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1. — Introduction.

I am going to discuss a somewhat different topic than the main focus of
this school, namely simulation methods for quantum-mechanical systems at
finite temperatures. Recently it has been shown that static properties of some
quantum systems can be obtained by simulation in a straightforward manner
using path integrals, albeit with an order of magnitude more computing effort
needed than for the corresponding classical systems. Some dynamical infor-
mation can be gleaned from these simulations as will be discussed below. But
this is very limited—there is no quantum version of the molecular-dynamics
method.

The path integral method will be illustrated by discussing the application to
liquid helium. This system was chosen because, firstly, the interaction potential
between helium atoms is well understood, at least for temperatures of less than
10¢ K and pressures of less than 1 Mbar. Thus one can make an unambiguous
comparison with the wealth of thermodynamic and scattering properties which
have been measured. The Aziz [1] potential (HFDHE2) between all pairs of
helium atoms was assumed. This is a short-ranged interaction and so only a
minimum number of atoms are needed in the simulation to calculate most of
the properties of bulk helium. Secondly, there has been a great deal of theoretical
work on liquid helium. The picture directly related to the simulation method
is that of Feynman [2]. Also there are simulation results at zero temperature [3]
with which to compare. Finally there are still many interesting unresolved
questions: the detailed form of the momentum distribution, the details of
exchange in crystal helium 3, the form of the interface between liquid and solid
helium. However, the simulations of liquid helium were primarily undertaken
to establish confidence in the path integral method, to show that one can indeed
obtain exact results at finite temperature for a strongly interacting quantum
many-body system. Then one ean proceed on to more complex and less under-
stood systems.
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2. — The density matrix.

Let us first review some of the basic properties of the density matrix, that
operator which is needed to calculate any property of a quantum system at
finite temperature. In operator notation the density matrix is exp [— SH],
where f = 1/kT, T is the temperature and H is the Hamiltonian. Any observable
O is obtained as

(2.1) <0y = tr [0 exp [— pH]]ftr [oxp [ FH]] .

If one can simulate the density matrix, that is sample co-ordinates B and R’
(R refers to a point in the 3N-dimensional co-ordinate space) for the density
(Rexp[— fH]R' >, then one can calculate any static property just as with
classical systems. The brackets mean just to evaluate the density matrix
between those points. The full density matrix in eo-ordinate space is a function
of 6N variables. The diagonal part of the density matrix is obtained when
R = R’. Scalar properties such as the radial distribution funection and the
potential energy are determined only by the diagonal elements of the density
matrix. Simulations off the diagonal are necessary to determine the momentum
distribution.

One can obtain the density matrix at low temperatures by inserting a com-
plete set of cigenstates ¢, (R) with eigenvalues K :

n®

(2.2) (R exp [~ BH]E"> = 3 ¢;(R) exp [— PE Jp,(R') .

n=1

Thus on the diagonal at low temperatures the density matrix goes to the square
of the ground-state wave function.

On the other hand, at a sufficiently high temperature, the kinetic- and
potential-energy operators can be allowed to commute and the density matrix
can be evaluated as

(2.3) (B exp [— H]R") = (R exp [— pT]R') exp [~ p[2{V(R) + V(R)}].

The first factor on the right-hand side is the density matrix for an ideal gas
and has the explicit form of a Gaussian in B — R':

(2.4) (R exp [— FTIR') = (4nDf)~¥"* exp [— (R — R')*/4Df] ,
where D = #2/2m. At high temperature the density matrix goes to the clagsical

Boltzmann distribution, times a factor which keeps B and R’ close and has
the form of a harmonic spring potential. The spring constant gets tighter
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and tighter as the temperature is increased. The thermal wavelength, equal
to (2Dp)}, gives the spatial extent of quantum effects.

In order to simulate helium at low temperatures one uses the simple proper-
ties of an exponential operator:

(2.5) (R, exp [—PH]R,> = (B, exp [— tHIR>{..>0 {By_, exp[—TH]R,> ,

where the intermediate co-ordinates R, ..., B, , are to be integrated over
and v = /M. Then, if M is large enough, one can use eq. (2.3) for the density
matrix although in practice it is necessary to improve that approximation as
will be discussed shortly. Equation (2.5) is the basis of the path integral method.
One simply considers the expression on the right-hand side as a « classical »
distribution to be sampled and R, ..., R, , have an equal footing with E,
and R,. For the calculation of scalar observables, such as the potential energy,
the diagonal part of the density matrix is needed and thus R, = E,. Thus
there are 3N X M co-ordinates to sample instead of just 3N for a classical
Monte Carlo simulation.

Such a « classical » distribution is very much like a system of ¥ ring polymers
at a temperature T X M, made up from M « monomers ». The subsecripts iden-
tify the monomer, they are also referred to as time slices (really imaginary
time). Only monomers at the same time interact with each other with the
potential TV (r,).

The other picture, due to FEYNMAN [1] and Kac [4], is of a random walk
or path integral. If we take the limit as M — oo of eq. (2.5), then the kinetic-
energy operators describe a random walk starting at B,, and ending at Ry
and lasting a time 3. The density matrix is equal to the average over all such
walks of the free-particle density matrix times the exponential of the integrated
potential along that walk:

(2.6)  (Roexp[—PH)Ru> = (B oxp [— BT1Ruw> (oxp|— [ di

z V("i:‘(t))]> .

i<j

The efficiency of the simulation will depend on the value of 7 for which one
can write down a good form for the density matrix. It turns out for helium
the simple classical form of eq. (2.3) will be accurate enough only if = < 0.001/K.
This means for simulations in superfluid helium at 2 K that each polymer
will have 500 monomers, which is very inefficient. One c¢an do much better
by solving the two-atom problem exaectly and obtaining a pair product form [5]
for the density matrix by assuming the average of the products in eq. (2.6)
is equal to the product of the averages:

@7) (R oxp[— FHIRy> = (Byexp[— AT)Bu> [] {exp [— de(m(t))D :

i<j
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The error in this density matrix comes only from three- and higher-body
scattering. It has been found that this pair product density matrix is suffi-
ciently accurate for v << 0.025/K which leads to a substantially more efficient
algorithm than one based on the semi-classical density matrix. The tabulation
of the pair density matrices at a variety of temperatures is carried out by
specialized numerical techniques [5].

The boson density matrix is defined by restrieting the sum in eq. (2.2)
to be only over fully symmetric states and can be obtained from the density
matrix for distinguishable particles by symmetrizing with respect to particle
co-ordinates

(2.8) (Rexp[— pHIR>,...= > (PR exp[— fH]|R )|/N!

since all eigenfunetions which are not fully symmetric will disappear. In our
classical analogy, the polymers can become cross-linked. To calculate prop-
erties on the diagonal, the random walks no longer must return to their starting
places but to any other walk’s starting place. It is like the game of musical
chairs. The superfluid transition is driven by this indistinguishability which
serves to connect superfluid helium maecroscopically just as jello changes phase
when it cools and its molecules cross-link. The transition happens when the
thermal wavelength becomes approximately equal to the interparticle spacing.
The task of the Monte Carlo algorithm is then plain, it is to effectively sample
this combined space {R**¥ Py}, where Py is the permutation group. That is
to sample all energetically favorable polymers and all the ecross-linked possi-
bilities.

3. — The Monte Carlo method.

The Metropolis algorithm [6] is almost universally used to evaluate ratios
of integrals as in eq. (2.1). Let Il(s) be the normalized distribution in
eqs. (2.5)-(2.8), where s refers to all of the 3N X M X P co-ordinates. The
Metropolis algorithm samples by setting up a Markov chain with the detailed-
balance property

(3.1) I(s)P(s —>s') = II(s') P(s' —s) ,

where P is the probability of making a transition from one state to another.
A trial move to a nearby point s’ is made based on some assumed probability
funetion P(s’). Then the trial move is accepted with probability equal to

(3.2) a = min {1, [1(s') P(s)/IT(s) P(s')}

which will guarantee that eq. (3.1) is obeyed for P — alf. The algorithm is
guaranteed to converge to I/, but the convergence time is governed by the
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transition probabilities and it can be very slow, particularly for this type of
distribution. After all, relaxation times for real polymers can be seconds,
or days.

Now a naive scheme, taken over directly from the simulation of classical
liquids, would be simply to take P uniform about s within a cube for only one
monomer. While that would be effective for nearly classical systems, it would
be excruciatingly slow at low temperatures, assuming M is large. The reason
is that the springs from the nearby links of the polymer constrain any one
link, so that motion of the ring as a whole would be very slow. For bosons
one must make permutation moves as well as spatial moves, and those neces-
garily involve moving many links of at least 2 atoms together with the per-
mutation move. In other words, an efficient algorithm for quantum systems
at low temperatures must involve moving simultaneously many monomers.

The results to be discussed here were obtained by moving the co-ordinates
of from 1 to 4 atoms in 4 to 8 time slices together with a permutation move
to be discussed next. Now the conditional probability distribution of a point R,
at time t, part way through a random walk of length ¢, which begins at R,
and ends at R,, is given by the conditional distribution

(3.3) {(R) = (B, exp [— tH]R) (R exp[— (f — 1) H] E;> [{E, exp[— SH]R,) .

Note that the integral over R of f is unity, so it is a probability distribution
from which points B can be sampled. One ean approximate f sufficiently ac-
curately so that many co-ordinates may be sampled together with a high
acceptance probability. But this means that an expression is needed for the
density matrix, not just at the high temperature 7, but all the way down to
the temperature appropriate to the size of moves to be made, which will equal
gsomething like twice the lambda temperature or 4 K, if permutation moves
are to be accepted. However, only the density matrix at time = will affect
the converged results, the lower-temperature density matrices will affect only
the rate of convergence of the random walk and hence the error bars. For
the ideal gas, f(R) is a Gaussian, one whose center moves in a straight line from
R, to R,, and whose width slowly spreads at the beginning of the walk and then
contracts. Turning on the interaction in addition makes the regions where
two monomers overlap forbidden. It is convenient to approximate f by a
multivariate Gaussian (one with cross-correlations) since a Gaussian can be
rapidly sampled. Again such an approximation only affects the error bars
on the final answers, not the limiting results.

The basic principles of sampling permutations are the same as those for
sampling spatial moves except permutations are in discrete space, not in con-
tinuous space. Again the move is constrained to be a local one. The new trial
permutation is obtained from the old permutation by applying a pair, triplet,
or quadruplet permutation, for example P'= p,; P, where p,; is a pair permu-
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tation of particles ¢ and §. There is some evidence that pair permutations are
energetically not favored and the Markov chain converges faster if triplet and
quadruplet moves arc permitted. A new permutation connecting points R,
and R, a time ¢ apart is sampled with a frequency proportional to

(3.4) (R, exp [—tH]p,;PR,;) .

Co-ordinate moves follow up on that permutation move. Until the co-ordinate
moves are made, it is not known whether that permutation move will be ac-
cepted. Details will be given elsewhere [7].

4. — Results.

Figure 1 shows the energy vs. temperature for liquid helium in the low-
temperature region at saturated-vapor pressure. The solid curve gives the
exper.mental results [8], the crosses the Monte Carlo ones with error bars of
about 0.10 K, for a run of about 1 h on the CRAY-1. The Bose statistics have

Fig. 1. - The internal energy in K/atom ws. the temperature at saturated-vapor
pressure. The solid line is the experimental result [8]. The crosses are the results of
the path integral Monte Carlo simulation with error bars of about 0.1 K. The x at zero
temperature is the Green’s function Monte Carlo result [3].

very little quantitative effect on the energy, less than 1 K. The point at zero
temperature is the Green’s function Monte Carlo result [3]. Except in the
immediate vicinity of the transition, the path integral Monte Carlo results
are accurate to 0.2 K, but lying systematically lower than the experimental
results in the transition region. All of the simulations are performed with
64 atoms in periodic boundary conditions. There is numerical evidence that
these boundary conditions favor permutations. The transition in the finite
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system begins as soon as 2.5 K, whereas the experimental transition tem-
perature is 2.17 K.

The comparison of the calculated specific heat with experiment at SVP
is shown in fig. 2. The Monte Carlo results are obtained by taking finite dif-
ferences of fig. 1. Thus the error bars are much larger. The results from using
a fluctuation formula would have even larger error bars.

1
0 1 2 3 47

Fig. 2. — The specific heat per atom vs. the temperature. The curve is the experimental
result [8]. The crosses with error bars are the finite differences of the Monte Carlo
energies in fig. 1.

Figure 3 shows the pair correlation function at 2.08 K as obfained from
X-ray secattering [9] at SVP, compared with the simulation results. They
agree very well. Also shown is the effeet of using Boltzmann statistics in the
Monte Carlo calculation. This is obtained by not allowing permutation moves
and increases the order in the liquid, raising the peak of the pair correlation

| I | | I I 1 I | | I S T |

0 2 4 6 8 r 10

Fig. 3. — The pair correlation function for liquid helium at 2 K and SVP. The solid
line is the X-ray scattering result [9]. The two dashed lines are the simulation results
for bosons and for distinguishable atoms. The boson curve is the one lying very close
to the experimental one.
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function by 59,. There is similar agreement with scattering data at other
densities and temperatures.

Although we have frequently referred to time slices, the simulation is ac-
tually in imaginary time, not real time. Nevertheless there is time-dependent
information eontained in the « dynamics » of these paths although it is smeared
out because the motion is diffusive and not wavelike. Consider the dynamical
structure factor S8(Q, w), measured by neutron scattering [10] and shown in
fig. 4 at 1.2 K, for two wave vectors. There is a very large narrow peak cor-

S(Q,v)(THz)
(2]

ol 0.7 13 1.9
v(THZ ™Y

Fig. 4. — The dynamical structure factor at 1.2 K and SVP as measured by neutron
scattering [10] for the two values of momentum transfer shown.

responding to single-phonon excitations, and a much broader multiphonon
peak. Now in quantum Monte Carlo one can compute the imaginary-time
density autocorrelation function

(4.1)  F(Q,?) = tr[oq exp [—tH]o_, exp [— (8 — ) H]] [tr [exp [—¢H]],

where

(4.2) 0o = > exp [—iQr.]jVN .

=1
It can be shown by writing both F(@Q,t) and 8(@, w) in their eigenfunetion
expansions that F is the Laplace transform of §:

(4.3) F(Q,t) = f dw exp [— wi]8(Q, w) .

Inverse Laplace transforms are essentially impossible to perform with noisy
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Fig. 6. — The Laplace transform of the experimental dynamical structure factor
(x and +4) in fig. 4 as compared with that calculated with path integral Monte Carlo
(solid lines) for two values of momentum transfer.

data, thus we cannot go from F to 8. The information has simply been lost
with the Laplace transform. One could perform an inversion of ¥ by assuming
a funetional form for S(@, w) with perhaps four unknown parameters, and using
the values for F(@Q,?) to determine those parameters. It is very difficult to
obtain more time-dependent information than this from the imaginary-time

1.0
\
0.8—\
0.6 | \
~ \
< \
| \
0.4 \
\
0.2} \
\
\\_—___
0 S S
r(R)

Fig. 6. — The single-particle density matrix at 2.86 K (solid line) and at 1.0 K (dashed
line).
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simulations. Since the experimental data are available, we can Laplace trans-
form them and compare with the Monte Carlo results in imaginary time. This
is done in fig. 5 with the data from fig. 4. The agreement is rather good both
at this temperature and others where complete experimental data are available.
The curves do differ at large values of ¢, because the experiments have not
covered a wide enough range of energy transfers. The function F must be
symmetric about /2, and the Monte Carlo results are by definition.

The momentum distribution is of great interest since it is believed that many
of the singular transport properties result from a finite fraction of the particles
condensing into the zero-momentum state. Let n(Q) be the probability of
observing an atom with momentum Q. It can be easily shown [11] that the
Fourier transform of the momentum distribution is equal to the single-particle
off-diagonal density matrix. Let

(4.4) n(r) — f dQ exp [{Qrin(Q) .
10°? r
10? o
~ <L \<L2>
: ol ¥
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Fig. 7. — The average cycle length and squared cycle length of a permutation vs.
the temperature at SVP. The vertical line at 2.17 K is the experimental transition
temperature. For a random permutation of length N the average cycle length is N/2,
marked for N= 64.
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Then n(r) is obtained as
(4.5)  w(r) = tr[ry, ry, ..., 6xp [— fHIry + r, 1y, ..] [tr [exp [— BH]] ,

where r; is the co-ordinate of atom 4. Atom 1 is off the diagonal, it does not
return to its starting place but to a point r displaced. In the polymer analogy,
n(r) is obtained by cutting one of the polymers, and measuring the resulting
end-to-end distribution. The polymers can still cross-link and this is responsible
for momentum condensation. By adding other polymers into the middle of
the one linear polymer, the ends can become arbitrarily far apart. Otherwise
they would be restricted to a distance on the order of a thermal wavelength.
End-to-end distributions computed in this way at 2.9 K and 1.0 K are shown
in fig. 6. The curves fall off to a constant value apparently by 5 A. This con-
stant value is the number of particles which have exactly zero momentum,
sinee the Fourier transform of a constant function n, is #,6(Q). The calculations
are in agreement with experiment [12] giving a condensate at low temperatures

10°¢ goo—o o |
P F Jj/d
107
i A /x/»z
Flomr sk Y,_-O-\
el
10 £ + 3
| *
4
107%
L *\
107 . . \ %5
0 1 2 3 4L T 5

Fig. 8. — The distribution of cycles of length 1 to 5 as a function of temperature at
SVP. The horizontal line shows the value expected for a random permutation of
length 64,
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of about 99, but in this case the Monte Carlo results are more accurate than
the experiment, since measuring the momentum distribution by neutron secat-
tering is extremely difficult.

Statistics on the distribution of various permutation cyecle lengths and
of the mean and the mean squared cycle length are given in fig. 7, 8. They
show a rapid rise in the number of longer permutations between 2.5 K and
2.0 K, and then a saturation to the value appropriate to a random permutation
below that temperature. In a random permutation all cycle lengths are equally
probable. At 2.25 K cycles of lengths 2, 3, 4 and 5 have approximately the
same probability which is perhaps the clearest indication that the transition
is occurring there.
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