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Abstract

One of Feynman’s early applications of path integrals was to superfluid
4He. He showed that the thermodynamic properties of bose systems are
equivalent to those of a peculiar type of “polymer” and thus can be treated
by the techniques to simulate classical systems. In this paper we discuss
the two major aspects of computational techniques developed for a boson
superfluids. We describe the construction of accurate approximate density
matrices to reduce the number of points on the path integral. We generalize
the Metropolis Monte Carlo method by allowing for multiple levels in the
sampling so as to move through the combined phase space of exchanges and
paths quickly. We develop a method of sampling correlated moves of several
atoms and a way to update the permutation associated with a path. Finally
we discuss methods of calculating the superfluid density and the momentum
distribution.



1 Introduction

Helium, under its own vapor pressure, is a liquid down to the absolute
zero of temperature. This is because interatomic forces are very weak in
helium and the large zero point motion due to the light atomic mass of the
atoms disrupts the formation of a crystal. This permits the manifestation
of macroscopic quantum effects such as superfluidity. At low temperatures
helium is very well described by a non-relativistic Hamiltonian with the
atoms interacting by a pair potential:

N
H:Z—)\V?+Zv(|m—¢j\) (1)
i=1

1<j

where N is the number of particles and A = h?/2m = 6.1 A2K for *He.
The pair interaction v(r) is known quite accurately both from theoretical
calculations and from interpretation of experiments in the gas phase. To a
first approximation, many of the properties of helium can be understood by
treating the potential as a hard sphere interaction with a radius of 2.5 A.
We will occasionally use the term hard sphere interaction, but all of our
numerical work on bulk *He has used the semi-empirical Aziz potential [2].

The most striking property of liquid helium is superfluidity. If a cylinder
containing helium at sufficiently low temperature is made to rotate (slowly),
the helium inside is unperturbed and will remain at rest, or in whatever
state it was initially prepared indefinitely. When R. P. Feynman introduced
path integrals, one of his early applications was to superfluid *He [3], [4]
[5]. Feynman showed that thermodynamic properties of boson systems are
mathematically equivalent to those of a peculiar type of classical “poly-
mer”. Each helium atom is mapped into a classical ring polymer interacting
with the original potential energy. But classical systems can be simulated
with Monte Carlo or Molecular Dynamics techniques. This implies that the
thermodynamic properties of a bose superfluid can be exactly calculated
on a computer. It is taken thirty years for simulation methods and com-
putational resources to be developed to a point where calculations of bose
superfluids are routine. Among the results that have been calculated are;
the energy, specific heat, radial distribution function, momentum distribu-
tion, condensate fraction and superfluid density of bulk liquid *He through
the superfluid transition in both 2 and 3 dimensions [6], [7], [8] [9] ; proper-
ties of solid *He; atomic exchange frequencies in solid *He and on graphite
substrates [11]; superfluid densities and energies of “He droplets [12] and



energies and superfluid densities in 2 dimensional charged bose liquids [13].
We have developed a number of techniques in order to use the path inte-
gral formalism to get precise numerical predictions for helium. A detailed
account of these techniques has not been previously published. This paper
is an attempt to convey the methods found useful for helium to a wider
audience.

All static properties and, in principle, dynamic properties of a many-
body system in thermal equilibrium are obtainable from the density matrix.
The basic path integral formula for the many-body density matrix is derived
by inserting a complete sets of states into the following identity for the
density operator

e PH — (e_%H)L (2)

written here for an inverse temperature or “imaginary time” = 1/kgT. In
real space this gives the density matrix as an integral over all “paths” with
density matrices at a higher temperature, LT

p(R, R 3) = (RlePH|R')
= [...[p(R,R;; )p(R1, Ra; ) ... p(RL-1, R'; 2)dR,dRy .(. .)dRL_1 .
3

The “path” is the sequence of points R, Ry, ..., R 1, R’ where R always rep-
resents the 3N coordinates of the N particles. Thermodynamical properties
or static properties diagonal in configuration space, are determined by the
trace of the density matrix, i. e. the integral of Eq. (2) over R with R = R.
The formula for diagonal elements of the density matrix then involves a path
which returns to its starting place after L steps. Other properties such as
the momentum distribution are calculated by using the off-diagonal density
matrix, i. e. R # R'. The “time-step” of the break-up in Eq. (2) is 7 = /L.
A single R; is often referred to as a “time-slice”.

This identity, which breaks up a single density matrix at 8 into L density
matrices at a higher temperature, is the key to the simulation because at
a sufficiently high temperature one can write down accurate expressions
for the density matrix, even for a many-body system. The simplest such
expression, but one which contains all of the physics, is the semi-classical or
primitive form. The Trotter theorem says:

“BAH — 1im (efTTefTV)L . (4)

e

Explicit formulas can be written for the two terms in this equation. The



exponential of the kinetic energy operator is the free particle density matrix:
po(R, R';7) = (Rle™™|R') = (4mA7) "2 exp [~(R - R)?/4xt|  (5)

where d is the spatial dimensionality. The matrix elements of the potential
energy term are simply:

<R|€7TV|RI> _ (S(R i Rl)ef"rV(R). (6)

If these formulas are inserted in Eq. (3), the polymer picture becomes
obvious. Interpreting the integrand of Eq. (3) as a classical configuration
integral at a fictitious temperature of unity, the exponent equals the “poly-
meric” potential energy:

L (Ri — Riv)?
Z( )

o+ TV(R) (7)

i=1

where Ry = R and Ry = R'. Let us call the position of one atom at
one time slice a “bead”. Then in the classical analog, the first term in
Eq. (7) (resulting from the kinetic energy operator) corresponds to springs
connecting each bead with beads representing the same atom at successive
imaginary times. The helium-helium potential is represented by a peculiar
inter-polymeric potential. It is peculiar from the classical point of view
in that it only interacts at the same “time”, and only between beads on
different chains

A diagonal simulation of distinguishable helium atoms is represented
by a system of ring polymers since the chain must return to its starting
position. Keeping 7 fixed (which keeps the strength of the springs and
the intermolecular potential fixed) and adding more beads to each polymer
corresponds to larger 3 or equivalently taking the quantum system down to
lower temperature. Zero temperature corresponds to infinitely long chains.
One might worry that the density of beads is increasing in the process of
adding beads and sooner or later the space will be completely filled. This is
not the case because only beads at the same “time” interact and hence any
given bead always sees the same number of other beads.

The density matrices up to this point have been appropriate to “distin-
guishable particle” statistics, or “Boltzmannons”. Bose or Fermi statistics
are introduced by applying the symmetrization operator:

1
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where the sum is over all permutations P in an N particle system. For
boson systems each term in the sum is positive and we can continue to use
the classical polymer analogy. For fermions the cancellation between the
contributions of even and odd permutations generally rules out a Monte-
Carlo evaluation of the integrand without some major modification. In cases
where a few permutations dominate the sum in Eq. (8), e.g. solid 3He, the
contributions of these specific permutations may be computed, but general
techniques for fermion systems are not yet known and the fermion case will
not be discussed in this paper. Although we only address the problem of
superfluid boson systems, we expect the method developed here to be much
more generally useful.

Basic thermodynamic properties come from the diagonal elements of the
density matrix which correspond to paths which end on a permutation of
their starting positions. Any permutation can be broken into a product
of cyclic permutations. Each cycle corresponds to several polymers ’cross-
linking’ and forming a larger ring polymer. Cross-linking or exchange is
entropy driven because of the large number of possible cross-linked config-
urations. According to Feynman’s theory and our numerical results, the
superfluid transition is represented in the classical system by the formation
of a macroscopic polymer, i.e. one that stretches across an entire system.
The property of superfluidity, flow decoupled from the boundaries, appears
when paths wind around the entire volume of the sample. Condensation of
atoms into a zero momentum state is equivalent to the unbinding of the two
ends of a cut polymer.

These sums and integrals of the paths are an obvious candidate for Monte
Carlo evaluation as soon as L is sufficiently large that an accurate approx-
imation is known for the “short time” or high-temperature density matrix
p(R;, Ri11; 7). But a straight-forward approach to the evaluation by Monte
Carlo methods can run into difficulty due to the nature of the integrand.
The quantum many-body problem is mapped into a system of interacting
“polymers”. But time scales for relaxation of polymers can be very long,
once they become entangled. In the quantum case the analogous polymers
become overlapping when the thermal deBroglie wavelength is comparable
to the interparticle spacing, which is precisely when quantum many-body
effects are important.

Let us briefly mention other simulations of *He at low temperature.
First, Green’s Function Monte Carlo (GFMC) methods have been used to
calculate many of the same properties of liquid *He at zero temperature [14].
GFMC is a technique closely related to path integral Monte Carlo (PIMC).



However, it has its own advantages and disadvantages. In GFMC an ensem-
ble of points R; is kept in the computer memory and the algorithm consists
of a random diffusion, drift and branching of those points. The random walk
continues for an indefinite time. In PIMC there is a definite number, L, of
configurations connected on a path. The path is sampled for an indefinite
amount of time to increase the statistical precision of the results. GFMC is
much more efficient at computing the ground state energy and other prop-
erties derived from the ground state energy such as the density at which
helium solidifies. Other properties such as the pair distribution function are
more difficult since the simulation calculates averages with respect to the
product of the ground state wave function and an assumed trial wave func-
tion not the square of the ground state wave function. Removal of the effect
of the trial function is inherently biased. PIMC does not have this difficulty.
Of course the major advantage of PIMC is the ability to calculate non-zero
temperature properties. In addition, properties such as the superfluid den-
sity and the tunneling frequency in solid *He are more simply expressed in
terms of path integrals.

As far as we are aware there have been few attempts to directly simulate
liquid *He with PIMC. Kikuchi et. al. [23] calculated exchange of atoms
confined to a lattice. In recent years there have been many simulations of
related lattice models such as the classical XY model. Doll et. al. [15] stud-
ied liquid helium in the normal phase with a Metropolis algorithm based on
sampling paths in Fourier space [15]. Takashi et. al. [16] used a Metropolis
sampling method in configuration space but were able to get a significant
number of atomic exchanges only by having 7 > 1./15K. Although this
gives a reasonable model for He, one cannot check the convergence without
going to smaller 7, which was precluded by their sampling methods. Abra-
ham et. al.[17] simulated *He on a graphite substrates but neglected atomic
exchange.

The computational task of simulating a superfluid can be broken into
two parts. First, it is necessary to make some approximation to the high
temperature density matrix so that an excessive number of beads is not
needed to reach superfluid temperatures. In fact, with the methods that
we will describe, only 20 beads are needed to reach 2K. This question is
examined in Section 2. Second, it is necessary to adequately sample the
“path-space ” with a reasonable amount of computer time. The Metropolis
Monte Carlo method is used for this, but specialized techniques are needed
to move the paths since atomic paths must be exchanged many times to
see the effects of superfluidity. Sampling methods are discussed in Section



3. Section 4 discusses the computation of the momentum distribution and
section 5 that of the superfluid density.

2 The High-Temperature Density Matrix

It is clearly desirable to keep the paths as short as possible (L as small
as possible) which requires a good approximation for the high-temperature
density matrix. We have found that accurate simulations of helium atoms
using the semi-classical density matrix approximation, Eq. (7), would re-
quire an L = 1000 to reach the temperature of the superfluid transition.
In this section we discuss a modified Feynman-Kac formula which gives the
relationship between any approximate density matrix and the exact many-
body one. This formula can either be used to generate approximations, or
to estimate the correction to an approximation. We will apply it to finding
an accurate high-temperature density matrix.

Conventional methods of generating approximate density matrices typi-
cally involve semiclassical expansions in 7, e.g. the Wigner-Kirkwood (WK)
expansion. In this expansion the correction to the classical distribution
function can be expressed [22] as a potential energy function modified by
quantum diffraction effects:

SV(R) = A/12(§: 72F? + 27V, F;) + O(\?) (9)
i=1

where F; is the classical force on atom i. The WK expansion is not uniformly
convergent for a hard potential. At large r where the potential is small the
expansion is adequate. But the important effects of quantum mechanics are
at small distances. Suppose the potential goes as 712 at small r. Then the
correction terms will diverge as =26 at small r. In fact, zero point motion
has the opposite effect; it smooths out the effective quantum potential so it
goes as 9. The helium interaction is better thought of as a hard sphere
interaction, i. e. having an infinite strength, for which this expansion does
not exist.

We choose to expand in pairs of atoms, triplets of atoms, etc. We will
then show that keeping all terms involving pairs of atoms leads to an approx-
imation which is good to order 72. Keeping the lowest order term involving
triplets of atoms is accurate to order 73. But our decisive comparison of the
approximations is numerical since the 7 dependence alone can be misleading.
Thus for three atom clusters we look at actual values of the density matrices.



Numerical tests of these approximations indicate that 7 < 1/40 K is suffi-
cient for accurate results on liquid He. Generation of accurate many-body
density matrices is reduced to the problem of the calculation of the exact
two atom density matrix. For this we use a specialized "matrix squaring”
technique (not Monte Carlo). Finally we explain in this section how to ef-
ficiently tabulate the four-dimensional approximate density matrices which
we generate.

2.1 Modified Feynman-Kac formula

The Feynman-Kac formula expresses the ratio of the exact density matrix
for a system of interacting particles to that of free particles as an average
of the exponential of the integral of the potential energy over all Brownian
motion paths between specified initial and final points.

p (Ro, Rp; B) = po (Ro, RF; B) <6XP [— /Oﬂ V(R(t))dt] > (10)

RW

The notations (...) p;;, means an average over all Brownian, or Gaussian ran-
dom walks from Ry to Rg in a “time” 3. Our notation is nonconventional.
The formula usually is written as a functional integral over Brownian paths
instead of an average.
To generalize this formula consider the function [18]
f(R,t|Ro, Rp,3) = 11

(B, 1|Ro, R, f) pr (Ro, RF; B) =
where the “trial density matrix” pr (R, Rp; 3 —t) is any arbitrary differen-
tiable function which satisfies the initial condition:

pr (R, Rp;0) = 6 (R — Rp) (12)

Since Ry, Rr and [ are fixed, the dependence of f on these variables will
no longer be made explicit. ;From the definition and the initial conditions

f(R,0) =d(R — Ry) (13)
and
pr(Rr, Ro; B)

The final value of f is the ratio of the exact density matrix to the trial
density matrix.

f(R,B) = 6(R - Rr) (14)



Since the exact density matrix p (R, Ry;t) satisfies the Bloch equation:
ot

f can be shown to satisfy a similar equation with the potential modified and
with a drift term:

= [/\V2 — V(R)] p(R, Ro;t) (15)

df (R
% = [\(v? -V D) - B| f(R,1) (16)
where D is the drift:

and E is the “local energy” of the trial density matrix:

) B 1 0 9 a
(18)

Note that the local energy and the drift are functions of the trial density
matrix.

The first two terms on the right hand side of Eq. (16) may be considered
as defining a stochastic process: Brownian motion with a drift which pro-
ceeds from Ry to Rp. We abbreviate an average over this process by DRW.
A path integral solution to this equation may be derived in the usual way
by advancing the solution in sufficiently small time steps so that the effect
of the first two terms on the left hand side, the diffusion and drift terms,
act independently of the effective potential term E. The local energy term
is then interpreted as generating the weight of the random walk. The result
may be written as:

p (Ro, Rr; B) = pr (Ro, BF; B) <6XP [— /05 E(R(t), Rr; 8 — t)dt] > ;
P9

where ( ) pry denotes the average over all drifting random walks, i.e. those
generated by ignoring E in the equation for f. This is the generalized
Feynman-Kac formula for the exact many-body density matrix.

If pr is taken to be the density matrix for free particles, the original
Feynman-Kac formula is obtained since the local energy term reduces to
the bare potential and the drift merely serves to generate Brownian random
walks which begin at Ry and end at Rp. On the other hand, if pr is the



exact density matrix then E is seen from its definition to be identically zero.
However when pr is a reasonable guess for the density matrix, incorporating
some of the essential physics of the problem, then E should be smaller in
magnitude than V throughout most of the phase space. The formula then
gives an exact non-perturbative expression for its correction. We now apply
this formula to determine an accurate high temperature density matrix.

2.2 Approximate high temperature density matrices

From the Feynman-Kac formula we see that the correction to the free par-
ticle density matrix must be positive. It is convenient to write it as an
exponential:

pr(R, R';7) = po(R, R'; 7)e”VEET) (20)

where U is defined by this equation. This form satisfies the initial condition,
Eq. (12), if U(R,R';7) > 0 as 7 — 0.

Evaluating the “local energy” E ,Eq. (18), for this trial density matrix
gives:

U (R-R)-VU

E(R,R :7—t) =2 —
(R, R 7 1) or T—1

+ (VU = (VU)) + V(R) (21)
where the argument of U is (R, R';7 —t). Several possible choices for U
in the high-temperature density matrix will now be examined. All of them
converge to the correct answer at sufficiently high-temperature but their
rates of convergence differ considerably. The goal is to find a form for U
such that the local energy is smoothly varying or zero.

Before deciding upon a choice for U we first review four approximate
methods that can be used to evaluate the average over drifted random walks
that forms the correction factor in the generalized Feynman-Kac formula.

1. Take the average into the exponent.

If the local energy is sufficiently smooth one can take the averaging
process into the exponent which gives for the correction to any density
matrix:

SU(r) = [ dt (B(R.1) paaw 22)

There remain two possible problems. First, the average may not exist.
Consider the free particle diffusion where E reduces to the potential
energy. Then the average over the potential exists only if the poten-

tial energy is integrable, that is only if it vanishes faster than r—¢ in

10



d dimensions at the origin. The Lennard-Jones or hard sphere poten-
tial is not integrable. Second, the average itself may be difficult to
perform. In fact, only for purely Gaussian process can one straight-
forwardly carry out the averaging process. Application of this approx-
imation with pr = pg gives the first cumulant approximation to the
density matrix. Tabulations and analytic approximations exist for the
Coulomb potential where it is quite accurate [19].

. Take the average onto the path.

Akin to the instanton or WKB method, one can assume that the con-
tribution of the most probable path dominates all other paths. That
path will have an equation of motion given by:
dR

= 2A\V Inpr (R, Ry;t) (23)
For the case where the trial density matrix is taken to be the free par-
ticle density matrix one gets simply the straight line path connecting
Ry and Rp. The correction to the trial density matrix is then the
integral of the potential energy along this straight line path.

5T = /0 "V(Ro + (Re — Ro)t/7) dt (24)

. The end-point approximation.

One can make a very much more restrictive assumption. Namely that
the local energy is a constant in the immediate vicinity of a given
point, depending only on some power of the time argument:

E(R,Rp;t) = (t/7)"E(Ry, RFp; T) (25)

In that case the integral and average are trivial. Accuracy will be
improved if we symmetrize over which point we take as the initial
point and which we take as the final point.

0U(Ry, Rp;T) = [E(Ro, Rp;7) + E(Rp, Ro; 7)] (26)

2(n+1)

If pr = po this gives the usual semiclassical form for U but this ap-
proximation can be used to improve any higher order approximations
once we know the 7 dependence of the local energy.

11



4. Uncorrelated approximation

Let us assume that the local energy can be broken into a sum of
terms, each term being approximately uncorrelated with the other
terms under the drifting random walks.

E(R,R';t) =) ea(R,R';t) (27)

Then the following approximation is valid:

<exp l— /0/8 E(R,Rp; 3 — t)dt] >

In general it will still be difficult to evaluate the average on the right
hand side. But if we take the free particle density matrix as our trial
density matrix and if the potential energy is a sum of pair interactions,
then e, = v(|r; —r;|) where (4, j) is a pair of particles. Then it is easy
to see that the averages on the RHS must be simply the interacting
part of the exact density matrix for a pair of atoms.

~ H <exp l— /Oﬂ eo( R, Rp; 3 — t)dt] >

(28)

DRW

This approximation has several advantages over the other approaches.
First it is exact for a pair of particles by definition. It is physically
reasonable since most important collisions between atoms occur two at
a time. The corrections to this approximation come from correlations
between pairs with a common partner. Consider particle 1 interacting
with two other particles, say 2 and 3. If the path goes toward particle
2 then vy9 is larger and vi3 is usually smaller than average and vice
versa if it goes toward particle 3. This correlation effect is usually not
large in a homogeneous system since there are other particles in other
directions which will have the opposite correlations. One indication
that the method is reasonable is that its local energy is less singular
that the potential. As seem in Eq. (31), the local energy is propor-
tional to terms like Viu12Viug3. For a r~!2 potential u(r) o< »~5 and
thus as rig9 = 0, E oc 775,

12



2.3 Choice of the high temperature density matrix

In our calculations we use the U suggested by the uncorrelated averaging
method discussed above:

UR,R';7) = Zu(rij,rgj;T) (29)
1<j
where u(rij,rl'-j;T) corresponds to the exact two particle density matrix.
With this choice of trial density matrix only three particle terms survive in
the local energy E

E(R,R';7) = -\ Z Vou(ry, i T) - Vlu(rlj,rfj;T) . (30)
I#k#]

At sufficiently high temperature u is proportional to 7 so E ~ 72. Making
the endpoint approximation Eq. (25) for the local energy and regrouping
leads to the further correction:

AT

SU(R,R';7) = 3

2
Z Vou(rig, Tl T):| - Z [Viu(ri, rig; 'r)]2 +0(r%)
Py Py

l
(31)
The corrections involve 3-body terms. The function u is smoother than the
potential so the corrections are well-behaved for small r, where the potential
is diverging. Furthermore to the same order accuracy in 7 one can take
w(rig, s ) = [w(rig, Tk T) + w(rgg, 7 7)]/2. Thus the correction to our
choice of high temperature density matrix is of the form of a force squared
minus a correction term which is like a pair potential. These terms, even
though they are 3-body in form, still take only order N? computer opera-
tions to evaluate because of their particular structure. For a short-ranged
potential, they could be evaluated in order N operations with the use of
neighbor tables.

Their is one practical modification. From Eq. (31) 0U is attractive and
singular at small r. One must cutoff the strength of the strength of this
term for small r, otherwise it is possible for a triplet of atoms to attract
each other very strongly at small r. We limit the magnitude of the function
u(r) appearing in 6U so that such instabilities cannot occur. In principle the
function u(r) appearing in the expression from 6U should be a version of the
exact 2 body density matrix smoothed by the drifting random walks appear-
ing in the generalized Feynman-Kacs formula but we have not investigated
this point.

13



2.4 Calculation of the pair density matrix

It has been shown above that the exact pair density matrix is an essential
ingredient for the N-body density matrix. In this subsection a method for
computing the necessary pair density matrix will be reviewed.

The pair density matrix satisfies the Bloch equation. It can be factorized
into a center-of-mass term which is free-particle like and a relative term
which satisfies:

dp

E(I‘,I‘I;T) = [2)\V2 - V(T)} p(r,r';7) . (32)

Expanding in terms of the angle, #, between r and r’

pl(ra 7' T) ilo

Zciooo e 7 € 2-d
plr,x's7) = i (33)
S5 AL prrir) Picost) 3
Each partial wave component satisfies the convolution expression
o0
pi(r,r'sT) :/ pu(r, s/ 2)py (7" 7 T 2)dr" (34)
0

The high temperature starting approximation to be used in Eq. (34) can
be taken as the path average, Eq. (24):

,r,l
pi(ryr' o T) = plfTee(r, r'sT)exp (—%/ v(x)da:) (35)
=)
where the free particle partial wave expressions are:

omvrr! 2 4 pl2 f
Jree(ppts7) = { s exp(— ) (%) 2-d
’ 7 -

P ! 2 02 . ] (36)
[S:A:T3/2 exp(~" Sir iy (%) 3-d

with I; and ¢; the modified and modified spherical Bessel functions respec-
tively. The approximate form, Eq. (35), involving the integral of the pair
potential along a straight line from r to r’, is more accurate than the usual
semi-classical form off the diagonal.

Each iteration of Eq. ( 34) results in a factor of 2 reduction in the
temperature so it is possible to take the initial temperature very much larger
than the final temperature. Due to the free particle factors, Eq. (36), the

14



integrand in Eq. (34) is Gaussian in nature. Hermite integration is thus a
natural choice of numerical integration. The maximum number of partial
waves to be used for the desired accuracy also requires some experimentation
but is primarily dictated by the free particle part of the solution and the
final temperature. We typically use 20-60 partial waves to reach 40 K. Use
of a non-uniform mesh in r can significantly reduce the number of integrals
to be performed since the mesh points can be concentrated in the region of
1.5A to 2.5A where the potential is very steep. We use mesh points given
by r; = \/c/i where i is a positive integer less than 100 and ¢ a constant.

For Coulomb or hard-sphere potentials, expansion in energy eigenfunc-
tions is a preferable to this matrix squaring technique [20], since there are
analytic expressions for the continuum wave functions.

2.5 Expansion for the pair density matrix

Once the pair density matrix is computed for some value of 7 one must
reexpress it in a form suitable for the quantum Monte Carlo program. Sum-
mation over partial waves is too slow and the amount of memory needed
excessive to store a raw table. The pair density matrix between atoms at
initial positions r;,r; and final positions ri, rg reduces to a function of four
variables; three relative distances and the temperature. We have found it
convenient to use the distances:

g=(rl+I[r')/2, s=[r—x'[, z=[r|-|'], (37)

where r = r; —rj andr’ =r} —r ; For configurations where the pair
density matrix is non-negligible s and z will be on the order of the thermal
deBroglie wavelength, v2A7. The expansion

. 1.
u(r,r'; 7') = u(r,r, T) —|—2u(7" il ’T) + Z SQnZQmUnm(CH 7') (38)

n,m

is thus an expansion in powers of 7 and converges rapidly. For example
in the case of “He with 1/7 corresponding to 40 K the thermal wavelength
is~ 1A. An expansion to fourth order (i.e. n+m < 3 ) gave an accuracy of
better than 1 part in 10% relative to the maximum value of u (see below).
The functions u,,, are determined by a least-squares fit to the expression
of u in terms of partial waves. The first order terms in this expansion are
shown in Fig. (1).

These 10 one dimensional functions are tabulated for the values of 7
used in the subsequent Monte Carlo calculations. A similar expansion may

15



Figure 1: The three largest pair density matrix expansion coefficients
(Eq. 38): u(r,r;7), u10(g; 7), and ue1(g; 7).

16



be written for the 7 derivatives of w,y,, needed in estimating the internal
energy.

The convergence of this expansion is shown in Fig. (2). Even a pair
density matrix is a 4 dimensional function so one has to project down to
lower dimensionality to comprehend the effect of approximations. As will
become apparent in the next section, what matters in PIMC is the absolute
accuracy of the action u, since it will be eventually compared to a random
number to decide whether to accept or reject a given move. The rms error
of the action for a pair of atoms separated by a distance r is defined as:

X2(r) = /d?’r'(uapp(r',r;T) —u(r',r;7))2pfmee(x, 1 7) (39)

The rms errors for the end-point approximation to the pair density matrix,
the error with inclusion of 419 and wg; and finally with the inclusion of the
second order terms at a temperature of 40K are plotted in Fig. (2). We see
that in the important region from 2.5 < r < 3A4, including each additional
higher order term reduces the rms error by approximately 1 order of mag-
nitude. When the errors drop to a level below 0.01 most thermodynamic
properties should be well converged. Our second order pair density matrix
meets this criteria for r > 2 A.

2.6 Comparison of the accuracy of the various approximate
density matrices

Although the final test for the accuracy of a particular choice for the high
temperature density matrix is done empirically by varying the time step
in the many body computations, it is instructive to examine the various
approximations applied to a cluster of three *He atoms. Fig. (3) shows the
results of such a comparison for a three body cluster with the shape of an
equilateral triangle.

The three body diagonal density matrix was computed using the mod-
ified Feynman-Kac formula by the method explained in appendix A of ref-
erence [18] and compared with three approximations: the semi-classical or
primitive approximation of Eqgs. (4 -6) (crosses); the pair product approxi-
mation, Eq. (29) (triangles); and the pair product approximation plus the
3-body corrections of Eq. 31 (circles). This comparison is for a temperature
of 40 K which corresponds to the time step generally adopted for the many
body computations.

The primitive approximation lives up to its name and is markedly in-
ferior to the two other approximations which incorporate the correct pair
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Figure 2: Convergence of the pair density matrix expansion, Eq. (38), for
4He at T=40 K. The closed squares are the end point approximation. The
closed circles show inclusion of first order terms u19 and ugi. Finally the
open circles show inclusion of second order terms. In superfluid helium the
pair distribution is essentially zero for r < 2 A.
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Figure 3: Comparison of three approximations applied to the three body
diagonal density matrix for the equilateral triangle configuration. Compari-
son is for three ‘He atoms at a temperature of approximately 40 K. Plotted
is the ratio of the exact value for the density matrix divided by the various
approximations. Crosses indicate the primitive approximation, triangles the
pair product approximation and circles the pair product approximation plus
lowest order correction terms
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density matrix. As remarked earlier, a time step of about 2000 K would be
required to accurately simulate fluid helium using the primitive approxima-
tion making it impractical for low temperature studies. The pair product
approximation is essentially exact for this cluster when r > 2.8 Abut un-
derestimates by about 50% when r = 2.4 Awhere the zero pressure, ground
state pair correlation function g(r) = 0.25. The pair product approximation
is not always an underestimate. For example for the tri-linear cluster it
overestimates but the general level of accuracy is the same. Including the
approximate 3-body corrections (circles) gives at least a three fold improve-
ment in the important region 2.4 < r < 2.7 A.

3 Path Sampling Methods

The previous section concerned picking the high temperature density matrix
(or the equivalent classical action). Here we consider sampling the paths and
permutations from the resulting action. Suppose the total configuration
space is denoted by s = {P, Ry,...., R} where P is the permutation for
bosons. We wish to sample the probability distribution

L
=21 H p(Ry, Rgy157) (40)
k=1

where Z is the partition function and Ryy; = PR;. Due to the factor Z -1
the function 7 is normalized.

The sampling is performed with a Markov process based on a general-
ization of the well-known Metropolis et. al.[24] rejection algorithm. In the
Metropolis method one changes the configuration according to some set of
transition probabilities, P;_,s . For bosons, we will have a variety of pos-
sible path moves and permutation moves. The transition probabilities are
set up so that they individually satisfy the detailed balance principle: the
transition rate from s to s’ equals the reverse rate:

TsPsgr = Mg Pyt s (41)

In the Metropolis method the transition probability is split into an ’a priori’
sampling distribution T;_,» and an acceptance probability A, . u:

Ps—)s’ = Ts—)s’As—>s' . (42)

Assuming that the transition moves allow movement to every portion of con-
figuration space, detailed balance is sufficient to guarantee that one samples
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s in the limit of many transitions. However if the rules are not chosen
appropriately, the rate of convergence to the limit may be very slow indeed.
That is the typical situation for sampling the path integrals of a super-
fluid. The simplest possible rules would be: first, to move each atom on
each time slice individually (an individual bead), and, second, to insert a
pair permutation of two atoms without moving the coordinates of the beads.
The first type of move will eventually succeed in sampling the space of paths,
but it is far from efficient. The difficulty is that atoms at adjacent time slices
are strongly correlated via the kinetic energy “springs”. As a consequence
the “polymers” acquire considerable inertia to being moved locally just as
real polymers can have exceedingly slow relaxation times. The second kind
of move fails totally in sampling the permutation space for a system with
hard core interactions like helium. By the use of good approximations to the
high temperature density matrix one can take time steps as large as 0.025
K~!. This implies that a typical distance between an atom coordinate in
one time slice and the next is v/2d\ ~ 14 . But a distance of 2.54 around
each atom is excluded by the repulsive potential. Thus in order to get these
pair permutations accepted one must allow for a simultaneous move of the
permutation and about (2.5/1)? & 7 time slices of the atoms involved.

The Metropolis algorithm has been generalized to make it more efficient
for quantum systems. The mechanics of this algorithm for simulating super-
fluids and quantum crystals is briefly summarized before giving the technical
details and proofs. A flow diagram is shown in figure 4.

1. The configuration is initialized in some fashion. We typically begin
the simulation with the identity permutation and the atoms sitting on
lattice sites for all of the time slices.

2. We then loop over all time slices i where 1 < ¢ < L and set up a
table giving the probability of choosing among cyclic permutations of
2, 3 or 4 atoms. The probability of attempting a permutation move
P is chosen proportional to pr(R;, PRitn;nT) . Moves are done not
in one time slice but in n time slices where n = 2!. Here [ is called
the “level” of the move and in the *He simulations was typically three.
Once having set up this permutation table, its computational cost is
amortized by attempting several hundred permutation moves following
the procedure of the next two steps. Then a new value of i =i + n /2
is taken and the process repeated.

3. After selecting a permutation involving m atoms a recursive bisec-
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Loop over time slice origins ¢ =1,L ‘

Construct
Trial

table for trial permutation transitions between time slices i and i +n (n = 2!)
permutations here are 2,3 or 4 particle exchanges of starting permutation
Tp = eXp [_(Rz - PR,-+n)2/4)\nT] Cr = Z’P Tp

Select a trial permutation P such that

2pepTp <X < Xpicp Tpr
where y is a random number in (0, ¢;)

Ao =Tp /Ty
(took previous permutation as identity I)

sample T(R;] 4o |Ri,PRin; 57)  for new midpoint coordinates

find T(RH% |R;, Ritn; 57) for old midpoint coordinates
A1 = p(Ri, Ry n; 57)p(Ri n, PRiyn; 57)/p(Ri, Riyn; 57)p(Riv s, Rign; 57)
. . I 2
Continue with probability AT R,IH_E‘ )
2
sample T(R;|R;_1, R q;7) for new coordinates at 1-th level
find T(Rj|Rj_1,Rj11;57)  for old coordinates at 1-th level
= [0t p(RS, R _y57)/p(Rj, Rj—157)
. . .1 ﬁ i+n—1 T(R | )
Continue with probability A, 15 (R;| )
Construct new permutation table for all 2-4 particle exchanges starting from P

Continue with probability cp/cr

Replace old coordinates with new and relabel them
Replace old permutation table with the new one

Figure 4: Schematic Flow chart fo2Zmulti-level Metropolis method. For
simplicity we have only shown the first and last (I-th) levels.




tion algorithm is invoked to sample the intermediate path coordinates
connecting R; with PR;,,. Remember that P is a cyclic permuta-
tion involving m atoms where m < 4 in the current implementation.
The coordinates of the atoms not on this cycle are kept at their old
positions. At the first level, the bisection method samples the new
coordinates for the atoms moving in time slice ¢ + n/2. An approxi-
mate action for this proposed move is evaluated. The proposed move
is either accepted, in which case one proceeds to the next level, or
it is rejected and one goes back to the beginning and samples a new
permutation. At the second level one bisects the two intervals, i. e.
samples time slices ¢ + n/4 and i + 3n/4. If the move is accepted one
proceeds to the next level. Otherwise a new permutation is sampled.
Bisection continues until a rejection occurs or until all of the (n — 1)
time slices have been sampled. If the final level is accepted, the state
(path and permutation) is updated.

. The sampling of the intermediate points (one step in the bisection) is
done by making a multivariate Gaussian approximation to the optimal
sampling distribution:

T*(R) = p(R-, R; j7)p(R, Ry j7) /p(R+, R—; 2jT) (43)

Here R, and R_ are the endpoints of the interval being bisected and
j = 27% is the number of time slices being bisected. For the first
bisection 7 = 2/~1 and for the final group of bisections 5 = 1. The
new configurations are actually sampled from a multivariate gaussian
distribution:

T(R) = (27)7*™/2 det(A) "2 exp(—(R — R)(2A)"Y(R— R)) (44)

where the mean R is a 3m vector and the covariance matrix A a 3m
x 3m tensor.

This algorithm appears baroque, but all the ingredients have been found

essential to successfully explore the permutation space of a superfluid near
the transition temperature. For example, putting multivariate correlation,
i. e. eq. (44) , into step 4 decreased the average computer time between
accepted permutation steps from several minutes of CRAY time to several
tenths of a second.

Before justifying in detail all of the steps, several general points should

be emphasized. First, the algorithm is entirely rigorous in the sense that the

23



probability distribution will eventually converge to m because the detailed
balance relation is exactly fulfilled. Second, in constructing the algorithm
we have considered what the optimal sampling is, where optimal means that
one goes through configuration space as quickly as possible. Of course, it is
not possible to achieve an optimal sampling but as various approximations
to optimal sampling are improved, the acceptance rate will approach unity.
Third, the multi-level bisection method is designed so that rejections occur
in the beginning levels, when very little computation time has been spent
in exploring a new trial path. Thus even if only a small percentage of trial
paths are accepted, the number of accepted moves per unit of computer
time can be high. Finally, the multivariate Gaussian distribution represents
a good compromise between the optimal distribution, Eq. (43), and one
which can be rapidly sampled.

In the next subsection multi-level Metropolis sampling is described fol-
lowed by a discussion of the bisection procedure and the path and permu-
tation sampling methods.

3.1 The Multi-level Metropolis Method

Multilevel Monte Carlo is a general method which can used to sample from
any distribution having the convolution properties of exponential operators
(i.e. Green’s functions or transfer functions). Let s denote the total con-
figuration of the system and w,; the distribution to be sampled. Suppose
the configuration s is partitioned into [ levels as s = (sq, s1,...,5;) where
the coordinates sg are to be unchanged by the move, s; are sampled in the
first level, so are sampled in the second level, etc. The primed coordinates
(8}...s;) are the new trial positions in the sense of a Metropolis rejection
method; the unprimed ones are the corresponding old positions. The distri-
bution (action) can also be partitioned as

l
Ts = H Tk (80, S1---5 Sk ) (45)
k=0

Now choose some ”a priori” sampling of the coordinates in level k contin-
gent only on the old and new coordinates at lower levels. The sampling prob-
ability, Ty (s},), can depend on s, 81, ..., 81, 81, .., S _; but not on s, ..., s;
or 8,1, 8. (In fact we use a Tj(s,) which only depends on s, 57, ..., s},_;
since use, in the sampling function of the old path coordinates sg, s1, ..., Sg—1
does not help when a permutation jump is being attempted.) By Ty (s;) we
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refer to the same function for the coordinates sg, s1, ..., Sx—1 and similarly
for my.

Once the partitioning and the transition rules T} are chosen (discussed
below) the algorithm is quite simple; the sampling proceeds past level k with
probability equal to:

" Ti(si)me(s)

This acceptance probability has been constructed so that it satisfies a form
of detailed balance:

T (8)Th () Ar(s') = mr(s") Tr (s1) A (s) (47)

Note that one must compute not only the forward move action and prob-
ability distribution but also the reverse move action and probability (the
probability of sampling the old path given the new trial position.)

The total transition probability for a trial move making it through all !
levels is then:

A(s') = min {1 M} (46)

l
Psssr = H Tk(S,)Ak(sl) (48)
k=1

By multiplying Eq. (47) from 1 to 1 and using Eq. (45), one can verify that
the total move satisfies the detailed balance condition, Eq. (41). Thus our
algorithm will asymptotically converge to m independent of T}, and 7.

The rest of this subsection considers how a move should be partitioned
into levels. The next two subsections discuss the transition probabilities for
permutation and coordinate moves. The permutation must be sampled first
since one cannot construct the path without knowing the starting and ending
positions of the atoms. Since one wants to maximize the total number of
acceptances per unit of computer time the coordinates should be ordered so
that the ones which have the highest rejection ratio per unit of computer
time are first. A permutation move is selected on the basis of the distance
between atoms and this may not lead to an acceptable path because of the
presence of other atoms at critical points along the exchange path. These
blockages are mostly likely in the middle of the interval, simply because the
endpoints have already been accepted and are thus at places of acceptable
action. By bisecting the interval rather than working from one end, one
discovers these blockages quickly and goes on to try another move. This is
an improvement over our previous method of growing the path from one end
[18].
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Hence we partition the coordinates as

e sy = atom positions outside of time slices in consideration and beads
not being moved.

e s; = permutation P
e sy = coordinates of atoms being moved at the middle time slice i+n/2.

e s3 = coordinates of atoms being moved at ¢ + n/4,i + 3n/4.

e 511 = coordinates of atoms being moved at ¢ + 1,7+ 3,...,: +n — 1.

Then the total action is partitioned as

o 71 = p(R;, PRipninr).

o M = p(Ri, Ritnj2;n7/2)p(Riyns2, PRitninT/2)/m1

o m3 = p(Ri, Rin/a;nT/4)p(Rinja, Ritn/2nT/4)p(Riyn)2, Riysnsaint/4)
P(Rit3n 4y PRivn;nt[4) /T2

e ctc.

There are several things to note about this partioning.
o It satisfies Eq. (45).

e For a multi-level sampling, until the last level of bisections, the density
matrices used in 7 will have time arguments greater that 7. Thus
it is required to make an approximations to the density matrix for
T > 0.025/K These approzimations will only affect the acceptance
ratio, not the final converged values of physical quantities. Thus we
are free to choose any convenient approximation for 57 > 1. In fact we
use the end-point approximation until the final bisection is done. In
this way we do not have to evaluate any of the off-diagonal components
of the density matrix until the last stage of the bisection.

e The partitioning is done in such a way that each of the = is ap-
proximately a probability distribution. Such a distribution must be
positive, (this is true since p > 0) and be normalized to unity. That
the normalization is close to unity for an exact density matrix can be
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seen by integrating mo over the sampled value R;,, /5. Of course the
density matrices appearing in these formulas are approximate N-atom
density matrices (not m atom ones) but as the density matrices ap-
proach the exact density matriz and as the size of the move approaches
the total system size, wy, approaches a probability distribution.

o If we can sample 7y directly (i. e. if Ty = m) then the acceptance
ratio will be unity from Eq. (46). Rejections are due to the combined
effect of three deviations from optimal sampling: using approximate
sampling functions, using approximate density matrices and making
moves of only a few atoms.

e In Monte Carlo calculations on classical systems there is a step size
parameter A which is adjusted to make the average acceptance ratio
close to one half. There is no analogous parameter in our method.
The number of levels, [ , and the number of atoms involved in a cyclic
permutations are the only adjustable parameters. Typically the ac-
ceptance ratio per level is over 2/3 so that with 3 levels the total
acceptance ratio would be 0.3. Running at even larger levels produces
results which converge much more quickly even though the acceptance
ratios are quite small.

Figure (5) indicates the efficiency (in terms of the number of permutations
accepted per unit of computer time) as the time step 7 and the number of
levels [ is varied.

3.2 Permutation Sampling

As mentioned previously, the optimal sampling function for permutations
will be proportional to m;1 = p(R;, PRp+i;n7). Here we are sampling a
discrete variable, the permutation change P, where P ranges over all cyclic
permutations involving 4 or fewer atoms. It is important to go beyond pair
interchanges in a dense liquid since it is much easier for three or four atoms
to cyclically permute than it is for two atoms. The starting place for the
Monte Carlo random walk is typically the identity permutation. We have
found that it is particularly difficult to get pair interchanges accepted from
the identity permutation. Once triple and quadruple exchanges build up
a non-trivial permutation, pairs interchanges can add and subtract from
these longer exchanges. Thus rejection of pair exchanges at the beginning
of a calculation is a poor indication of whether or not exchange of particles
is an important physical effect.
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Figure 5: Number of permutations accepted per unit of computer time as a
function of the time step 7 for three values of I, the level number
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Since s1 differs from s} only by the labeling of the atoms, and since
we make the end-point approximation for the sampling density matrix, m
assumes a very simple form. The probability of selecting permutation change
P, involving m particles, is T'(P)/cr where:

m

T(P) = exp(— Z(ri,j — T,-+n,pj)2/4n/\7) (49)
j=1

and ¢y is a normalization factor defined so that the probability of making
some permutation move is one.

c; =Y T(P) (50)
P

The first index on r refers to the time slice, the second refers to the particle.
The subscript on ¢ refers to the permutation about which local changes in
the permutation are done. The probability for the reverse step, P! will
have factor of 1/cp since the normalization will change. After the entire
path has been constructed and accepted there is a final test to see if the
move will be accepted based on cp/cy. This step could be eliminated if
permutation moves were picked with another probability distribution.

A table of the probabilities can be constructed rather rapidly since it
only involves products of factors exp(—(r;x — Titn,j)%/4nA7) for all pairs of
particles j, k. When the system gets large (say more than 50 atoms) it is
advantageous to only put permutations in the table that have a probability of
being chosen greater than some threshold since the total number of possible
4 atom permutations is order N4/4. The number of permutations with T
large is order N. The likely permutations can be found in time order N using
a tree search. One constructs a list of the possible permutations and of the
cumulative probability of choosing a permutations with a given index. To
sample the permutation one chooses a random number in (0,1) and searches
in the table for the corresponding permutation index.

3.3 Bisecting an Interval

In this section the problem of how to best sample a bisected point is con-
sidered. As mentioned previously, the optimal distribution to sample is
7. The terms coming from the non-interacting portion of the density ma-
trix combine together to give a Gaussian centered at (R4 + R_)/2 with a
width equal to /j7), where R, and R_ are the endpoints separated by
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time arguments j7. For a repulsive potential the interacting parts of the
density matrix will cut holes in this Gaussian distribution wherever either
a non-moving atom is present or where two moving atoms overlap. Thus
it is natural to approximate the distribution in Eq. (43) by a multivariate
Gaussian since it can be easily sampled. The mean and covariance of the
Gaussian are chosen to approximate the moments of the optimal function:

R— /dRRT*(R)/W (51)
A:/dR(R—R) (R — R)T*(R)/W (52)
W = / dRT*(R) (53)

All the integrals, vectors, and tensors in this subsection range only over
the moving atoms coordinates.

Substituting the endpoint approximation in for the expression for T* we
obtain:

T*(R) =exp | —(R — R())2/202 — Zu(rij, i3 JT) (54)

i<j

vs_/here constant terms have been dropped since they will not contribute to
R and A. Here )

Ry = (R-+ Ry)/2 (55)

o? =T (56)

The integrals in Eq. (53) are multi-dimensional so additional approxima-

tions are necessary to calculate W,R and A. The normalization W can be
regarded as an average over the first term in Eq. (54), a gaussian distribu-

tion:
W = <H e—u(Tij,Tij;jT)> . (57)
i<j

Make the approximation that the terms in the product are uncorrelated so
that we can interchange the product and averaging operations.

w ] <€—U(wjﬂj;ﬁ)> ) (58)

1<j
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Then the averages can be explicitly performed since they involve two atoms
at a time. Define the smoothed ’sampling’ potential 4 as:

e~ H(FoiIT) — //GXP [—(Ti —70,i)?/20% = (rj — T0,)?/20° — u(rij, 7453 2J'T)] dridr;
(59)

This double integral, a convolution, can be reduced to two 1 dimensional

Fourier transforms in the usual way and numerically evaluated to obtain .

The above expression is for the case when both atoms, i and j, are moving,.

For the case when either atom is fixed, say i is a fixed atom and j is a

moving atom, then in the above integral one replaces the Gaussian in 7;

with 6(r; — ro;) where r; is its actual (old) position.

Define the total 'sampling’ potential as:

U= Z a(ro,ij; T) (60)

1<j
Now R and A are exactly related to W by:

R=Ry— 02;’—% (61)
and 20
2 2 Y
A=c (I o 3R08R0) (62)
where I is the unit tensor.

The previous 4 equations constitute the sampling procedure with Eq.
(44). We calculate a sampling mean and covariance for fictitious particles
centered at the free particle mean position for the moving atoms. The
effect of atomic interactions on the a priori distribution is to push the mean
position of an atom away from its free particle mean, (the mean position of
the two ends of the interval being bisected) if another (non-moving) particle
is positioned near there or if a moving particle has its free particle mean
there. Similarly the free particle variance is changed by interactions with
neighboring particles. In directions where the curvature of the potential
is positive, the sampled gaussian is reduced from its free particle value.
Otherwise it is broadened.

A standard way of sampling this multivariate normal distribution is to
Cholesky factorize the covariance matrix A = SST where S is a upper
triangular matrix. Then if x is a vector of gaussian random numbers with
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zero mean and unit variance, Sx+ R has the desired mean and variance. The
diagonal divisors in the Cholesky decomposition of A are needed to find the
actual value of T}, needed in the acceptance ratio formula Eq. (46). Because
of the approximation used in calculating the covariance matrix, Eq. (58 ), it
may have unphysical negative eigenvalues. This occurs very rarely, typically
every few thousand moves. For these rare cases free particle sampling, i. e.
setting U = 0, may be used instead. This will only affect the acceptance
ratio.

Our method of sampling is closely related to “smart Monte Carlo” meth-
ods used in classical simulations[l] and importance sampling in Green’s
Function Monte Carlo[19]. The principle difference is that in PIMC the
walks are constrained at two ends and this leads to a different definition of
the sampling potential than would be optimal in those other methods.

4 Momentum Distribution

One of the most interesting observables in a superfluid is the momentum
distributions since it is expected to have a delta function at zero momen-
tum in three dimensions. This is in contrast to classical systems which in
equilibrium always have a simple Maxwellian distribution with width equal
to kgT. The theory of liquid helium is at least partially based on the as-
sumption that there is a macroscopic occupation of the zero momentum
state. Experimentally demonstrating this has proved difficult. Since a wave
function in momentum space is the Fourier transform of a coordinate space
wave function the same is true for the density matrix. The probability that
an individual atom has a momentum k is the integral over all of the other
atoms of the momentum space density matrix. If we define the single particle
density matrix by:

n(ry,ry) = /drg..drN <71, rnle PR ry iy > 2 (63)

This is a function of only |r; — ]| in a homogeneous isotropic system. Then
the probability than atom has momentum k is the transform:

ng = (27TL)_d/drldr'le_ik(Tl_Tll)n(rl,r{) (64)

The momentum distribution requires an off-diagonal element of the density
matrix.
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To calculate n(ry,7]) we have used two complementary algorithms|9].
The first consists of doing the simulation on the diagonal, and then displac-
ing one atom off the diagonal by a displacement drawn from the free particle
distribution pg(r1,71;7). The permutation and the coordinates of the other
intermediate atoms (i.e. the rest of the path) are held fixed. Then an esti-
mator for n(rqy,r]) is simply the change in the interacting part of the density
matrix. This method is very accurate for computing n(r) for r less than an
interparticle spacing (r < 2.5 A) because it can be carried out simultane-
ously with computing diagonal properties and because all beads (all atoms
at all time slices) can be displaced. However for larger displacements the
statistical error grows rapidly because the major contributions come from
different arrangements of the neighboring atoms and different permutations.

In the second method, one atom is allowed to be off the diagonal. An ad-
ditional variable, namely r], is introduced into the Monte Carlo simulation.
At each step the distance r; — 7 is recorded. The histogram of occurrences
of r1 — r} is proportional to n(r1,7]). The fraction of atoms having exactly
zero momentum (the condensate fraction) is the value of this ’end-to-end’
distribution at large r divided by its value at the origin. Thus momentum
condensation is mathematically equivalent to the unbinding of the two ends
of a cut polymer.

In order to get better statistics on the condensate fraction we apply
importance sampling to the end-to-end distribution. An artificial potential
between the two ends equal to In(n,(r)r?1) is applied so that the simulation
will spend roughly the same amount of time at large and small distances.
Here ng(r) is an approximation to n(r). At the end of the calculation,
the effect of the importance sampling is divided out of the end-to-end dis-
tribution and the results are smoothly matched to the small distribution
computed by the first method. Since computation of the condensate frac-
tion was one of the major motivations for the simulation it is worthwhile to
adjust the method so as to achieve lower statistical errors on this quantity.
Another way used to speed up convergence was to preferentially move the
disconnected atom and to preferentially permute other atoms with the dis-
connected atom. The references contain the results of our calculations for
two and three dimensional liquid helium [7],[8], [9],[18].
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5 Superfluid Density

Superfluidity is experimentally characterized by the response of a system
to movements of the boundaries. A normal fluid in equilibrium will always
rigidly move with the walls (if centrifugal effects are neglected) On the other
hand a superfluid can stay at rest if the walls begin to slowly move. The
mass that stays at rest is the superfluid. It has been recently shown that
this superfluid density can be calculated with path integrals in a very simple,
rigorous and elegant fashion. In periodic boundary conditions, the superfluid
fraction is proportional to the mean squared winding number

pop =< W2 > [(6ABN) (65)

where the winding number is defined as

W — é/oﬁ dt [dr;it)] (66)

In a classical system, or a quantum system well above than the lambda tem-
perature, the winding number will always be zero since paths cannot wrap
around the boundaries. But in a quantum systems which has a macroscopic
cyclic permutation, non-zero winding numbers are possible.

Accurate computation of the mean-squared winding number is difficult
since a change in W involves a global move. This is because W is a topo-
logical characteristic of the path. In the 7 — 0 limit the paths become
continuous directed loops on a torus. W equals the flux of paths intersect-
ing a given plane. This implies that to change the winding number, a path
which spans the entire system must change. The number of atoms involved
in a winding number change will be at least proportional to the length of the
periodic cell. The algorithm discussed earlier becomes trapped in a given
winding number sector once the particle number becomes on the order of 60
atoms when 4 particle exchanges are used.

There are several ways around this problem. First one can cut one of
the polymers (i.e. allow one atom to be off the diagonal) as was done with
in calculations of the momentum distribution above. The winding number
no longer is a topological invariant and can be changed with a sequence of
local moves. Suppose the two ends of atom 1 are at positions ry,r]. Then
strictly speaking the above formula for the superfluid density is only valid
for 71 = r]. However one can calculate the distribution of winding numbers
and estimate the values corresponding to the diagonal, or one can restrict
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r1 — 7} to lie on a lattice say 71 — r} = jd where § = L/J is some fraction
of the box-size and 0 < j < J. Then there will be some probability (greater
than 1/J ) that the ends will in fact coincide and for these configurations
the winding number can be used in the formula for the superfluid density.
It is also possible to compute superfluid properties without changing the
winding number. After all, there are experimental consequences of superflu-
idity even if the geometry is non-toroidal. If one has a large enough system,
the superfluid density can be obtained from the long-range properties of the
momentum-momentum correlation function, G(r) as described in ref [7]. An
alternative is to look at the imaginary-time dependence of the diffusion of

paths[21]. ,
. 1 i s —iw dri(t)
Ps/ﬂziﬂ)m<l;[) dte tT] > (67)

This formula examines the local scaling properties of the paths rather than
a global property.

6 Conclusion

We have described a number of generalizations of the standard path integral
formalism and of the Metropolis Monte Carlo methods. These generaliza-
tions were found necessary in order to calculate reliable results for liquid and
solid helium with present day computers. Of course such methods can and
are being improved. Generalization to fermion path integrals is certainly
one of the most important future directions.
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