl/m. The effect of the drift
is eo push the random walk away from unimpoctant regions (that is,
where the trial function is small), since there the drift velocity is
large. The numbser of copies is now calculated from exp{—/2[Ep(cia
.+ Epew]} mapped onto an integer with a random number as

before. The crucial improvement is that if ¢r has been chosen close
to the ground-state wave function, the local energy will be small, so
that branching is much less. Importance sampling makes it practical-
ly possible to solve the Schridinger equation for several hundred

icles. Also, for good trial functions the asymptotic distribution
of snapshots will be equal to the square of the wave function, which
is just what one would expect physically.

The statistical error of the Found—statccncrgyisappwximatcly
given by [2(Ey = Eg)/(maP*)]'?, which has the familiar dependence
on the inverse square root of the number of steps, with a propor-
tionafity constant given by the difference berween the variational
energy of the trial function Ey and the correct ground-state energy
Eq Here P* is an effective population of the ensemblc (the average
number not counting duplicates), and n is the total number of ime
steps. Thus the computational efficiency is determined by the
accuracy of the trial function (Ey — Ey) times the computer time
necessary to evahuate the trial fiinction, the drift, and the local energy
for a single snapshot. There is a trade-off between trial functions that
are accurare and those that arc fast to evaluare.

Green’s Function Monte Carlo

Green’s function Monte Carlo (9) is 2 reformulation of the
diffision process such that no systernatic errors due to the finite ime
step 7 arise. The method is so named because the differential
equation is converted into an integral equation, the kemel or
Green’s function of which is sampled exactly. The procedure is 2

ization of a Monte Carlo method suggested by von Neu-
mang and Ulan (10) to solve systems of linear cquations. In Green's
function Monte Carlo there are several additional elements in the
algorithm. For one, the time step irself must be sampled for each
move; the walk docs not advance by a predetermined time. Also,
intermediate snapshots that are not legitimate members of the
_ ensemble are generated. They serve only to sample the correct
Green’s function and hence contribute only to the propagation of
‘the walk. In some cases this more complicated procedure is also
more efficient, since a larger average time step results (11). Further-
more, the procedure does not require user adjustment of the nme
step: the exact result will be automatically obrained. -

Fermi Statistics

It would appear from the discussion so far that the method is
fimited to the caleulation of systems in which the wave function is
non-negative. A few years ago the method was extended to ground-
state fermion systems, where the wave function is real but equatly
positive and negative becanse of the requirement of antisymmetry
7 FEBRUARY 1986 ' '
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necessitated by the Panki exchasion principle. & buik
o the trial function by multiplying the pai fanction by a
Slater determinant. The Slater determinant 8 made from single
ectron orbitals obrained from the Hartree-Fock or local density
functional method. These orbitals determine the nodes of the trial
function, where it changes sign. The procedure for fermions has
evolved in two steps: the fixed-node approximation, and the subse-
quent exact algorithm that releases those nodes.

In the fixed-node approxjmation (9, 12) only onc additional rule
needs to be added to. the previously discussed algorithm: if the
random walk crosses a node of the trial function, that is, when
SrioubTinew) < 0, that snapshot is delered. This will occur relative-
ly rarely, since the drift term will push the walks away from the
places where the wave function vanishes. In our analogy of the
bacteria, we must add the condition that the bacteria in the puddie
die if they reach a boundary. Thus, this method solves the Schrd-
dinger equation in cach nodal region scparately. It can be shown
that the energy so obtained is the best upper bound consistent with
these conditions (13). It has been found that this approximation is
often numerically very accurare because the node locations are not

crucial for determining the energy. Of course, if the correct node

locations are known, as in one-dimensional problems, the exact
result is obtained. One can apply the fixed-node approximation to
calculate any excited state for which a variational principle applies.

The releasing of the nodes (8, 14) to get their correct locations
leads to the exact fermion ground state; however, the computer time
required may become exponentially large because of a numerical
inswability. Snapshots are not deleted when they hop across a node
but now carry a plus or minus sign corresponding to the sign of che
trial function when the walk was begun. The estimate of the wave
function is the difference in the number of positive and negative
snapshots that arrive at a given point, and the trial energy is correctly
adjusted when this difference at any given point is constant in time.
Although the procedure is mathematically correct, the signal-to-
noise ratio for a given amount of computer time decreases exponen-

- tially as the positive and negative walks become mixed (Fig. 2); thus

the computer budget may run out before satisfactory results arc
obrained. Because the method is unstable, it has been called a
transient estimate (I5). In principle, there are ways of canceling
positive and negative snapshots to prevent the exponential growth
in the population (16). In practice, this is difficult to carry out in
many dimensions because the probability that 2 positive and nega-
tive snapshot will have the positions of all the particles identical
within a possible relabeling is too small. In spite of these difficuleies,
satisfactory results have often been obtained (8). A rigorous and
stable method to simulare fermion systems by a stochastic process
temains a most challenging problem.

Other Quantum Monte Carlo Techniques

The variational quantum Monte Carlo method, an adaptation of
the classical Metropolis algorithm (17), was previously mentioned in
the ensemble. It can also be used to determine the ground-state wave
function in the same sense that the traditional variational methods
(Hartree-Fock or configuration interaction) are used. In the config-
uration intcraction procedure, the wave function is expanded in a
complete set of functions, each of which is an antisymmetric product
of single-particle orbitals. For variational quantum Monte Carlo
methods, there is no such restriction on the basis set, since the
required integrals are obtained with Monte Carlo rather than
amalytically. An intriguing possibility is that of a sclf-leaming
mechanism, in which the output of the Green’s function Monte
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Carlo simulation is used to improve the form of the wial function.
- For finitc-emperature quantum mechanical cakulations, the
path-integral Monte Carlo is employed. The origin of the method is
based on the observation that the density matrix (at high rempera-
tures, the Maxwell- Boltzmann distribution; at low temperatures, the
square of the wave function) can be factored into a product of
density matrices, each at a higher temperature.
(R.l‘“ﬁmu) = (Rou-lﬁfumg)(ﬂﬂ “en mupn)(.ﬂg..jll—p&"my>

3

where B is 18T (T is the temperature). The chosen number of
products, M, is sufficicntly large that at the effective temperature
MT an accurate expression for the density matrix exists, usually such
that the Boltzmann distribution becomes valid. Thar transformed
density matrix can then be evaluated by an to a classical
system of N closed polymer rings of M links (18). The simulation
problem at finite temperature is then reduced to finding an efficient
ptmdmcformnphngall cncrgcucallyoonmbuung polymer con-
figurations representing all the intermediate positions R; of the
links, or, in other words, all contributing paths. For that, the
classical Metropolis (17) method is used. This path-in Monte
Carlo scheme differs from the Green’s function Monte Carlo method
in that the paths must close on themselves because thermodynamical
propertics are obtained from the erace or the diagonal part of the
density marrix. For the polymer system, one samples a space of
3N x M instead of the AN X P dimensions (P is the population of
the ensemble) in the Green’s function method. Also, there is no
ﬂplmunponmcewnphngmpammwgmlh&omc&rlonmdnds
Boson statistics are incroduced by allowing neighboring polymers to
cross-link. The efficient sampling of this polymerlike system has
miade it possible to perform accurate simulations (19) of liquid ‘He
both above and below the superflnid transition point. In contrase,
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there have been very few simulations of fermion systems in continu-
ous space at finite remperatures, although the zero-temperature
techniques discussed carlier are applicable. Most applications, partic-
ularly those for the lattice gauge theories of high-energy physics,
have been restricted to lattice and spin systems (20).

An entirely different method that has also been tried primarily on
lattice problems (21) and on one-dimensional systems (22) should
be explored further for three-dimensianal Fermi systems in continu-
ous space, since Fermi statistics poge no special difficulty with this
method. In this method, pair interactions in the Hamiltonian are
replaced by interactions with an external, random, time-dependent
ficld. By this so-called Hubbard-Stratonovirch (23) transformation,
the many-body calculation is exactly transformed to one'for a system
of onc-body noninteracting fermions. The one-body problem muse,
however, be solved at cach step, and this requires considerable
comiputer time. A further disadvantage of this schemne appears to be
that there is no way to allow for the introduction of pair-product
importance finctions.

Condensed-Matter Applications

The calculation of the properties of liquid *He at zcro cempera-
ture was the first -scale application of Green’s function Montc
Carlo (7, 24). It assumed a pair-interaction potential between
helium atoms deduced from theoretical considerations and experi-
mental data. Such an interaction potential can now be accurately
calculated direcdy by Monte Carlo methods (25). Equilibrium
propertics, such as encrgy versus density, pressurc versus density,
crystallization pressure at zero temperature, and the structure factor
obrained by x-ray or neutron diffraction, come out very close to
experimental values (24); the differences can be ascribed to the
inadequacy of the assumed pair potential.

The most spectacular properties of liquid helium, the dynamical
ones resulting from its superfluidity, are difficule to simulate with

+ this method. However, many of these unusual transport properties

are believed to result from the fact that, in superfluid helium, a finite
fraction of the atoms have condensed into a zero-momentum state.
The difficult neutron-scattering measurements of the momentum
distribution needed (26) to confirm this theory are given in Fig. 3 at
1 K. As mentioned above, similar calcnlations at finite temperatures

-are now being completed.

The electrons in the conduction band of a simpl metal are often
modeled by replacing the ions by a uniform positive background.
Although the model dates back more than 50 years, there have been
no convincing calculations of its properties, in spite of many
attempts, except in the asymprotic limit of high and low densities.
Even the order of magnitude of the melting density is not generally

'agrced upon. Wigner (27) predicted thar, contrary to the usual

situation, a crystal phase occurs in the low-density regime, The
properties of the electron gas have been calculated {8, 28) by the
variational, fixed-node, and release-node Monte Carlo methods, and
the melting transition has been locared. In contrast to the simula-
tions of liquid helium, there are no direct experimental results w
compare with these clectron gas calculations. Hence, in Fig. 3, the
momentum distribution of an clectron gas at a density approximate-
ly equal to that in the conduction band of potassium is compared
with that of an ideal, noninteracting fermi gas. Recent calculations
similar to those on the clectron gas have been performed on *He, a
fermi liquid; the results are in good agreement with i
(29). The clectron simulation results are now oftcn taken as standard
input to the approximate solid-state calculations that usc local
density functional .

The clectron gas has a fairly rich phase diagram. At zero tempera-
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ture and normal metallic densities, the gas is 2 regular, spin-

paired,
diamagnetic fermi liquid. As the electron density is reduced by 2
factoe of 10°, the electrons spontancously spin . The polar-
mtmmacucsasdxedamtywlowcmdbyanoﬂmrfacmroflﬂ‘
when the clectrons undergo Wigner crystallization. Such ferromag-
nctism nearly occurs in liquid atbwtunpcraturtandpardy
accounts for the unusual magnetic behavior of that liquid. These

Monte Carlo cakulations, involving several hundred particles, have
not yet attained the precision to explore such subtle cffects as the
superfluidity of *He or the superconductivity of metatlic hydrogen.
The effects encrgetically are too small and the relevant length scales
for the phenomena too large compared w the size of the system that

can be simulated. However, it is possible to calculare the response of -

the electron gas to various types of external fields, test charges, or
impurities. Such cakulations arc undérway..

Hydrogen, as the simplest of the ckments, provides a narural
exeension of the previous work on the electron gas in which the
uniform background is replaced by the actual protons. It is much
more difficult to use a molecular pair porential in Monte Carlo
calculations of the properties of hydrogen than it is with helium.
The pair interaction for hydrogen is more complex and less certain,
and at high pressures there are nonpairwise additive effects. Thus the
simulations .were performed directly with protons and clectrons,
interacting only through their coulomb potential. Both the protons
and the clectrons have a sizeable quantum motion. This is taken into
account in the simulation by letting the prorons drift and diffuse,
but at a rare 1836 times slower than the electrons, whlchlsd'ncrano
of their masses,

These calculations can be compared with experiments (30) at

_ pressures above 10° atmospheres (1 Mbar) reached with a diamond

anvil apparatus. However, the molecular-atomic transition to 2
meeal, first predicred by Wigner in 1935 (31), has not been observed
experimentally. Simulation of hydrogen (32) in both the molecular

and atomic phase established that this phase transidon occurs at

about 2.8 Mbar. It has also been established thar the protons
undergo a melting transition at low temperature but under astro-
physical conditions (10® Mbar). The excellent agreement between
the theoretical equation of state in the molecular phase and the
imental one is shown in Fig. 4. The energy resolution achieved
with these calculations of 0.001 Rydberg per atom is also enough to
determine crudely the pressure (roughly 1 Mbar) at which hydrogen
molecules stop rotating, that is, when they become aligned in the
These simulations of hydrogen have only scratched the surface of
the interesting properties that could be reliably calculared. It would
be relatively straightforward to obtain band gaps, bond frequencics,
andd:decmcpmpcmcsofhydrogcncvmdmxghmcunountof
compater time required is large (10 howrs of CRAY-1 time per
computation). Calculations of the propertics of mixtures of hydro-
gen and helium, as they occur, for example, in the core of Jupiter,
and simulation of metallic lithium are further possible extensions of

- this work.

ew-Body Problems

'ﬁuapplimdonsdcsaibcdsuﬁrhavcallbcmtobulksymn,'for

* system cffects. In cakculations of the properties of few-particie

systema, such as molecules or clusters, the cotrect boundary condi-
tions are those of an isolared system. In such studics the advantage
of the Green’s function Monte Carlo method lies not only in-its
rigor but also in its ability to deal with many more electrons than
albernative ab initio methods. The amount of computer time néeded
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to achieve a given statistical error per atom increascs only as the
. number of particles squared. For very large systems, onc can use
sparse matrix techniques to lower this power further.

As a first example of a few-body system, the energy of three
hydrogen atams for several positions of the three protons has been
calculated (33). The potential surface for this molecule needs to be
known to establish the barrier for the simplest chemical reaction,
namely the exchange of a-hydrogen atom with one in a hydrogen
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Fig. 3. (A) The momentum
distribution, s(k), as a func-
,  tion of momentum, &, for liq-

uid *He at I K. The momen-
! tum distribution as .obtained
¢ by Monte Caro cakulations
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the superfluid transition). The condensate fraction, found by integrating the
difference between the ¢ tal distribution at 1 K and 2t 227 K, is
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(B)Thcmomcnmmdnsmbmmofanmtcncun clectron gas calculated by
the Monte Carlo method at zero at a density approximarely
ejougtodmofzhevakrmdectmnsm ium under standard conditions
(dots and heavy line) compared with that of an ideal formi gas (dashed line).
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for the barrier as cakulated by Monte Carlo
was 9.60 = 0.05 kcal mol ™!, which s 0.3 kcal mol™" lower than the

molecule. The energy

best variational ion interaction upper bound (34) but is
mcdyduma;d\:vaﬁaﬁomlresukihmmcﬁondmm
d:enmofoonmgenccofdm:xpﬂmionisappﬂod.
Anodlcruamplcisadusﬁcrofliﬂﬁummm.&kuhﬁmondxc
lidthm\dimugavemorcaccumwmlmrgiu(&,ﬁ)dundn
ion interaction calculation. Similarly, the ground-state
ofdwu-imcrinvariumgnmncn'iahzsbemdcumimd,
cnooungingd\estudyofmuchh:gerdum.'lfaccurmmultsm
be obtained for sufficiently large clusters with reasonable computer
ﬁme.itwillbcpossiblcmsimulatcmcmlsu:&wm]isﬁcaﬂyand
subsequently to study the ics of molecules absorbed on
t!mlnmchdustercakuhdonkdwlidﬁunmudcishou]dnotbc
hddﬁxed.bmdmgeormuy_ofdwdustcrmﬂdmoutof&c
ukdaﬁomAgoodapproximaﬁonwauldbemssmncd:atthm
ml:leibduvcdmically,whichcaﬂsforanalgoﬁﬂmmatmndml
wid:bodadmkalandqumunnnmchanicaldegrmof&eedom:t
. ﬂwﬁmﬁmc.Sudianalgoriﬂ\m'wuuldbcvctyuscﬁJlinuuﬁng
any liquid system, such as water, starting with classically behaving
oxygen and hydrogen nuclei (the fatter requires quantum cofrec-
ﬁonsbutnotaﬁﬂlquannnntrcauncnt)mdelqctmnsdntbehave
quantum mechanically. Such calculations would be considerably
mc;ealisticmanmcpmcntdassicaishnuhdonsofmmat'm
based on rigid molecules interacting with pair forces. However,
withummtcmnpumandmcdmds,suchasi:mﬂadonofwm
wmldbcmocostly.Omnoedndimpmmntisawayofdjmdy
ahﬂmmcmmgcmmchcmﬂcmgyaschssicaldcgmuof
freedom change. Such a need arises in many applications. Work is
mduwayonadiﬁ'ctmﬁalMomcCadosdmcdmmpumm
encrgy differences.
'I'hemsonﬂaatnnlyrclativcmcrgiesmmquiredisdutfrc-
qumdyoncisinmmtedunlyinmdiﬁ‘ermocinmcmgiuof
vanous ts of the atom in a molecule to find the
t of highest stability. Another application would be in
dnuimﬂaﬁonofamhrge’rdammon.ﬂctwonuinpmbm
ﬁorhuvicrckmcntsm(i)madlcdmcstcpnccdcdwfolbwﬂm
hmdectronsbecomcssmalkrmmeoorccbmmnarcbound
more tightly, keading to slow convergencc, and (ii) that the differ-
ence berween the fermion ground state and the distribution to

whichdacsystcmuhxcsuponnodalrelcascbe_oomhrgcrfor

mwithmmclem'ons,sodmﬂwmisimrusmsdiﬁculty»in
rcﬁab!ycxmcﬁngmedi&mbctwecnﬂuposiﬁwmdncga&vc
ons. If the inner-shell electrons could be accurately repre-

sented by 2 ial. these difficulties would be ametiorated,
ﬁnoedmmlydupanofdmnndmnwalkooncmmduithme
chcnuuindmevalmccmgimwmﬂdomu—ibm.mcmmtc
of the inner clectrons by a pseudopotential requires that

ﬂxme}ncuombcinscnsitivcm:hcvalcnocelecuom.lfforthnt -
ntial must be introduced, the Monte

purpose a nonlocal
Carbcalcuiaﬁonwouldbcmuchmr:hvnlved.
Alaﬁmlmmpkoffcw-bodyproblctm,oonsidcrdwsdcking
prohabilityofamuontoanalph:tpartick.lnd:issimatimme
Mmm&rbnxﬂmdmbeusednotonlymolxainmgith
ahmulcuhmﬂnvaimofduwavcﬁmc:ionh:ancm_mnly
inpmbabkanmganmtofﬂupardds,nm]ywlmnmnudd
mhd:epmoessofﬁuing.mmulnumbﬂofﬁisionscmlymdby
an’nglcmmplacadinadcuutium-uitiumliquidis i
mﬂ(ﬁ)mbcmcdlmlm.mvalmislimimdbydn

ﬁtaﬁnﬁonocm.&ktdaﬁonofmiscapnncpmbabﬂityrequuu
hwhgﬂmvalucofﬂuwavcﬁumﬁmofamhmkobmposedof:
mbmuﬁdmulmxemmlymadmmonzmlauimn. Such a

Mmmkmwmmmmm
m * . . '

dutmalpltapanidewillcapmreamuuninumdia?cly-

mugyisimuidvemdwvdmofﬂnmﬁuwﬁmwhueitis
needed, at the coalescence point. However, the wave function
canbccalq;hmdbmeCarhinamysimplcway(ﬁ). Many
randmnwzlksmsumd&untlndﬁimdwtﬁguntionofd\c

i .Wlmdacwalkshmmdwddud:study-mdimibu-
tion,thcratioofthccxmwavcﬁmctiontoduuialwawﬁmcdmis
proportional to the average j
nndwdisrigmws,mdcvmudﬁlihighlysinguhrpoimimpm-
msamplmgpcnnimcaktﬂaﬁonofdmwaveﬁmﬁonwima
relative error less than 0.5 percent.

Conclusion

MGrecn’sﬁumdonMontcCarbwchtﬁqucisstiﬂvuymuchin
dxcdcvclopmmtalphase,andappliudomhavcbccnlinﬁtedma
fow long-standing problems. Nevertheless, it is already apparent that
the simplicity, rigor, and adaptability of this approach vo different
nomputcrardﬁtccmmmakcitlikdymatitwillbmmwamndard
computational tool in physics and chemistry. Future algorithmic
improvements include finding better numerical methods for dealing
Mﬂ)fem\ions,ﬁndingwaysofimpmvingtheuialwwcﬁmcﬁmw
make importance sampling more cffective, computing excited states,
eombiningquantumandchssimleteCarhcakulatiau,ﬁnding
anciﬁdcntpmcedurtﬁ)rmlcuhﬂngmctgydiﬂ'crenccs,mddeaihg
withfcrnﬁonsa:ﬁnitemnpcrm:rc.‘lhcsymmdmoouldbc
sﬁnulatcdmgcﬁmnnudﬂr‘mmmplWMmMspmc,
whenever more than two particies interact.
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