THE MOMENTUM DISTRIBUTION OF 4HE AT NON-ZERO TEMPERATURE
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Path Integral Monte Carlo calculations provide a rigorous
way of calculating equilibrium properties of boson systems at
finite temperature. The only significant limitation is that the
simulations are of a finite system of bosons, typically on the

order of 100 atoms. Most resultslr? have concerned liquid and
solid 9He. The method is based on the Feynman-Kac path integral
expression3 for the many body density matrix:

p(R,RP) = Nl—,g I dR (t) exp[P—dt'V(R(t')] (1)

where the integral is over all Brownian paths from R to PR',
B=1/kT, R and R' are two sets of the 3N atomic positions, V(R)
is potential energy function and PR' 1is a permutation

(relabeling) of the N atoms. To use the above expression on a
computer the "path" is made discrete and accurate

approximations4 are made to the high temperature density matrix.
The discrete path and permutation is then sampled with a
generalization of the Markov chain algorithm (or Metropolis)
Monte Carlo method. A sufficiently long sample of the
coordinates will then allow one to compute exact properties of
the density matrix.

Fig. (1) shows a schematic picture of a typical
configuration. Each circle represents an atom, the dark line
connecting the dots is the path. The atoms not connected with
any other atoms are permuting with themselves and thus
rdistinguishable”. Figure (1) shows a multiply connected region
similar to the interior of a torus. For such a region, it is

possible to define the superfluid density5 in terms of the
average number of paths which wind around the torus; one is
shown in this picture. Others are shown which do not wind and
thus do not contribute to superfluidity. The probability of
permuting with a nearby atom becomes large at low temperature.
The superfluid transition is thus a kind of percolation
transition. Comparison with experiment shows good agreement on
the computed superfluid density.

The momentum distribution is the Fourier transform® of the
single particle off-diagonal density matrix, n(r). All this
means is that the path of one particle is not required to return
to its starting point. One such path is shown in Fig. (1). At
high temperatures, where exchange is not important, the two ends
remain cleose to each other; with an average square distance of

1.5 42 /mT. In the superfluid phase the two ends can get
arbitrarily far from each other by hooking onto a
macroscopically long path. The condensate fraction (probability
that a given atom has exactly zero momentum) equals the
probability density that the two ends are far apart divided by
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Figure 1: Schematic of a path in liquid helium. The shaded
region represents the walls of the container, the circles the
helium atoms, and the lines the exchanging paths. The paths of
atoms not exchanging are not shown. The path encircling the
hole in the container is responsible for superfluidity. The
single particle density matrix and the momentum distribution are
calculated by determining the end-to-end distribution of the
path with two disconnected ends.

the density that they are close together. Thus the condensate
fraction and the superfluid density are intimately related.

However, they are not the same. In three dimensional liquid
helium the condensate fraction is non-zero only when the
superfluid fraction is non-zero. Helium films never have a

condensate but can become superfluid.

The detailed procedures for the calculation of the momentum
distributicn are discussed in Ref. (2). Since that article was
written we have done additional calculations of the momentum

distribution of 4He which we will now summarize,

CALCULATION OF J(y).

In Ref. (2) the momentum distribution of liquid helium at
SvP from 1.2K to 3.3K is tabulated. However, what is measured
by neutron scattering at high momentum transfers, assuming y-
scaling holds, is closely related to the one dimensional
momentum distribution, J(y), defined as the probability that an
atom has a component of momentum in one direction equal to y.
It is easily seen that this is the cosine transform of thesingle
particle density matrix.
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J(y) = 1/mn}, dr cos (ry) n(r) (2)

It is desirable to compare theory and experiment for J(y)
rather than n(k) because the statistical error is smaller for
J(y) than n(k) for results obtained both with computer
simulations and from neutron scattering. To calculate n(k) from
n(r) involves a 3 dimensional fourier transform which has a

phase space factor r?dr. This accentuates the large r
statistical fluctuations. In principle, J(y) is obtainable from
the n(k)'s in ref. (2) by the use of Fourier transforms and some
extra assumptions about the large k behavicr of n(k). It is
preferable to go back toc the original computer simulation data
for n(r) and extract J(y) with Eq. (2).

Those results are given in Table 1 along with the computed
condensate fraction and kinetic energy (in K). Of course, J(y)

should be non-negative for all values of y. The occasiocnal
negative entry in Table 1 is a consequence of statistical
fluctuations in n(r). This indicates that the results are not

very reliable for y greater than about 3 A'l, thus one cannot
say much about the exponential behavior of the momentum
distribution at large momenta.

.5 | | ! I | | L

' 3 7
J(y)
2 7
o1 ]
I

%)

@ 5 1.0 1.5 2.0 2.5 3.¢ 3.5 4.9

Figure 2: J (in A) versus y (in A~l) in liquid helium along

SVP. The density is about 0.022/A3 and the temperatures range
from 1.2K to 4K.

Fig. (2) shows the computed J(y) along the SVP line from
1.18K to 4K. The assumption often made, that the non-condensed



Table 1: J(y) in liquid and solid helium.

[state

&@ nf nf sf sf sf sf st nf nf sf sf nf

T @

1.60 1.67 2.35 400 1.18 154 1.8 222 25 333 400 1.8 2.00 4.00

dens.

0.0288 0.0288 0.0288 0.0288 0.0218 0.0218 0.0219 0.0220 0.0218 0.0207 0.0207 0.0260 0.0260 0.0260

nd.

0.0000 0.0000 0.0002 0.0000 0.0687 0.0873 0.0634 0.0272 0.0131 0.0040 0.0017 0.0262 0.0120 0.0003

kin.
energy

24.40 24.08 24.75 25.66 14.17 14.35 14.71 15.92 15.91 16.00 16.93 19.11 20.11 21.81

y(1/R)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Jty)

| 0.3544 0.3579 0.3577 0.3502 0.4400 0.4212 0.4319 0.4428 0.4571 0.4542 0.4436 0.3913 0.3954 0.3837
0.3529 0.3564 0.3561 0.3487 0.4368 0.4184 0.4289 0.4395 0.4535 0.4507 0.4405 0.38%3 0.3933 0.3817
0.3485 0.3519 0.3515 0.3444 0.4275 0.4101 0.4201 0.4299 0.4428 0.4404 0.4312 0.3834 0.3870 0.3757
0.3413 0.3444 0.3439 0.3373 0.4122 0.3965 0.4058 0.4145 0.4256 0.4238 0.4162 0.3738 0.3767 0.3660
0.3314 0.3343 0.3335 0.3276 0.3916 0.3780 0.3864 0.3939 0.4029 0.4020 0.3964 0.3607 0.3628 0.3529
0.3193 0.3217 0.3208 0.3156 0.3665 0.3551 0.3628 0.3691 0.3759 0.3760 0.3725 0.3444 0.3456 0.3371
0.3050 0.3070 0.3060 0.3016 0.3376 0.3284 0.3357 0.3412 0.3459 0.3471 0.3456 0.3253 0.3257 0.3189
0.2891 0.2906 0.2895 0.2860 0.3061 0.29%0 0.3061 0.3112 0.3140 0.3165 0.3167 0.3040 0.3037 0.29%0
0.2718 0.2728 0.2717 0.26%0 0.2730 0.2678 0.2750 0.2804 0.2816 0.2852 0.2869 0.2810 0.2802 0.27719
0.2535 0.2540 0.2530 0.2511 0.2396 0.2358 0.2434 0.2495 0.2495 0.2542 0.2570 0.2563 0.2557 0.2561
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0.2346 0.2347 0.2338 0.2327 0.2069 0.2043 0.2123 0.2196 0.2186 0.2243 0.2278 0.2323 0.2310 0.2340
0.2155 0.2151 0.2144 0.2141 0.1758 0.1742 0.1825 0.1911 0.1835 0.1960 0.1998 0.2077 0.2066 0.2121
0.1965 0.1957 0.1952 0.1955 0.1473 0.1465 0.1548 0.1647 0.1627 0.169 0.1736 0.1838 0.1830 0.1906
0.1779 0.1767 0.1764 0.1774 0.1219 0.1219 0.1298 0.1406 0.1384 0.1455 0.1495 0.1609 0.1607 0.1699
0.1599 0.1584 0.1582 0.1538 0.1000 0.1008 0.1077 0.1189 0.1169 0.1237 0.1275 0.1394 0.1401 0.1502
0.1428 0.1410 0.1409 0.1431 0.0817 0.0833 0.0883 0.0938 0.0981 0.1045 0.1079 0.1198 0.1213 0.1318
0.1266 0.1247 0.1246 0.1273 0.0668 0.0694 0.0731 0.0833 0.0821 0.0876 0.0906 0.1021 0.1044 0.1148
0.1116 0.1095 0.1094 0.1125 0.0552 0.0585 0.0603 0.0690 0.0687 0.0732 0.0755 0.0865 0.08% 0.09%3
0.0977 0.0956 0.0954 0.0989 0.0462 0.0502 0.0502 0.0570 0.0576 0.0610 0.0627 0.0729 0.0766 0.0855
0.0851 0.0830 0.0827 0.0865 0.0394 0.0439 0.0422 0.0471 0.0486 0.0508 0.0518 0.0612 0.0654 0.07132
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0.0736 0.0716 0.0712 0.0752 0.0342 0.0388 0.0360 0.0388 0.0413 0.0423 0.0428 0.0512 0.0558 0.062¢ |
0.063¢ 0.0615 0.0610 0.0650 0.0300 0.0344 0.0310 0.0321 0.0353 0.0354 0.0353 0.0427 0.0474 0.0531
0.0543 0.0526 0.0520 0.0560 0.0266 0.0303 0.0268 0.0267 0.0303 0.0296 0.0292 0.0355 0.0402 0.0449
0.0462 0.0448 0.0442 0.0480 0.0235 0.0263 0.0231 0.0222 0.0253 0.0247 0.0242 0.0292 0.0340 0.0379
0.0392 0.0380 0.0374 0.0409 0.0206 0.0222 0.0136 0.0186 0.0220 0.0205 0.0201 0.0238 0.0285 0.0319
0.0331 0.0321 0.0316 0.0348 0.0178 0.0180 0.0162 0.0155 0.0185 0.0168 0.0167 0.0183 0.0237 0.0267
0.0278 0.0270 0.0267 0.0295 0.0150 0.0140 0.0130 0.0129 0.0153 0.0136 0.0139 0.0147 0.0196 0.0223
0.0232 0.0227 0.0226 0.0248 0.0124 0.0103 0.0099 0.0107 0.0123 0.0108 0.0115 0.0110 0.0160 0.0185
0.0193 0.0190 0.0191 0.0209 0.0098 0.0070 0.0071 0.0087 0.0097 0.0084 0.0034 0.0079 0.0129 0.0154
0.0160 0.0159 0.0161 0.0175 0.0075 0.0044 0.0046 0.0070 0.0075 0.0064 0.0076 0.00S5 0.0104 0.0127

3.0
3.1
3.2
3.3
3.4
5
3.6
3.7

0.0132 0.0133 0.0137 0.0146 0.0055 0.0023 0.0026 0.0055 0.0056 0.0048 0.0062 0.0037 0.0082 0.0105
0.0108 0.0111 0.0117 0.0122 0.0037 0.0009 0.0012 0.0044 0.0041 0.0034 0.0049 0.0027 0.0065 0.0087
0.0088 0.0092 0.0100 0.0101 0.0021 0.0000 0.0002 0.0035 0.0028 0.0024 0.0039 0.0022 0.005! 0.0071
0.0071 0.0077 0.0085 0.0084 0.0008-0.0005-0.0003 0.0028 0.0018 0.0016 0.0032 0.0022 0.0040 0.0059
0.0058 0.0063 0.0073 0.0069-0.0003-0.0008-0.0004 0.0025 0.0010 0.0003 0.0025 0.0026 0.0032 0.0048
0.0046 0.0052 0.0063 0.0057-0.0013-0.0009-0.0002 0.0023 0.0003 0.0003 0.0021 0.0030 0.0025 0.0039
0.0036 0.0043 0.0054 0.0047-0.0020-0.0010 0.0000 0.0022-0.0003-0.0002 0.0017 0.0035 0.0019 0.0031
0.0029 0.0035 0.0047 0.0039-0.0026-0.0011 0.0002 0.0022-0.0008-0.0006 0.0014 0.0039 0.0014 0.0025

3.8
3.9
4.0

0.0022 0.0029 0.0040 0.0032-0.0030-0.0013 0.0003 0.0022-0.0011-0.0009 0.0011 0.0040 0.0011 0.0020
0.0017 0.0023 0.0034 0.0026-0.0031-0.0014 0.0004 0.0020-0.0012-0.0011 0.0009 0.0040 0.0008 0.0016
0.0013 0.0018 0.0028 0.0021-0.0030-0.0014 0.0003 0.0018-0.0012-0.0012 0.0007 0.0039 0.0006 0.0012




part of the momentum distribution is independent of temperature,
is approximately correct. Most of the differences between the
various J(y)'s seen in Fig. (2) are the result of statistical
fluctuations. This is because in performing the cosine transform
in Eq. (2) for a superfluid we assume that n(r) equals its
asymptotic value, ng, for r>Rg, where Rc is taken to be 5.5 A.
Because the assumed value of ng has statistical fluctuations of

the order of d®np =0.005, this procedure will intrcduce noise in

J(y) of the form dngsin(yRg)/(my) . Thus, the statistical error

in J(y) at small y can be as large as 0.01A, about what is
cbserved in Fig. (2).

DENSITY DEPENDANCE OF THE MOMENTUM DISTRIBUTION.

The data in Table 1 are at three different densities in

units of atoms/A3. The lowest density is very close to SVP
where most theoretical and experimental studies have been
carried out. The intermediate density, 0.02596/A is near the
liquid-solid transition at zero temperature. Fig.(3) shows J(y)
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Figure 3: J (in A) versus Y (in A~l) for liquid helium at a

density of 0.026/A3 and temperature from 1.2K to 4K.

at the higher density. It is seen that the curves at low and
high density are quite similar. The main effect is that the
zero-temperature kinetic energy has increased from 14.2K to
19.1K. The condensate fraction drops from 8% at SVP to 3%.




This 1is in agreement with GFMC calculations’/ but not with

neutron scattering experiments of Sokol.8 Finally, Table 1
contains J(y) for an even higher density which cuts through the
liquid-solid line.

VARIATION OF THE MOMENTUM DISTRIBUTION FROM LIQUID TO SOLID

At a higher density, we have computed the momentum
distribution in both the liquid and solid phase (both a fcc
structure and a bcc structure). The results are given in Table
1. Fig. (4) compares the J(y)'s from these calculations It is
seen that the momentum distribution is very insensitive to
whether the system is in a liquid or solid phase, less sensitive
than the pair correlation function, for example. Neutron
scattering measurements at the same density and temperature also

show this independence with respect to the phaseg. The momentum
distribution is controlled by the cage surrounding an atom and
the local environment does not change much when going from a
normal ligquid to a solid. That is controlled mainly by the
density. We have not looked for angular dependance of the
momentum distribution in the solid phase.
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Figure 4: J (in A) versus y (in A~1l) for liquid and solid

helium at a density of 0.0288/A3 and temperatures from 1.6K to
4K.




EFFECT OF DIMENSIONALITY ON THE MOMENTUM DISTRIBUTION.

The theoretical description of superfluidity in two
dimensicnal He films is given by the theory of Kosterlitz and
Thouless, rather than by the macroscopic occupation of the zero
momentum state as it is bulk (3 dimensional) He. According to
this theory the end-to-end distribution of the polymer in Fig.
{1), n(r), decays algebraically to zero at all finite
temperatures, if the system is superfluid:

n(r) = ng (d/r) "M where N = mkT/2xhZp (3)

The exponent 7| goes to zero linearly with the temperature; thus
np is the 2 dimensional analogue of the condensate fraction.
Ref. (10) contains the results of path integral calculations in
the zero pressure liquid. 1In that paper, it was determined that
2 dimensional He films will become superfluid below 0.72K, and
that no = 0.22 and d = 3.7 A. This value of ng is similar to
the results of Green's Function Monte Carlo calculationsll,The
parameter d has the interpretation in the Kosterlitz-Thouless
theory of the vortex core size.

In Fourier transforming to get J(y) one arrives at a
singular behavior at small momentum, not a delta function:

J(y) = yn-1 (4)

The difference in the path integral simulations between the
behavieor in two and three dimensions is very noticeable. However
experimentally it is not clear whether there will be such a
pronounced effect of the dimensionality after the distribution
function is broadened by instrumental and final state effects.

TWO BODY OFF-DIAGONAL DENSITY MATRIX,.

The experimental search by neutron scattering for the
momentum condensate actually measures the density-density

response function, S(k,®). At very high momentum transfers

S(k,®w) can be calculated with the aid of the impulse
approximation and becomes proportional to the momentum

distribution. However, S(k,®) converges exceedingly slowly to
this 1limit. Agreement between experiment and theory is only
cbtained with the use of more accurate expressions for these
final state effects. For a detailed discussion see other

contributions in this volume and their references. One of the
major inputs to the final state effect calculations is the
probability that a spectator atom carries off some of the
momentum of the neutron which is proportional to the expectation
value of

% afk+q afn—q dan ak (5)

where a and at are destruction and creation operators in
momentum space. The Fourier transform of this operator can be
written in coordinate space as the probability distribution that
the two ends of the polymer are at positions r] and ri1' and one




other atom is at position r,. Let us define n2(rj,r1',r2:;B) as
that distribution function, normalized so that the integral over
r2 is the single particle off-diagonal density matrix,
n1 (r1,r1':P).

We have calculate n2 with Path Integral Monte Carlo. The

full analysis of this function and its consequences for analysis
of final state effects in neutron scattering will appear

elsewhere. Here we will simply compare to a simple statistical
approximation, similar in spirit to the superposition
approximation of classical liquids. Let g(r) be the radial

distribution function, the average density a distance r from one
atom divided by the total density. Then at small and large ri-
r1' it is reascnable to write:

n?(x1,x1°,12;P) = m(x1,r1':P) [glxra-ri)glz-r1") 112 (6)

To compare nz with n>2 we have fixed the end-to-end distance of
the polymer, rj-ri1', at 4 A and averaged over the angle between
r1-r1' and ri-r2. Shown in Fig. (5) are the approximate result
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Figure 5: The sphericalized two partide density matrix at a
density of 0.022/A3 and temperature 1.2K with r; - r1' = 4A,
The upper curve with noise is the result of PIMC. The smooth

curve is the result of Eg. (6).




(the curve without noise) and the exact result (with statistical
noise) for the spherical average of nz around ri at a
temperature of 1.2K and at SVP. The approximation is fairly
accurate except at the first peak where it is too small by about
10%. Similar results are obtained at other values of rj-r)' and
at other temperatures.

CONCLUSIONS.

The path integral method is able to calculate quite
accurate momentum distributions for bose systems at finite
temperature. At the present time there are no significant
discrepancies with respect to experiment.
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