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. ABSTRACT

Path integral methods can be employed to calculate properties of boson
systems at any temperature. We have performed a number of simulations of
liquid helium and have calculated the momentum distribution as a function of
temperature. We find that liquid helium has a condensate below 2K but not
above. The momentum distribution is found to be non-Gaussian even in normal ,
liquid helium. We have also calculated the difference in the momentum

distribution between a boson system and a distinguishable particle system.



Classical systems always have a simple Maxwellian momentum distribution
regardless of temperature and density but quantum systems can in principle
have a non-Gaussian momentum distribution. In fact the theory of liguid
helium is based on the assumption that for the superfluid there is wacroscopic
occupation of the zero momentum state. However experimentally verifying this
basic property has proved to be difficult. Computer simulation can compute
details of the momentum distribution from first principles. Here we will
briefly discuss the simulation method and the results that have been cbtained
to date on helium. Simulation also enables one to do some thought
experiments. As an example we will show the effects in helium of removing
Bose statistics.

The basic formula negded in quantum Monte carlo method at non—zero
temperature was written down by Feynman and Kacs in 19501 who related the
density matrix of a quantum system to a path integral. One can say
equivalantly that a quantum system can be mapped onto a classical system of
higher dimension. Before we describe the path integral method let us first
specify our model of liquid helium. Helium atoms are assumed to be bosons and
described by the non-relativistic Schrodinger equation with the
Born-Oppenheimer potential energy function. 1In calculations done to date we
have assumed the atoms interact only in pairs and have used the ﬂzi22 (HFDHE2)
pair potential. This potential is thought to be accurate on the average to
0.15K/atom out of a total potential energy of -22 K/atom, i.e. better than
1X. Calculations at zero temperature show that the momentum distribution is
not vary sensitive to the pair inter‘au:ticm.3"4 Racent experimental
measurements and theoretical calculations indicate that this potential needs

some slight ravision.5 In order to perform simulations we must work with a



small number of atoms, on the order of 100, and periodic boundary conditions
are used to remove most boundary effects. Of course this restriction will
limit our ability to perform precisa calculations around a phase transition
particularly around the lambda region since a second order transition is
greatly influenced by the boundaries.

All thermodynamic properties can be obtained as integrals over the
many-body density matrix written in configuration space as (Rlexp(~BH) |R")
where R and R' represent the 3N coordinates of the atoms, H is the Hamiltonian

and B=1/kT. We have the following properties of this density matrix:

1) The density matrix is non-negative for all values of its arguments (R, R'
and B) for distinguishable particles. Thus it can be interpreted as a
probability distribution and sampled.

2)  The convolution of two density matrices yields a density matrix at a

lower temperature. -
(Rlexp(—(Bl+Bz)H)|R‘) = | dR"(Rlexp(—BlH)IR“){R“|exp(~ﬂzH)|R') (1)

The integral over R" above is performed with Monte Carlo. The path
integral method consists o# writing down an explicit analytic expression
for the density matrix at high temperature (40 K was used in our
calculations) and convoluting on the order of 20 of them together to get
down to 2K. The intermediate points (like R" in €q. (1) ) make up the
path.

3) At a sufficiently high temperature, the density matrix factorizes into

one and two body density matrices.



4)

{Rjexp(—tH)}|R") = exp[—(R-R')Zl(ZAT) -3 u(rij,r;j;t)] + C)C? ) (2)
i<

where A = ﬁZ/m. The next order terms in this expansion involve triplets
of particles and can be neglected above 40K, as shown by convergence

studies with helium.

The boson density matrix is obtained from the distinguishable particle
density matrix by using the permutation operator to project out the

symmetric part,

(Rlexp(-BH) |R"), = I (PR exp(~BH) [R* }/N! (3)
p

Clearly the Bose density matrix is non—-negative, so all thermodynamic
properties of helium 4 can be rigorously computed with probabilistic
methods. The above equation is interpreted as saying that because the
atoms are indistinguishable the labelling of atoms at the end of a path,
at R', can be different from that at the beginning, at R. Now because
thaermodynamic properties are determined by the diagonal part of the
density matrix the paths must close on themselves. The density matrix
from R to R' is obtained by averaging over all paths which begin at R and
end at R'. But the above equation says that path can end at R' or any
point PR' where P is & permutation of atoms. It is this additicnal
freedom which gives rise to superfluidity and Bose condensation. At the
lambda temperature and below, permutations involve a macroscopic number
of atoms. The sum over permutations is also performed with Monte Carlo.

Thus the complete specification of the state of the simulation consists



of the coordinates of all of the atoms at all of the intermediate points

and the permutation which tells how the path closes on itself.

The above properties of the density matrix are the essential properties.
Since the path is described by a probability density, it is much like the
Boltzmann distribution for a collaection of N ring polymers. Hence we ctan use
simulation methods from classical statistical mechanics to compute averages
over the density matrix. Our algorithm uses a generalization of the
Metropolis Monte Carlo method. Care must be taken since a naive method would
converge extremely slowly since moves of the atomic coordinates must be
coupled with moves in permutation space. Our algorithm will be described in
detail alsewhare,®”

Since the wave functions in momentum space are the Fourier transforms of
the wave functions in coordinate space the density matrix in momentum space is
just the transform of the density matrix in coordinate space. The momentum
distribution is given by the diagonal element of the momentum space density
matrix and in particular the one particle momentum distribution is obtained by
integrating over the momenta of all but one particle. Defining the single

particle density matrix by:
n(r)= | dr.dr,...dry (51,52,..gmlexp(—BH)|51+5.gz,...EN)/Z (5)

where Z is the partition function, the probability that an atom has momantum k

is the Fourier transform of this single particle density matrix.

n, = (é')na § dr exp(-ik r ) n(r) (6)



Note that in contrast with the thermodynamic properties, calculating the
momantum distribution requires the off-diagonal part of the density matrix.

It follows that the momentum distribution iz normalized as:

f &' n =1 7)

o~

and furthermore the kinetic energy is the second moment of the momentum

distribution:
_ A2
k k" n =-% n(£)|r=o (8)

One obtains the classical Maxwellian distribution by assuming that the
magnitude of r in Eq. {4) is much less than the interparticle spacing and

using the high temperature form of Eq. (2) for the density matrix:
2
n.1{r) = exp[-r"/(2a8)] 9

To a first approximation quantum effects for distinguishable particles enter

by changing the width of the single particle density matrix to reflect the

actual kinetic energy instead of 3kT/2
2
ng(r) = exp{-r"K/(3A))

Note that the kinetic energy of liquid helium is always greater than 3kT/2
baecause of the confining effects of the hard cores and reaches a value of
14 K at zero temperature. Thus quantum effects in the momentum distribution

are already dominant at 10 K, well above the lambda transition.



For bosons the symmetrization introduces a totally new feature. In
calculating the off-diagonal density matrix, the order of the arguments of the
density matrix in Eq. (4) is not relevant, That is atom 1 can end up at atom
2's starting place, atom 2 can end up at 3's starting place and finally atom %
is free to end up far away from atom 1's starting place. One finds that below
the lambda temperature, n(r) doas ﬁot go to zero at large r but instead to a
constant, n, Then its Fourier transform, the momentum distribution will have
& delta function at k=0 and ny, will be the fraction of atoms with exactly zero
momentum, the condensate. It is the macrascopic permutations which establish
both the order parameter of the superfluid state, the phase of the wave
function and the condensate.

In order to calculate n{r) we have used two complementary algorithms.

The first consists of doing the simulation on the diagonal, and then
displacing one atom off the diagonal by a distance r. The permutation and the
coordinates of the other intermediate atoms (i.e. the rest of tha path) is
held fixed. This method is very accurate for computing n(r) at small r, less
than 2.5 A, bacause it can be done simultaneously with computing diagonal
propertiaes and because all atoms at»all points along the path can be
displaced. However beyond 2.5 A the statistical error with this method grows
rapidly because the permutation and the rest of the path must be allowed to
relax as r is increased. In the second method one atom is allowed to bé off
the diagonal. An additional variable, r. the distance between the two ends of
the path of that atom, is introduced into the Monte Carlo integration and at
each step of the simulation that distance is calculated and recorded. The
single particle density matrix is proportional to this end-to-end distribution

and the condensate is the value of the distribution function at large r

-



divided by the value at the origin. An artificial potential between the two
ends equal to log (na(r) rz) is also applied, so that the simulation will
spend roughly the same time at large and small r. Here na(r) is an
approximate single particle density matrix. The aeffect of this potential is
divided out of the distribution function. This importance sampling improves
the statistical resolution of the algorithm. The disadvantage of this second
method is that to obtain n(r) one must divide by the value at r=0 and this
introduces a large uncertainty because of the long correlation time of the
end-to-end distribution function. The results we present here are obtained by
using the results of the first method for r¢2.5 3 smoothly matched onto the
distribution function results obtained by the second method for r»2.5 ;.
Calculation of the single particle density matrix is more difficult with
path integrals than with the zero-temperature Green's Function Monte Carlo
method. At zero temperaturae the density matrix factors into a product of two
ground state wave funcfions aﬁd so it is not necessary to find a path
connecting r

with r_+r but only to evaluate the wavefunction at those two

1 1
points. However this complication of the path integral method is more than
repaid by the ability to calculate the momentum distribution at all
temperatures and for both distinguishable particles and bosons. With path
integrals one can see the change in the momentum distribution as the system is
cooled through the lambda transition.

In this paper we will only give results of our calculations for the
momentum distribution since other thermodynamic properties have been already
published.7 In general agreement with experiment is good for these other

properties. Discrepancies near the lambda temperature result from the small

number of atoms in the simulations since most runs were done with 64 atoms.



The momentum distribution for temperatures ranging from 1.18 K to 3.33 K along
SVP are given in Tablae I. We balieve that these momentum distributions are in
reasonable agreement with the analysis of neutron inelastic scattering
measurementse—lo at high momentum transfers. Also included in Table I is the
momentum distribution of distinguishable helium atoms at 2.22 °K. To obtain
distinguishable statistics one simply requires that the permutation remain as
the identity permutation during the simulation.

The structure factor, S(k) is shown in Fig. 1 at 2.0 K and compared with
the neutron scattering measurements11 at 1.97 K. The differences are less
than 0.02 everywhere. This implies that our model of helium is describing the
structure of the liquid well, even in the vicinity of the superfluid
transition. The inadequacies of the pair potential and the high temperature
density matrix will affect S(k) and Ny in a similar fashion,

In Fig. 2 is shown the off-diagonal density matrix at several
temperatures. The right hand side of this figure shows an enlargement of its
long-range behavior. At 3.33 K, n(r) is clearly going to zero at large r.
However at 2.22 K, n(r) still has a value of 0,02 at the edge of the
simulation box. Since this temperature is above the experimental lambda
temperature of 2.17 K, theory will predict that the asymptotic value of n(r)
should be zero. Simulations of much larger systems are needed to demonstrate
this. At 1,18 K, the value of the density matrix at the edge of the box has
reached 0.07 which is consistent within the statistical errors with the zero
tamperature result4 of 0.09. Figure 3 shows the condensate fraction, as
obtained by averaging n(r) between 5.5 A and 7.0 A., as a function of
temperature. They are constant below 2 K and rapidly fall to zero ahove 2 K.

These values are consistent with experimental measurements.s‘lo



Figure 4 shows the momentum distribution of the non-condensed atoms.

This is computed by fourief transforming n(r)~n°. Above 2.5/A there is
considerable statistical error coming from the effects of fourier transforming
noisy data. The temperature dependance of e is confined to the region k <
1/A. One can see from Table I’that the distribution at low momentum has a
maximum variation of about 20%. The largest change comes from turning off the
Bose statistics. The difference between the momentum distribution with and
without Bose statistics at 2,22 K is shown in Fig. 5. As Bose statistics are
turned on, we find that the region of momentum less than 1.4/A is depleted.
Half of those atoms go to form the condensate and the other half get excited
to momenta baetween 1.4 /A and 2.5/A. The net result is that the kinetic
energy is approximately the same in the two liquids.

Figures 6 and 7 show the deviation of the momentum distribution from a
Gaussian form. In Fig. 6 is plotted the logarithm of the single particle
dansity matrix versus the squared distance scaled by the kinetic energy. The
straight line represents a Gaussian distribution. The single particle density
matrix decays more slowly than a Gaussian distribution at all temperatures,
both above and below the lambda transition and independant of whether the
atoms are bosons or not. Figure 7 shows the non—Gaussian character of the
momentum distribution with the dashed line representing a Gaussian
distribution with the correct kinetic epergy. It is seen that there is an
enhancement of atoms with momenta less than 1.4/A for all the temperatures
studied. At both finite temperature and zero temperature there appears a
shoulder in the distribution function at about 2.5/A. This has alsoc been

10,12

obsarved experimentally. This shoulder is not present for

distinguishable particles.



It has been suggested13 that one can determine the superfluid density,

Mg of liguid helium by observing the large r behavior of n(r) since:

-

1
dwAn Pr Bhc <r
n(r)/n_ = s
° <
be fhe >r
A ZA 2
\_ w nsf‘

where ¢ is the sound speed (at low temperatures and pressures SVP
fic = 18°K A). Our present simulations are performed with systems which are
too small to observe this exact asymptotic behavior but it may be possible to
verify these relationships for systems with several thousand atoms. In the
meantime we have calculated the superfluid fraction directly using the
momentum-momentum correlation function, The calculations are in rough
agreement with experiment and will be described elsewhere.l4
Monte Carlo simulations have allowed the first look at the momentum
distributions of strongly interacting quantum systems. We anticipate that as
these methods become more accurate a microscopic understanding and
characterization of the lambda transition in helium and of the superfluid

state will result.
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Fig.1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

FIGURE CAPTIONS

Thea structure féctor at 2 K as computed by path integral Monte Carlo
(solid line) and at 1.97 K as measured (Ref. 4) by neutron

scattering (solid circles). Both are at SVP.

The single particle density matrix at 1.18 K (top curve and open
circles) 2.22K (middle curve and closed circles) and 3.33 K (lower
curve and open squares). Beyond 3 A the vertical axis is enlarged
10 times and the interpolating curves are omitted. The crosses
denote the ground state results (Ref. 4) which are indistinguishable

from the 1.18 K results for r ¢ 3 A on this graph.

The percentage of atoms with zero momentum nO(T) at SVP. The

indicated value at T=0 is from Ref. 4.

The momentum distribution at 3.33 K (solid curve), 2.22 K (dashed
curve) 1.18 K (open circles) and for distinguishable particles at

2.22 K (solid circlaes).

The difference between the distinguishable particle momentum
distribution and the boson momentum distribution at 2.22 K versus
the momentum. The region O to 1.4/A is depleted of distinguishable
atoms. Half go into the condensate and half go into higher momentum
statas, between 1.4/A and 2.5/A, so that the total kinetic energy is

roughly unaltered by the change in statistics.
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Fig. 6

Fig, 7

The logarithm of the single particle density matrix versus the
square of the distance for the indicated temperatures. The staight
line represents the expected behavior if the momentum distribution
of the non-condensed particles were Gaussian, By construction all
curves have a slope of 1 at the origin, The actual n(r)'s decay

more slowly than a Gaussian.

The logarithm of the momentum distribution versus the square of the
momentum. The dashed line represents a Gaussian momentum
distribution with the same kinetic energy. The solid line is for
distinguishable atoms at 2.22 K, the crosses for bosons at 2.22 K

and the open circles the ground state momentum distribution.15
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Table I.

integral Monte Carlo,
of non-condensed atoms.
the others are bosons.

The momentum distribution of liquid helim as computed by path
ne is the condensate faction, ny

is the distribution
The column marked (*) is for distinguishable atoms,

T(°K) 1.18 1.54 1.82 2.22 2,228 2.50 3.33
p(A“3) 0.02182 0.02183 0.02186 0.02197 0.02197 0.02179 0.02072
ne 0.069 0.087 0.063 0.027 0 0.013 0.003

+0.010 +0.010 +0.010 +0.005 +0.0013 +0.001
Kinetic
Enargy
(°K) 14,2 14.4 14.7 15.9 16.0 ;5.9 16.0
k(A Yy
0.02 0.1013 0.0884 0.0947 0.1034 0.1295 0.1162 0.1120
0.27 0.0%66 0.0861 0.0907 0.0975 0.1202 0.1080 0.1041
" 0.52 0.0849 0.0785 0.0800 0.0829 0.0988 0.0894 0.0860
(Ag) 0.77 0.0683 0.0647 0.064A3 0.0636 0.072% 0.0667 0.06413
1.02 0.0492 0.0471 0.0467 0.0446 0.0484 0.0459 0.0446
1.27 0.0308 0.0299 0.030% 0.0294 0.0302 0.029% 0.0294
1.5%2 0.0163 0.0158 0.0174 0.0182 0.0178 0.017% 0.0183
1.77 0.0073 0.0066 0.0084 0.0102 0.0099 0.0094 0.0104
2.02 0.0034 0.0032 0.0040 0.0053 ¢.0051 0.0049 0.0057
2.27 0.0023 0.0032 0.0027 0.0030 0.0024 0.0030 0.0034
2.52 0.0018 0.0029 0.0022 0.0019 0.0011 0.0021 0.0021
2,77 0.0013 0.001%5 0.0014 0.0011 0, 0006 0.0014 0.0013
3.02 0.0009 0.0005 0.0007 0.0004 0.0004 0.00Q08 0.0007
3.27 0.0008 0.0005 0.0004 0.0D003 0.0003 0.000% 0.000%
3.52 0.0005 0.0004 0.0000 0.0002 0.0003 0.0003 0.0002
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