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Nonlocal potentials based on angular-momentum projectile operators can be transformed into local,
yet angular-momentum-dependent, pseudo-Hamiltonians by modifying the kinetic energy operator.
Ionic pseudo-Hamiltonians of this type can replace core electrons in atomic calculations. Their use in
Green’s-function Monte Carlo simulations gives accurate electron affinities, ionization, and binding ener-
gies for second-row atoms and diatomic molecules. This opens the way to quantum simulations of many

condensed-matter systems.

PACS numbers: 31.10.+z, 05.30.Fk, 31.20.Sy, 71.10.+x

Quantum simulations, successful for simple systems,'
remain difficult for atoms with core electrons. The pres-
ence of atomic cores slows the convergence of the simu-
lation to such an extent that calculations of atoms
heavier than neon appear not to be feasible.? The stan-
dard solution— the replacement of core electrons with a
pseudopotential—is not of help in this case: Accurate
pseudopotentials are nonlocal (they contain angular-
momentum projection operators),®> which is in conflict
with key aspects of quantum simulations. What we show
here is that modern nonlocal pseudopotentials can be re-
cast in terms of a modified kinetic energy operator which
is, instead, local, and lends itself to an easy and success-
ful use in quantum simulations.

In the study of an N-electron system the main limita-
tion of the Green’s-function Monte Carlo* method arises
from the need to keep the Green’s function

G(R,R":At)=¥(R)¥(R") !
x(R|exp[—At(H—E7)]1|R"» (1)

non-negative, so that it can be sampled by a probability
distribution.>® In Eq. (1) ¥ is a trial wave function, R
is a set of 3N electron coordinates, H is the Hamiltonian,
E7 is a trial energy, and At is a small (imaginary) time
step. This Green’s function is used to project out the
ground-state component of a trial function. The projec-
tion is implemented with branching random walks. '

For fermion systems the Green’s function Eq. (1) has
always negative pieces: Any fermionic wave function
will change sign whenever two electrons with the same
spin exchange. More generally, many-fermion wave
functions show a complicated nodal structure separating
regions of alternating sign. However, if one knew from
the very beginning where the nodes of the exact ground-
state wave functions were, one could then separately ap-
ply the Green’s-function Monte Carlo method to each re-
gion of space, bounded by nodal surfaces, where the
wave function does not change its sign. This can be ap-
proximately obtained by forcing the nodes of the sought,
exact ground-state wave function, to be coincident with

those of a reliable trial wave function ¥: Then one al-
ways deals with non-negative Green’s functions (fixed-
node approximation).! If the Hamiltonian in Eq. (1) is
local, one finds that in this approximation only the posi-
tion of the nodes is important, not the values of ¥ any-
where else; and also that the estimated ground-state en-
ergy Egn is variational: Egn — E( vanishes quadratically
as the nodes of the trial function approach the nodes of
the exact wave function and Egn= E (if E¢ is the exact
ground-state energy).” It can be further shown® that the
most general form of a local Hamiltonian for which G is
non-negative is

H=V(R)+ X p.g.s(R)pg, )
a,p

where the tensor g,s=082H/8p,dpp is positive definite;
i.e., the Hamiltonian contains momentum operators at
most to the second power, and is bounded below. Only
with such a Hamiltonian will all of the advantages of
the fixed-node approximation exist. With this “pseudo-
Hamiltonian” the electronic mass depends on position
and direction.®

Let us see what the above requirements imply for
pseudoatoms. Starting from Eq. (2) we simplify further
and suppose that the pseudo-Hamiltonian for a collection
of atoms has the same structure as the full Hamiltonian:

H=3 L — i Zv2+ThiGu). ©)
i<jrij i il

Atomic units are used throughout this paper; i and j

refer to electrons and 7 to ions. Then the most general®®

atomic pseudo-Hamiltonian with these properties (and

spherical symmetry) is

b(r)L?
2r?

h(r)=—Liva(r)vV+ +uv(r), 4)

where a(r), b(r), and v(r) are radial functions, and L?
is the angular-momentum operator. For g,z to be posi-
tive definite (or H bounded below) we must require

a(r)>—1, a@@)+b(r)>—1. (5)
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Outside the core of an atom, on physical grounds, we see
that @ and » must vanish and v=—2Z./r (Z, is the
valence charge).

With a pseudo-Hamiltonian of the form just shown we
now try to optimally replace a full-core atom with a
pseudo (valence only) atom which will be more easily
treated by quantum Monte Carlo methods. Let us first
see which properties are desirable for such a pseudo sys-
tem. Outside the core, the ideal pseudoatom should
reproduce the behavior of the true, full-core atom in a
wide variety of chemical situations: not only for a given
configuration of valence electrons (e.g., the ground-state
isolated atom), but also for excited atomic configurations
and within molecular or solid-state environments. This
essential property of pseudo-Hamiltonians is often called
transferability. Hamann, Schliiter, and Chiang® have
shown that, whenever the many-electron problem is re-
duced to a set of self-consistent single-particle equations,
for example, in local-density-functional or Hartree-Fock
theory, optimum transferability is obtained by norm-
conserving pseudopotentials.> The price to be paid is
that these potentials contain projection operators of the
angular momentum which are nonlocal. The Hamiltoni-
an for a collection of such pseudoatoms is

H=Y 1 - EEVH Il ) ZPma), )

i<jrij i |
d? IU+1) da|d 1
p— —+ —_— T | T —_ J—
adr2 (a+b) . i [dr . ]+2(v vy)

for the three unknown functions a, b, and v. For a given
pseudopotential v;(r) the three unknowns are thus
uniquely determined. The system is solved by integrat-
ing a first-order differential equation for a, and then ob-
taining b and v in terms of a, da/dr, and combinations of
(known) pseudopotentials and wave functions. From Eq.
(7) we easily see that a, b, and v automatically recover
the correct physical behavior outside the core (a— 0,
b— 0, and v— —Z./r), which also ensures that the
new pseudo-Hamiltonian enjoys the same transferability
as the original nonlocal pseudopotentials.

There is one question left: Do the @ and b functions
thus obtained satisfy the conditions of Eq. (5)? Unfor-
tunately it turns out that they do not for many atoms
and common types of norm-conserving pseudopoten-
tials.»'® However, for many atoms which form s-p
bonded systems, an exact reproduction of s and p orbitals
is adequate: This holds for most atoms except transition
metals and rare earths. With this in mind we restrict
ourselves to two partial waves. This leaves the a function
arbitrary inside the core and allows us to satisfy the con-
ditions of Eq. (5). We choose the simple analytic form
a=apexpl—(r/r.)*] which vanishes outside the core
(r>r.), and use Eq. (7) for / =0,1 to fix exactly only s
and p orbitals. The three parameters ag, r., and k (see
Table I) are then chosen such that (i) the range of a(r)

TABLE 1. The parameters of the function a(r)=aq,
xexpl—(r/r.)*¥]1 for the atoms shown, in atomic units (see
text).

Atom ao re k
Na 0

Mg —0.15 1.00 4
Si —0.74 1.30 4
Cl —0.80 1.10 6

where Py, is the angular-momentum projection operator,
Q;; is the angular variable, and v;(r) are /-dependent
radial functions; the other symbols have the same mean-
ing as in Eq. (3). We now show that our pseudo-
Hamiltonian, Egs. (3) and (4), is, because of its
angular-momentum dependence, able to reproduce the
action of nonlocal norm-conserving pseudopotentials, '°
Eq. (6), in the relevant energy region. This can be im-
mediately seen in a single-particle theory like local-
density-functional theory. Here the three functions a, b,
and v, which define the new pseudo-Hamiltonian, Egs.
(3) and (4), can be determined by requiring that its
three lowest eigenfunctions and eigenvalues y;(r) and ¢,
for /=0,1,2, be identical to those of Eq. (6).>'© Sub-
tracting the corresponding radial Schrodinger equations,
one gets for / =0, 1,2 a system of three equations

x1=0 @

roughly agrees with the extent of the atomic core, (ii)
Eq. (5) is satisfied, and (iii) the d states are reasonably
reproduced. The radial functions a, b, and v are shown
in Fig. 1 for Si. The atomic excitations shown in Table
IT confirm that, with local-density-functional theory, the

(a.u.)

K -Z,/r
| 1 | | |
1 2 3 4 5
radius (a.u.)

FIG. 1. The radial kinetic energy factors, a(r) and b5(r),
and the atomic potential, v(r), for the silicon atom in atomic
units. The dashed line shows the Coulombic tail.
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TABLE II. The results of our calculations: LDF, local-density-functional theory (local spin
density); NLPP, nonlocal pseudopotential (Ref. 10); PH, pseudo-Hamiltonian [Eq. (4) and
Table 1]; QMC, Green’s function Monte Carlo, release node (see Ref. 6). The experimental
values are from Ref. 11 for atoms and from Ref. 12 for molecules. All energies are in hartrees.
E.A., electron affinity; I.P., ionization potential; Es, binding energy of the homonuclear diatom-
ic molecule (no zero-point motion included) at the experimental bond separation. Shown in
parentheses is the error bar, e.g., 0.118(3) =0.118 % 0.003.

E.A. Ist L.P. 2nd L.P. 3rd LP. Ep
Sodium Z=11
Full-core LDF 0.1974 s
NLPP+LDF 0.1932 0.0334 ®
PH+LDF 0.1932 T
PH+QMC 0.0204(7) 0.1951(1) 0.0310(6)
Experiment 0.0201 0.1889 0.0269
Magnesium Z =12
Full-core LDF 0.2874 0.5635 0.0043 "
NLPP+LDF 0.2804 0.5535 ce
PH+LDF 0.2804 0.5536 s
PH+QMC Not stable 0.2849(3) 0.5585(2) 0.0015(7)
Experiment Not stable 0.2810 0.5525 0.00196
Silicon Z=14
Full-Core LDF 0.3027 0.5996 1.2339 0.1470°
NLPP+LDF 0.3034 0.5993 1.2212 s
PH+LDF 0.3034 0.5989 1.2205 s
PH+QMC 0.051(1) 0.301(1) 0.6057(7) 1.2356(5) 0.118(3)
Experiment 0.0509 0.2995 0.6007 1.2308 0.119(4)
Chlorine Z =17

Full-core LDF 0.4888 0.8819 1.4522
NLPP+LDF 0.4849 0.8750 1.4537
PH+LDF 0.4842 0.8720 1.4487 S
PH+QMC 0.138(4) 0.475(4) 0.878(3) 1.461(3) 0.08(1)
Experiment 0.1329 0.4765 0.8750 1.4556 0.0924

4Reference 13.

new pseudo-Hamiltonian is of comparable quality and
transferability as the original, nonlocal pseudopotential:
Both reproduce the full-core LDF atom accurately in a
variety of valence configurations.

It is very likely that the angular-momentum depen-
dence is a general property of transferable pseudo-
Hamiltonians and is needed in the exact many-body
theory. Moreover, there are arguments to expect that
our ionic pseudo-Hamiltonian, defined and tested within
local-density-functional theory, describes well the physi-
cal ion."> That encourages us to use it for quantum
Monte Carlo simulations of valence electrons. All we
need is a simple generalization of the diffusion Monte
Carlo algorithm' and the same trial function employed
in other quantum Monte Carlo calculations.’* Such
trial functions work well if a(r) does not approach —1,
but for Cl the pair-correlation term should include some
radial dependence to account for the sizable change of
the effective mass in the core. Variational Monte Carlo,
fixed-node diffusion Monte Carlo, and release-node®
Monte Carlo calculations have been performed on the
atoms and molecules shown in Table II. The calcula-
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tions shown took between 1 min of CRAY time (for Na)
to 2 h (for Cl,).

The accuracy of our pseudo-Hamiltonian varies. The
electron affinities are in perfect agreement with experi-
ment!! to the accuracy shown (which varies from 0.7
millihartree for Na to 4 millihartree for C1). The same
holds for the first ionization potentials of Si and CI,
while the experimental ionization potential of Na and
Mg is outside the quantum Monte Carlo error bar by 6
and 4 millihartree, respectively. The homonuclear dia-
tomic binding energies are in excellent agreement with
experiment '2 for Si,, Cl,, and Mg, but 10% too low for
Na,. This discrepancy may be related to the problems
pointed out in Ref. 16 for atoms with significant core-
valence overlap.

In conclusion, we have shown how to transform a
class of nonlocal pseudopotentials into a local angular-
momentum-dependent, pseudo-Hamiltonian. By this we
could successfully eliminate core electrons from s-p sys-
tems and perform quantum Monte Carlo simulations for
their valence electrons. Further refinements of the
method are of course possible; a satisfactory description
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of (strongly nonlocal) first-row elements and transition
metals is desirable, and is likely to require stronger pseu-
dopotentials inside the core.!” The results for s-p atoms
and molecules, however, already show the feasibility and
the importance of an accurate description of valence
electrons, beyond single-particle approximations: Our
calculated electron affinities and molecular binding ener-
gies compare very favorably with the experiment, unlike
those predicted by local-density-functional or Hartree-
Fock theories.'® It is finally interesting to observe the
pseudo-Hamiltonians derived from local-density-func-
tional atoms, as previously argued,'® seem to give a good
representation of the physical ion: Our results confirm
that the core-valence interaction may be reasonably rep-
resented within single-particle approximations, while the
exact description of the valence-valence interaction
remains of key importance for a more accurate descrip-
tion of condensed-matter systems. Our local pseudo-
Hamiltonian offers a promising tool for such an exact
study.

We acknowledge the support of Lawrence Livermore
National Laboratory, where this research was initiated.
We thank B. J. Alder for his interest and encourage-
ment, R. O. Jones and F. Iachello for useful discussions,
and R. M. Martin for a critical reading of the
manuscript. The quantum Monte Carlo calculations
were performed at the National Center for Supercom-
puting Applications.

1J. Anderson, J. Chem. Phys. 63, 1499 (1975); P. J. Rey-
nolds, D. M. Ceperley, B. J. Alder, and W. A. Lester, J. Chem.
Phys. 77, 5593 (1982); J. W. Moskowitz, K. E. Schmidt, M. A.
Lee, and M. H. Kalos, J. Chem. Phys. 77, 349 (1982).

2D. M. Ceperley, J. Stat. Phys. 43, 815 (1986).

3D. R. Hamann, M. Schliiter, and C. Chiang, Phys. Rev.
Lett. 43, 1494 (1979). Inside the core, for each valence state
separately, these potentials yield the same amount of electronic
charge as the full-core atom. Hence the name of “norm con-
serving.”

4D. M. Ceperley and M. H. Kalos, in Monte Carlo Methods
in Statistical Physics, edited by K. Binder, Topics in Current
Physics Vol. 7 (Springer-Verlag, Berlin, 1979).

SK. E. Schmidt and M. H. Kalos, in Applications of the
Monte Carlo Method in Statistical Physics, edited by K.
Binder, Topics in Current Physics Vol. 36 (Springer-Verlag,
Berlin, 1984).

6Actually it is possible to treat Green’s functions with nega-
tive pieces: See Ref. 5 and D. M. Ceperley and B. J. Alder, J.
Chem. Phys. 81, 5833 (1984); this method (often called

“release node”) can be applied to atoms and molecules, but is
not appropriate for larger systems: The statistical error grows
rapidly with the number of electrons. For this reason it is gen-
erally preferable to deal with non-negative Green’s functions.

7In most systems the error introduced by the fixed-node ap-
proximation is extremely small. The use of Hartree-Fock
nodes will give 99% of the correlation energy for typical elec-
tronic systems (see Ref. 1).

8A detailed derivation will be given elsewhere. See also N.
F. Mott and H. S. W. Massey, The Theory of Atomic Col-
lisions (Oxford Univ. Press, New York, 1965).

%It is possible in fact to make the local potential a more gen-
eral function of R in Egs. (2) and (3), for example, by modify-
ing the electron-electron interaction inside the core to mimic
the effect of core polarizability. We do not consider such a
possibility here. Other authors [M. M. Hurley and P. A.
Christiansen, J. Chem. Phys. 86, 1069 (1987); B. L. Ham-
mond, P. J. Reynolds, and W. A. Lester, Jr., ibid. 87, 1130
1987)] have made a local potential by projecting a nonlocal
“shape-consistent’ pseudopotential onto a Hartree-Fock trial
function. This approach, in principle, requires that the trial
function be accurate everywhere, not just at the node.

10G. B. Bachelet, D. R. Hamann, and M. Schliiter, Phys.
Rev. B 26, 4199 (1982). spd nonlocality is enough for most
atoms: Only rare earths and few other atoms need an f-wave
nonlocality, and, for them, pseudopotentials are less accurate
anyway.

WCRC Handbook of Chemistry and Physics, (CRC Press,
Boca Raton, FL, 1986), 67th ed.

12K, P. Huber and G. Herzberg, Constants of Diatomic Mol -
ecules, Molecular Structure and Molecular Spectra Vol. 4
(Van Nostrand Reinhold, New York, 1979).

13, L. Martins, J. Buttet, and R. Car, Phys. Rev. B 31, 1804
(1985).

14R. O. Jones, Phys. Rev. A 32, 2589 (1985); in Electronic
Structure Calculations, edited by K. P. Lawley (Wiley, New
York, 1987).

I5The fact that norm-conserving pseudopotentials derived
from either local-density-functional or Hartree-Fock theory
are essentially identical in spite of the different approximation
adopted for the electron-electron interaction suggests that they
represent an excellent approximation to their general many-
body counterpart, and thus of the physical ion; see F. Gygi and
A. Baldereschi, Phys. Rev. B 34, 4405 (1986).

16S. G. Louie, S. Froyen, and M. L. Cohen, Phys. Rev. B 26,
1738 (1982); 1. Moullet, W. Andreoni, and P. Giannozzi (un-
published).

I7L. Mita$ and G. B. Bachelet (unpublished).

18 ocal-density-functional and Hartree-Fock theories predict
negative ions which either are not bound at all or show un-
reasonable electron affinities [see J. Perdew and A. Zunger,
Phys. Rev. B 23, 5048 (1981)]; local-density-functional theory
has a marked tendency to overbind s-p bonded molecules (see
Refs. 13 and 14).

2091



