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Abstract

Quantum simulations, successful for simple systems, remain difficult for atoms with
core electrons. We discuss the possibility of replacing core electrons by a local yet angular-
momentum dependent pseudo-Hamiltonian where momentum operators appear only to
the second power, as required by fixed-node Quantum Monte Carlo. We describe two
ways of constructing it from norm-conservin g local-density atoms: a simpler approach,
which works for s-p atoms, and a more sophisticated one, based on a simulated-annealing
technique, which fixes s, p and d states. The use of this new pseudo-Hamiltonian in Green’s
Function Monte Carlo (both fixed-node and release-node) gives accurate electron affinities,
ionization and binding energies for second-row atoms and diatomics. This opens the way

to quantum simulations of many condensed-matter systems.



1. Introduction

Quantum Monte Carlo (QMC) methods, in particular Green’s Function Monte Carlo,
can achieve remarkable accuracy for total ground s tate energies including correlation
effects that are left out or approximated by other computational methods such as Hartree-
Fock, or local-density-functional theory and can treat systems of up to 1000 electrons,
far beyond the capabilities of configuration-interaction methods. Examples of such
calculations include the ground state properties of liquid and solid 3He and “He (Kalos
et al. 1974), the homogeneous electron gas (Ceperley and Alder 1980), solid hydrogen at
high pressures in the molecular and atomic phases (Ceperley and Alder 1987), and many
small molecules (Anderson 1975, Reynolds et al. 1982, Moskowitz et al. 1982). However,
the presence of atomic cores slows the convergence of the simulation to such an extent
that calculations of atoms heavier than neon appear not to be feasible. There are several

related problems (Ceperley 1986):

(i) the distances and energies of the 1s electrons determine the time step of the simulation
and these scale with the atomic number as Z?2

(ii) the statistical errors are proportional to the correlation energy, which, for Z< 20,

increases as Z!'®, while the physically relevant valence energies are more or less
constant throughout the periodic table; finally

(iii) the computational effort per step of the simulation increases as the total number of

electrons cube.

Combining all the effects the total computational effort shows a very strong dependence
on the atomic number Z; estimates are between Z5-5 (Ceperley 1986) and Z%5 (Hammond
et al. 1987). It is then very desirable to eliminate the core electrons completely which will

hopefully allow Monte Carlo (MC) simulations of heavier atoms in extended systems.
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Pseudopotentials, model potentials or frozen core approximations have a very long
history (see e.g. Cohen and Heine 1970, Heine and Weaire 1970, Bassani and Pastori
Parravicini 1974, Schliiter and Sham 1982); the state of the art is such that much more
serious approximations are made today in solving the correlated atom than in reducing
an atom to a pseudoatom. Modern pseudopotentials, born within local-density-functional
or Hartree-Fock theory, (see e.g. Bachelet et al. 1982, and references therein) have been
successfully tested in the context of variational MC calculations by Fahy et al. (1988);
however, being nonlocal (they contain angular-momentum projection operators), they
are generally inappropriate for QMC simulations. To extend the concepts of modern
pseudopotential theory to QMC simulations (and in general beyond single-particle theory)
the development of entirely new theoretical and computational tools is required (Bachelet
et al. 1988, Hammond et al. 1988). What we present in this paper is the possibility of
totally replacing the core electrons by a local yet angular-momentum dependent atomic

Hamiltonian in such a way that the methods developed for QMC are still applicable.

2. Green’s Function Monte Carlo

In Green’s Function Monte Carlo (Ceperley and Kalos 1979) one begins by sampling
an ensemble of configurations R (R is the set of 3N coordinates and N is the number of
electrons) from some arbitrary probability distribution f,(R). This probability distribution

is then iterated:

fuin (R) = / G(R, R':t)fu(R) dR' . (1)

where n is the iteration number and G the Green’s function:



G(R,R';t) = W(R)WW(R) < R| exp|-t(H — E;)] | R' > . 2)

Here W(R) is the trial function, H the Hamiltonian, ¢ the time-step (the imaginary
or thermal time-step) and F,. the trial energy. At large n, f,(R) approaches ¥(R)®,(R)
where @,(R) is the ground state wave function. As the trial function approaches the
ground state wave function the variance of the estimate of the ground state vanishes. This
is the chief motivation for applying importance sampling and makes QMC simulations of
large systems practical.

The main limitation of Green’s Function Monte Carlo arises from the need to keep the
Green’s function non-negative (Schmidt and Kalos 1984) so that it can be sampled as a
probability distribution. One can, in fact, treat Green’s functions with negative pieces; one
simply samples the ab solute value of G and carries along the sign as a weight. However,
for large values of n this gives rise to an exponentially growing noise. In condensed matter
physics, this procedure is known as either the release-node (Ceperley and Alder 1984) or the
transient-estimate (Schmidt and Kalos 1984) method. Such methods are not appropriate
for large systems, since the statistical error grows rapidly with the number of particles.

Any fermion system will have a Green’s function with negative pieces because the trial
function changes sign whenever two electrons with the same spin exchange. The fixed-node
approximation (Anderson 1975, Ceperley and Alder 1980, Reynolds et al. 1982, Moskowitz
et al. 1982) is made in order to treat these systems. There one divides the configuration
space into two volumes: a region where W(R) is positive, and a region where ¥(R) is
negative. The fixed-node Hamiltonian equals H for matrix elements within the same
region but matrix elements from one region to the other are set to zero. There are three

important properties of this approximation:



(1) The fixed-node Green’s functions is non-negative so that the error wi 1l decrease
inversely proportional to the square root of the number of steps of the random walk.

(2) The fixed-node energy is an upper bound (Ceperley and Kalos 1979) to the true
fermion energy: Epy > E,.

(3) As the nodes of ¥ approach the nodes of @, (i.e. the region where @,V is negative
vanishes) Fry—F, vanishes quadratically. Only the position of the nodes is important,
not the values of the trial function anywhere else.

The first property allows one to simulate many-fermion systems: the second and third

show the method is variational. In fact, in most systems the error introduced by the fixed-

node approximation is extremely small. The use of Hartree-Fock nodes will give 99% of

the correlation energy for typical el ectronic systems (Reynolds et al. 1982, Moskowitz et

al. 1982).

3. Atomic pseudo-Hamiltonians and quantum Monte Carlo

We show here that to preserve the three properties discussed at the end of the previous
section the Hamiltonian must be local and contain at most second derivatives. If H is
a non-local Hamiltonian, and its matrix elements between the two regions are deleted,
properties (2) and (3) will not hold in general. For that reason we restrict ourselves to
local Hamiltonians only. Such a Hamiltonian can be expanded in powers of momentum

operators:

H=g[R)+> ga(R)pa+ > gar(R)papp + --- - (3)
a a,b

Now for (1) to hold G(R, R,;t) must be positive for all R and R, in the same region.

Suppose we construct the second moment of G about R,,
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cap(Rojt) = / (R = Ro)a(R — Ro)yG(R, Ro;t) dR . (4)

This tensor must be positive definite for all trial functions (except if ¥(R,) = 0), and
times ¢; since it vanishes at zero time (G reduces to a delta function), the derivative of ¢

at zero time must be positive definite. This can be explicitly evaluated to give:

0°H
— g v 5
o (5pa3pb> ( )

where first we take the time derivative of Eq. (4), use the definition of G, Eq. (2), the

dcab
dt

hermitian property of H, and then commute the R’s with the momentum operators.
Suppose the highest power of the momentum in H is n. Then dc/dt|, will be proportional
to the (n — 2)th derivative of the trial function and, unless n = 2, dec/dt|, (and thus c)
cannot be made positive definite for all choices of the trial function which, in turn, implies
that G will have negative pieces. In conclusion, for G to be positive for all R and R, in
the same region, it is necessary that n = 2 and that the tensor (82H / apaﬁpb) be positive
definite. The above three requirements and hermiticity lead to the following general form

of a Hamiltonian:

H=V(R)+ Zpagab(R)pb (6)
a,b

where the tensor g, is positive definite. To simplify further, suppose that the pseudo-

Hamiltonian (PH) for a collection of atoms has the same structure as the full Hamiltonian:

H:Zi—%ZV§+Zh[(TU) . (7)

i<y |
Atomic units are used throughout this paper, 7 and j refer to electrons and I to ions. The

most general form of the atomic PH with these properties (and spherical symmetry) is:

b(r)L?
272

h(r) =~ Va(r)V + “ 5 o) (8)



where a(r), b(r) and v(r) are radial functions, and L? is the usual angular momentum

operator. Since the tensor (82H / 8pa8pb) must be positive definite we require:

a(r)+1>0, a(r)+b(r)+1>0 . 9)

Notice that if the above requirement is not fulfilled the Hamiltonian is not bounded below.
On physical grounds it is rather evident that outside the core of an atom a and b will vanish
and v = —Z,/r (Z, is the valence charge). By modifying the kinetic energy operator
inside the atomic cores we are, in effect, making the electronic mass position and direction
dependent. This is to be distinguished from a momentum dependent mass (see e.g. Cohen
and Heine 1970) which would not lead to a suitable Hamiltonian.

We have argued that there is very little freedom in choosing the PH once one has
accepted conditions 1-3 and that it be a sum of atomic Hamiltonians. One possibility is
to keep 1-3 but make the local potential a more general function of R; for example, one
could modify the electron-electron interaction inside the core to mimic the effects of core
polarizability. We do not consider such a possibility here. Other authors (Hurley and
Christiansen 1987; Hammond et al. 1987) have made a local potential by projecting a
non-local potential onto a Hartree-Fock trial function. That doe s not satisfy conditions

(2) or (3) since it requires the trial function be accurate everywhere, not just at the node.

4. Atomic pseudo-Hamiltonians and norm-conserving pseudopotentials

Our general goal is to replace the true system (a full-core atom) with a pseudo system
(a valence-only atom). The latter should ideally reproduce the behavior of the former
outside the core region in a wide variety of situations: not only for a reference atomic
configuration (e.g. the ground-state valence configuration), but also in a molecular or

solid-state environment. In other words the ideal atomic PH, though energy independent,
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is highly transferable: it should closely track the true Hamiltonian over a wide range of
energies around the atomic ground state, so that, even if the formation of bonds and bands
shifts the energy eigenvalues away from the atomic ground state, the pseudoatom continues
to behave like the true, full-core atom.

Hamann, Schliiter and Chiang (1979) have shown that, whenever the many-body
problem is reduced to a set of self-consistent single-particle equations (for example in
local-density-functional or Hartree-Fock theory), the above requirement is met by norm-
conserving pseudopotentials, which, for a given valence configuration, identically reproduce
the valence states of a full-core atom outside the core: this ability also ensures optimum
transferability, because of a remarkable relation between the integral of the wavefunction
squared and the energy derivative of the logarithmic derivative of the wavefunction (see
e.g. Landau and Lifschitz 1966). Norm-conserving pseudopotentials are such that, for each
angular momentum /¢ which is relevant to the valence properties of the atom, the bound-
state eigenvalue ¢, is identical for either pseudo (PS) or full-core atom (F'C), and, which
is very important, outside some core radius r > r. the normalized radial wavefunction ry,,

and thus the logarithmic derivative x}/x,, are identical:

S =xew  [LO]T e (10)
E=¢ E=¢

Away from ¢, discrepancies are only second order in th e energy ¢ — &4, because Eq. (10)

plus normalization implies that the first energy derivative is identical at ¢, (Hamann et al.

1979):
d [xe'(r) s _ 2 " W PS (2 = 2 " A FC (! »_ d [xd(r)
%[mmL:q‘EWEA‘im()]—ﬁﬂﬁl‘fm o= [

(11)
As mentioned, the exact fulfillment of the above conditions is relevan t only for angular

momenta which correspond either to occupied valence orbitals in the atom, or to empty
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orbitals whose energy is low enough to be potentially involved in the bonding process. This
gives angular-momentum dependent nonlocal pseudopotentials, reflecting the physical fact
that different partial waves feel the effect of orthogonality to different core shells. For most
atoms excellent norm-conserving pseudopotentials are obtained by imposing Egs. (10,11)
to s, p and d pseudowavefunctions (see e.g. Bachelet et al. 1982); for many atoms it may
be sufficient to fix only s and p waves.

Since local-density-functional and Hartree-Fock theories successfully describe many
properties of atoms, molecules and solids, it is very likely that the angular-momentum
dependence is a general property of transferable PH’s and is needed in the exact many-
body theory. The fact that the bare-ion pseudopotentials derived from either local-density-
functional or Hartree-Fock theory are essentially identical (Gygi and Baldereschi 1986)
in spite of the different approximations involved in the two approaches further suggests
that the norm-conserving pseudopotentials derived in that context represent an excellent
approximation to their general many-body counterpart.

In a single-particle theory like local-density-functional theory the form of our PH
allows us in principle to fix up to three partial waves. The radial Schrodinger equation for

a single-particle state of angular momentum ¢ is for our PH:

d? Ll+1) 1da (d 1
dr? dr

1
—let)og +(atb+1) = — o ——;>+v+vHX0]Xe=€eXe , (12)

where v,y is the sum of the Hartree and exchange-correl ation potentials. We determine
the three functions a, b and v by demanding that, in a given valence configuration, the self-
consistent valence eigenvalues and radial eigenfunctions which solve Eq. (12) be identical
to those of some norm-conserving /-dependent pseudopotential vy(r) (see e.g. Bachelet et

al. 1982) . Subtract the pseudopotential Schrodinger equation from Eq. (12): vyxe and &4
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drop out and

dr? r

2
—ad——}-(a-l-b)e(gri—;l)—%(dir—l>—l-2(v—vg)}>@:0 . (13)

If the reference atomic configuration contains s, p and d orbitals, Eq. (13) gives for
£ = 0,1,2 three conditions for the three functions a, b and v, which are thus uniquely
determined: one gets a first order differential equation for a and, once that is solved, b
and v are obtained in terms of a, da/dr and combinations of pseudopotentials and self-
consistent wavefunctions. From their form one recognizes that a, b and v automatically
recover correct behavior outside the core (a—0, b—0, and v——2Z2, /r for r > r.).

It appears that we have a prescription to build up a local norm-conserving Hamiltonian
which exactly mimics the action of an /-dependent, nonlocal pseudopotential for the three
partial waves s, p and d, and thus excellent for the vast majority of atoms (only lanthanides,
rare earths and few other atoms really need an accurate f—wave, and, for these atoms,
pseudopotentials are less accurate anyway: see e.g. Bachelet et al. 1982). Unfortunately
upon actual calculations it turns out that the a and b functions resulting from Eq. (13)
for £ =10,1,2, do not satisfy the conditions of Eq. (9) for many atoms and various types
of norm-conserving pseudopotentials. Fortunately, as already mentioned, there is a large
class of atoms which form s-p bonded molecular and solid-state systems, and for them two
partial waves are usually sufficient. As a first attempt we can then concentrate on these
atoms, and, instead of fixing three partial waves (s, p and d) we only focus on two of them
(s and p). We drop the differential equation for a, and with some trial and error choose the
simple analytic form a = a, exp|—(r/r.)*] which vanishes outside the core (r > r.). Now
Eq. (13) can be used to fix exactly two partial waves (e.g. s and p). The three parameters

Go, T and k are chosen such that
(i) the range of a(r) roughly agrees with the physical extent of the atomic core
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(ii) Eq. (9) is satisfied, and
(iii) the d states are reasonably reproduced.

Our choice of a,, 7. and k is shown in Table I for Na, Mg, Si and CI; the radial functions
a, b and v are shown in Fig. 1 for Si. The Si logarithmic derivatives, important for
transferability, are plotted against energy in Fig. 2, and show that the new PH is of

comparable quality as the original, nonlocal pseudopotential.

5. Second-row s-p atoms and molecules

Now we present some tests of our new pseudo-Hamiltonian: a set of QMC calculations
for second-row atoms and diatomic molecules (Bachelet et al. 1988). Our MC calculations
have been performed with a simple generalization of the diffusion MC algorithm (J.B.
Anderson 197; Ceperley and Alder 1980; P.J. Reynolds et al. 1982; Moskowitz 1982). This
makes an approximation to the Green’s function of Eq. (1) which is exact in the limit
of small time steps. The more rigorous and efficient, but complicated, Domain Green’s
Function Monte Carlo algorithm would dispense with this time-step error (Kalos et al.
1974). 1In either algorithm there are three basic steps: branching, diffusion and drift.
The program for the PH runs somewhat slower than one with a constant mass for these
small systems but for a large system there will be no appreciable increase in computational
time. We have used the same trial wave function employed in other QMC calculations (P.J.
Reynolds et al.); a pair-product, Slater-Jastrow function, where the molecular orbitals are
linear combinations of the single particle local-density-functional orbitals. The parameters
in this trial function are fixed by minimizing the variational energy with the reweighting
method (Ceperley and Kalos 1979). For atoms we use a minimum basis set while for
molecules we add a few extra p functions in the bond direction and a Gaussian in the

middle of the bond. This type of functions works well if a(r) does not approach —1, but

10



for Cl the pair correlation term should include some radial dependence to account for the
sizable change of the effective mass in the core.

Variational MC (evaluation of the trial function energy), fixed-node diffusion MC and
release-node MC calculations have been performed on the atoms and molecules shown in
Table II. Release-node calculations were performed to determine the accuracy of the PH
and of the fixed-node approximation. It is possible to converge to the exact energy, but
that procedure becomes more costly for systems with more electrons. The calculations
shown took between 1 minute of CRAY time (for Na) to 2 hours (for Cly).

The accuracy of the PH varies. The electron affinities are in perfect agreement with
experiment (Weast 1988) to the accuracy shown (which varies from 0.7 mH for Na to
4 mH for Cl). The same holds for the first ionization potentials of Si and Cl, while the
experimental ionization potential of Na and Mg is outside the QMC error bar by 6 mH and
4 mH respectively. The homo-nuclear diatomic binding energies are in excellent agreement
with experiment for Sia, Cls and Mgs, but 10% too low for Nas. This discrepancy may
be related to the problems pointed out by Louie et al. (1982) for atoms with few valence
electrons. Fig. 3 compares the Siy binding energy curve as calculated with PH-QMC and

the configuration-interaction method (McClean et al. 1984).

6. Further refinements: s,p and d exact

As already mentioned, if one looks for the exact solution of Eq. (13) using available
s, p and d norm-conserving atomic wavefunctions (as obtained e.g. following Hamann et
al. 1979 or Kerker 1980), then the resulting radial functions a(r), b(r) and v(r) do not
fulfill the conditions of Eq. (9). However the pseudopotential constructions suggested by
Hamann et al. in 1979, or by Kerker in 1980, are only two convenient procedures; many

other valid schemes can in principle be conceived. Norm-conserving pseudopotentials are
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by no means uniquely defined inside the core, and, on the contrary, for each atom there
exists a large class of equivalent norm-conserving pseudopotentials whose eigenfunctions
fulfill Egs. (10,11) but differ from each other inside the core. So instead of keeping
the existing pseudopotentials and giving up the d orbitals, as successfully done in the
previous two sections for s-p atoms, one may well consider a more general construction:
starting from a full-core local-density-functional atom one has to find a set of s, p and
d pseudowavefunctions which not only enjoy the property of “conserving the norm”
Egs. (10,11), but also, when plugged into Eq. (13), will yield radial functions a(r), b(r)
and v(r) which fulfill the conditions of Eq. (9). That such a set of pseudowavefunctions
exists at all is neither obvious nor easy to derive from our formulae: after expressing
the conditions of Eq. (9) in terms of pseudowavefunctions one finds a rather discouraging
nonlinear inverse-scattering problem. But the question is a very interesting one because
it crucially affects the possibility of using the local pseudo-Hamiltonian of Eqs.(8,9) for
d—metals. Two of us (Mitds and Bachelet 1989) have recently proposed to attack this
problem from the numerical side, by a simulated-annealing technique (Kirkpatrick et al.
1983, Cerny 1982, 1985 and Cerny and Novik 1986). The s, p and d radial wavefunctions

are expressed in the Kerker form

Xi°(r) = r*exp [pe(r)] (14)

inside the core (r < r.), but, instead of using polynomials or othe r analytic functions
which would considerably limit the variational flexibility, the three optimal p; functions
(£ =0,1,2) are searched among all the continuos bounded functions (with continuous first
derivative) which fulfill the matching condition in r. and the condition p,’ = r* with a>1

in the origin (which ensures that the pseudopotentials vy and the radial functions a, b and v
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remain finite in the origin). On the computer these radial functions may be represented on
a sufficiently dense regular grid. Both the norm conservation Eq. (11) and the conditions
on a and b expressed by Eq. (9) are then imposed via simulated-annealing techniques:
first a suitable energy (or cost) function is defined, which by construction is zero when all

conditions are satisfied and is otherwise always positive (C is a positive constant):

Eeost=E[a+ 1]+ Efla+b+1]+ » N (15)
£=0,1,2
Elf]=C / " 1) (signlf(r)] — 1) dr (16)

Ny = (17)

| (b0 = o)) ar

Then an appropriate dynamics in the space of the p, functions allows them to slowly
relax towards the minimum-energy configuration. What is the meaning of the minimum-
energy configuration? In principle there are two possibilities. If the minimum energy is
E o5t > 0, then the norm conservation Eq. (11) and the conditions expressed in Eq. (9) are
incompatible with each other, and the sought solution does not exist; the corresponding
set of three p,’s will only represent some trade off between Eq. (11) and Eq. (9). If, instead,
the minimum energy is E.,s¢+ = 0, then the corresponding p,’s are such that the conditions
of Egs.(9) and (11) are fulfilled, and an exact solution to our problem has been found. In
practice, on the computer, we will stop the simulation run as soon as F.,s reaches zero
within some desired accuracy.

In passing we would like to point out that the power and generality of the
proposed simulated-annealing method in the context of pseudopotential approach is by

no means exhausted by the present application. It is possible to find more appropriate
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representations of the involved functions and/or better strategy for movements on the
configuration space; only the most necessary terms were incorporated in the definition of
the energy Eqgs. (15-17), but other terms can be included too - for example, terms which can
increase the smoothness of the pseudo-Hamiltonian functions or which can limit a range
of the function values. More generally, a very large variational freedom of the method can
be used to further optimize traditional pseudopotentials; for example, to maximize their

smoothness.

7. Open problems for d-metals

After solving the d-wave problem (applications to silicon will be presented in the next
section) let us mention a severe problem which remains to be faced when studying transition
elements, especially those of the first row (Sc through Cu); this problem, quickly mentioned
at the end of Sec. 5, may also affect s-p atoms with few valence electrons and a shallow
underlying core (like Na). For these systems an accurate set of norm-conserving s, p, and
d—waves for a given valence configuration (the so-called reference atomic configuration,
for which the pseudopotential and the pseudo-Hamiltonian are constructed) may not be
sufficient to ensure optimum transferability, as pointed out by Louie

et al. (1982): whenever significant core-valence overlaps occur, the linearization of
the core-valence exchange potential, implicit in the “unscreening” procedure, becomes
a questionable approximation (see also Greenside and Schliiter 1983). Within local-
density-functional theory a cure to this problem was proposed by Louie et al. (1982)
and successfully applied by Greenside and Schliiter (1983) to first-row transition elements.
This cure can be extended to variational MC (Louie 1989) but again not to general QMC
techiques, and something else has to be invented. One possibility is to give up pseudoatoms

and try some frozen-core approximation, as proposed by Hammond et al. (1988); the
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comparison of their results with ours (the benchmark being the Si atom) suggests however
that a much larger error bar will result. Another possibility , which two of us are presently
testing for Cu, (Mit4§ and Bachelet 1989), is to include the shallow cores in the valence
shells, as e.g. done by Starkloff and Joannopoulos (1977). This, as expected, works quite
well, but the price is the inclusion of eight more electrons per atom (the underlying s-p
core), which also will increase the error bar in QMC simulations. In few words, this is an

open problem which requires new ideas.

8. Results for the silicon atom and conclusions

We illustrate the results obtained by the method presented in Sec. 6 for the case of
silicon. For the atom we have used the ionized configuration Si%t (3s! 3p%"® 3d%-2%) with
common 7, = 1.75 a.u. After some experience we have realized that the conditions of
Eq. (9) are much more difficult to fulfill than the norm conservation Eq. (11). Since then
we have started the simulations from configurations which fulfill Eq. (9) but not the norm
conservation, and used a value of C'= 1000 in Eq. (16). In this way during the simulation
run a(r)+1 and a(r) +b(r) + 1 remained positive as required by Eq. (9), due to the strong
effect of the term Eq. (16) in the energy-cost function, while the norms slowly converged
towards their correct values. For the silicon atom we stopped the simulation when the value
of E.,s was in the range of 10™#, entirely due to small residual discrepancies in the norms.
The functions obtained are shown in Fig. 4. The functions exhibit larger variations than
usual pseudopotentials. However, the corresponding pseudo wavefunctions (Fig. 5) are
smooth and similar to those produced by “traditional” norm-conserving pseudopotentials
(Hamann et al. 1979, Kerker 1980). With this new set of a, b and v functions we have
performed some preliminary diffusion MC simulations for Si?*. This is especially simple

because with two valence electrons the spatial part of the wavefunction never changes
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sign and one does not need any importance sampling; the diffusion MC is as simple as in
the H3+ calculations of Anderson (1975), except that a spatially varying mass has to be
introduced. The result obtained for the third ionization potential 1.222 + 0.021 a.u. is in
excellent agreement with the experimental value of 1.230 a.u. (Weast 1988). Compared to
straight diffusion MC there are higher demands on the computer time essentially because
of the rapidly varying mass inside the core.

The Si results just presented are evidently preliminary, but rather encouraging: the
new local pseudo-Hamiltonian Eq. (8) can reproduce the action of a nonlocal norm-
conserving pseudopotentials for all three partial waves in the test case of silicon and
gives excellent results for the two-electron Si?T pseudoatom. Tests of this new pseudo-
Hamiltonian for less simple physical systems and for various atoms, are underway.

A separate test which has its own interest concerns the one-electron excitations of the
Si3* pseudoatom. In Table III we compare the results of norm-conserving pseudopotentials,
the pseudo-Hamiltonian Eq. (8) obtained in Sec. 4 (Fig. 1), and the pseudo-Hamiltonian
obtained here (Fig. 5). What we do is to solve the Schrédinger equation for one electron
in the field of the bare pseudoion Si** in the ground state and various excited states, for
which detailed experimental results are available (Bashkin and Stoner 1975).

Comparing the various pseudoions considered in Table III it appears that the s,p,d
pseudo-Hamiltonian (PH-2) works much better than the s-p one (PH-1) for d—states,
as expected. But besides that a more general message comes from Table III: the
remarkable agreement with the experiment up to very high excitation energies suggests
that bare pseudoions obtained from a local-density-functional atom behave almost as real
physical objects; in other words, it confirms that the core-valence interaction may be well
represented (and then unscreened) within single-particle approximations. This was also

indirectly confirmed by the good results of our QMC-PH calculations for many-electron
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atoms and molecules (Table II, Fig. 3 and this section), which, on the other hand, also
showed that an exact description of valence-valence interaction is of crucial importance
for a more accurate description of condensed matter systems. By an exact treatment of
valence electrons, in fact, pathological features of local-density-functional and Hartree-Fock
theory (see e.g. Perdew and Zunger 1981) have disappeared: for example, our negative ions
are bound and the calculated electron affinities are in good agreement with experiment;
binding energies of our molecules are generally good and do not suffer from the overbinding
which results from local-density-functional calculations (Martins et al. 1985, Jones 1985,
1987).

In conclusion we have presented a method which successfully eliminates core electrons
from s-p atomic systems. Some challenges related to transition elements and shallow
cores remain open. Our local pseudo-Hamiltonian, which incidentally can also speed up
traditional local-density-functional calculations of very large scale, represents a promising
tool for the quantum simulation of many molecular and solid-state systems, and a good

starting point for further developments.
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Table captions

Table I

The parameters of the function a(r) = a, exp[—(r/r.)*] for the atoms shown, in atomic

units (see text).

Table II

The results of Bachelet et al. (1988), presented in Secs. 4 and 5. LSD: local-spin-density;
NLPP: non-local pseudopotentials (Bachelet et al. 1982); PH: pseudo-Hamiltonian, Eq. (8)
and Table I of this work (see Sec. 4). QMC: Green’s Function Monte Carlo, release-node
(Bachelet et al. 1989). The experimental values are from Weast (1988) for atoms and from
Huber and Herzberg (1979) for molecules. All energies are in hartrees. E.A.: electron
affinity; I.P.: ionization potential; Ep : binding energy of the homo-nuclear diatomic
molecule (no zero-point motion included) at the experimental bond separation. Shown in

parentheses is the error bar: 0.118 (3) = 0.118 4 0.003.

Table III

The energy levels of the Si3*. NLPP: nonlocal pseudopotentials (Bachelet et al. 1982);
PH-1: s,p pseudo-Hamiltonian (Bachelet et al. 1988, Secs. 4, 5 and Fig. 1, this work);
PH-2: s, p, d pseudo-Hamiltonian (Mitas and Bachelet 1989, Sec. 6 and Fig. 4 of this work).

Experimental values are from Bashkin and Stoner 1975.
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Figure captions

Figure 1

Silicon atom: the two kinetic-energy radial functions a(r) and b(r), and the atomic
potential, v(r), which characterize our local pseudo-Hamiltonian Eq. (8). Here we show
the silicon pseudo-Hamiltonian which fixes s and p states exactly, and d states only
approximately: a(r) has been parametrized and Eq. (13) solved only for £ = 0,1 (see

Sec. 4 and Table I). Atomic units are used. A dashed line shows the coulombic tail —4/r.

Figure 2

Silicon logarithmic derivative of the local-density-functional radial wavefunction Yy,
(evaluated at the covalent radius R = 2.1 a.u.) versus energy for s, p and d partial
waves. The pseudo-Hamiltonian of Fig. 1 has been used. The dot marks the position of
the eigenvalue €4. The solid lines are calculated with the full Si atom while the dashed

lines are with the Si PH (see Eq. (8), Sec. 4 and Table I).

Figure 3

The energy of the Sis versus bond length as computed with QMC-PH (symbols with
error bars, Bachelet et al. (1988), pseudo-Hamiltonian of Fig. 1), and with the full-core CI
method (dots, McClean 1984). The local-spin-density full-core result is shown as a diamond
(Jones 1985, 1987). The experimental binding energy and equilibrium bond length are E,

and R, respectively (Weast 1988).
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Figure 4

Silicon atom: the two kinetic-energy radial functions a(r) (solid line) and b(r) (dash-
dotted), and the atomic potential, v(r) (dashed), which characterize our local pseudo-
Hamiltonian Eq. (8). Here we show the silicon pseudo-Hamiltonian which fixes s and p
and d states exactly, obtained by Mitd§ and Bachelet (1989) by a simulated-annealing
technique (see Sec. 6). Atomic units are used. Here, unlike Fig.1, the coulombic tail —4/r

is indicated by a dotted line.

Figure 5

The radial wavefunctions x,(r) = rRe(r) which correspond to the bound state of the

pseudo-Hamiltonian shown in Fig. 4 for £ = 0,1,2. Atomic units are used.
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Table 1

atom ao Te
Na 0.
Mg -0.15 1.00
Si -0.74 1.30
Cl -0.80 1.10




Table II

Sodium Z=11 E.A. 11P 2 1P 3 LP. Eg
full core LSD 0.1974 -
NLPP + LSD 0.1932 0.0334 ¢
PH + LSD 0.1932 -
PH + QMC 0.0204 (7) 0.1951 (1) 0.0310 (6)
experiment 0.0201 0.1889 0.0269
Magnesium Z=12
full core LSD 0.2874 0.5635 0.0043 ®
NLPP + LSD 0.2804 0.5535 -
PH + LSD 0.2804 0.5536 -
PH + QMC not stable 0.2849 (3) 0.5585 (2) 0.0015 (7)
experiment not stable 0.2810 0.5525 0.00196
Silicon Z=14
full core LSD 0.3027 0.5996 1.2339 0.1470 ®
NLPP + LSD 0.3034 0.5993 1.2212 -
PH + LSD 0.3034 0.5989 1.2205 -
PH + QMC 0.051 (1) 0.301 (1) 0.6057 (7) 1.2356 (5) 0.118 (3)
experiment 0.0509 0.2995 0.6007 1.2308 0.119 (4)
Chlorine Z=17
full core LSD 0.4888 0.8819 1.4522 -
NLPP + LSD 0.4849 0.8750 1.4537 -
PH + LSD 0.4842 0.8720 1.4487 -
PH + QMC 0.138 (4) 0.475 (4) 0.878 (3) 1.461 (3) 0.08 (1)b
experiment 0.1329 0.4765 0.8750 1.4556 0.0924

a: Martins et al. 1985

b: Jones 1985, 1987




Table III

3s 3p 3d 4s 4p 4d 4f 5s
NLPP -1.659 -1.341 -0.936  -0.781 -0.672 -0.522  -0.501 -0.454
PH-1 -1.664  -1.347  -0.851  -0.848  -0.710 -0.494 -0.496 -0.524
PH-2 -1.659  -1.338 -0.933 -0.766  -0.661 -0.519  -0.518  -0.443
Exper. -1.659 -1.333 -0.928 -0.775 -0.664 -0.520 -0.501  -0.450




