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for Quantum Fluids, Solids and Droplets
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In this chapter we review the progress that has been made since the publication
of the previous articles [7.1,2] hereafter referred to as I and II. The major
advances not covered in those two reviews are improved variational wave-
functions, path integral methods for calculating at temperatures T > 0, systems
with interfaces such as surfaces and droplets, and the calculation of exchange
frequencies in quantum crystals. We will concentrate on these areas and on the
Monte Carlo techniques used. We will give results from some representative
calculations.

The principle constituents of the systems we describe are the helium isotopes
3He and “He. Other many-body quantum systems such as electron systems,
polarised hydrogen and its isotopes, can be handled in a similar way. Systems
with spin and/or isospin dependent forces like nuclei are much more difficuit
and require nontrivial generalisations of the techniques presented here, and are
beyond the scope of this work. The interested reader is referred to the recent
work by Pieper et al. [7.3] and Carison [7.4,5] for some current Monte Carlo
attacks on the nuclear structure problem.

The Hamiltonian we consider is

1 &,
H 5 i; V; +gjv”, 1)
with obvious generalisations to mixtures, substrates, three-body potentials, etc.
We set h = 1, mis the mass, and v;; = v(|#; — r;|) is the pair potential. Throughout
this work we denote the 3N coordinates of the N atoms by R.

We will describe, in Sect. 7.1 some wavefunctions used currently in
variational studies. These include 3-body and backflow correlations in addition
to the standard Bijl-Dingle-Jastrow form of the many-body wavefunction; the
pairing forms for the wavefunction developed by Bouchaud and Lhuillier [7.6];
and the shadow wavefunctions of Vitiello et al. [7.7]. We will also discuss some
useful optimisation methods. In Sect. 7.2, we will define the Green’s functions
Monte Carlo (GFMC) method and briefly discuss some fermion methods. The
path integral Monte Carlo (PIMC) method, which has been developed and
applied since I and II were published, will be described in Sect. 7.3. We will
give some results of calculations of helium bulk properties in Sect. 7.4, and
momentum distributions and related density matrices in Sect. 7.5. In Sect. 7.6,
we will give an introduction to some work on droplets, and Sect. 7.7 give some
possible future directions for Monte Carlo simulations of quantum fluids.
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Techniques other than Monte Carlo simulations have made important
contributions to the understanding of many systems and particularly in the
development of good variational wavefunctions. However, we will only refer to
these methods when they have a direct bearing on the Monte Carlo development.

Some systematic errors are common to all of the Monte Carlo calculations
we describe. These include the interaction potential, size dependence, statistical
errors, convergence problems and bias.

The 2-body HFDHE?2 potential of Aziz et al. [7.8] has become the potential
of choice for helium studies in part because of the good agreement between
GFMC ground-state calculations and the experimental low-temperature
equation of state for “He. The potential needs to be revised by softening the
core [7.9,10] and Aziz and coworkers have published a new He—He potential
[7.11]. The attractive well may have to be deepened somewhat [7.11,12],
although the evidence here is much less compelling, and the HFDHE2 well
depthis within estimated theoretical bounds. In any case, the HFDHE?2 potential
is accurate to better than 0.2 K per particle out of the 20K potential energy in
“He at equilibrium density. Three-body potential effects are not well character-
ised, but estimates [7.13], mostly based on the Axilrod—Teller interaction [7.14],
show that they are also in this range. Work at much higher pressures will
require a better understanding of these 3-body forces. Recent attempts to
calculate, using the Monte Carlo method, the 2- and 3-body helium interaction
potentials have been successful in the highly repulsive region [7.9], but have
not been conclusive in the region of the attractive well because the statistical
errors have been of order 0.1K [7.15-17].

Size dependence of the ground state energy and local properties of bulk
“He are small as stated in I. However, the momentum distribution as usually
calculated, has the incorrect behaviour at long wavelength [7.18], and the
specific heat curve is rounded around the lambda transition [7.19]. These are
a direct consequence of the finite size of the simulations used. As we shall see
in Sect. 7.3, PIMC calculations which need to sample paths with a change in
the winding number, are currently limited to small systems (100 atoms). In the
fermi system 3He, shell effects due to the very nonspherical fermi surface can
be quite large [7.20,21], of order 0.1 K per particle even for N over 100. These
will make difficult the extraction from Monte Carlo calculations of a number
of interesting properties such as the spin susceptibility and the effective mass.

Statistical errors, lack of convergence, and bias of the Monte Carlo
calculations can also be a major problem; witness the GFMC density profiles
calculated for droplets [7.22, 23] and for the free surface [7.24]. Here the slow
convergence makes difficult the calculation of the exact ground-state density
from the variational and GFMC mixed estimates. Clearly, the extrapolation
from the variational and GFMC mixed estimates described in I and II should
only be trusted when variational and mixed estimates are close so that the
neglected second order error term can be assumed small. An advantage of
PIMC over GFMC is that this extrapolation is not needed. A possible
combination of GFMC and PIMC can be made by replacing the closed path
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by a path which ends with a good variational trial wave function. The resulting
method would combine, for zero temperature problems, some of the advantages
and disadvantages of the GFMC, PIMC and shadow wavefunction methods.

Great care needs to be taken in all Monte Carlo calculations to eliminate
the effects of bias, autocorrelation, and lack of convergence. Much of the advice
given by Binder, Stauffer and Heermann [7.25,26] can be applied directly to
quantum simulations.

7.1 Variational Method

7.1.1 Variational Wavefunctions

The variational Monte Carlo method and its application to both Bose and
Fermi systems was described in L. It consists of calculating the expectation value
of operators using the Metropolies Monte Carlo method and an assumed trial
wavefunction. Usually the expectation value of the Hamiltonian H is minimised
with respect to parameters in the trial wavefunction,

_ [dRWL(R)H ¥(R)
~ [dR¥IR)

where E, is the ground-state energy, E (R) is the local energy H ¥1(R)/ ¥1(R),
and P(R) = ¥2/[dRW2(R) is sampled using the Metropolis et al. [7.27] method.
A short explanation of the Metropolis method is given in Sect. 7.3, or see 1. All
expectation values are calculated as averages over P(R) in the variational
method.

For bulk *He and “He, good trial ground-state variational wavefunctions
have been constructed using 2-body, 3-body, and in the case of *He, backflow
[7.28] wavefunctions. The *He case is less well understood, and in particular,
the difficulty in obtaining convincing results for the energy as a function of spin
polarisation has lead to the construction of pairing wave functions by Bouchaud
and Lhuillier [7.6]. Similarly, the lack of translational invariance in standard
trial solid wavefunctions has recently lead to the introduction of the shadow
trial wavefunctions of Vitiello et al. [7.7,29]

=<Eu(R)) 2 Eo, (7.2)

v

7.1.2 The Pair Product Wavefunction

The simplest useful trial wavefunction for the ground state of a bulk quantum
fluid or solid is the pair product or Bijl-Dingle-Jastrow form,
v =1171,0, (7.3)
i<j
usually called the Jastrow form, where @ is a model, one-body, wavefunction.

For the ground state of a Bose liquid, @ is a constant while for a Fermi liquid
it is a Slater determinant of plane waves satisfying periodic boundary conditions.
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Table 7.1. Various calculations on liquid “He at the experimental equilibrium density
(p =0.02186 A~ ?) using the Aziz HFDHE2 potential and at zero temperature. VMC indicates a
variational calculation with the indicated wavefunction. McMillan, PPA, and OPT indicate a
Jastrow factor of the McMillan, paired-phonon analysis, or optimized form. 3B indicates the
addition of three-body correlations as in (7.5-7). GFMC is done with the McMillan form for the
importance and starting function. PIMC is calculated at T = 1.2K. n is the fraction of atoms in
the zero momentum state

Method Trial function Energy ny Reference
VMC McMillan —5.72(2) 0.11(1) {7.88]
VMC PPA —5.93(1) 0.107(1) [7.89]
VMC Shadow —6.244) 0.045(1) [7.29]
VMC McMillan + 3B —6.65(2) 0.056(1) [7.89]
VYMC OPT+3B —6.79(1) [7.56]
GFMC McMillan —=7.12(3) 0.088(5) [7.88]
PIMC 12K —7.18(3) 0.080(10) [7.751
Experiment —_ —-7.14 0.10(3) [7.36]

Table 7.2. Various calculations on liquid 3He at the experimental equilibrium
density (p =0.01635A %) using the Aziz HFDHE2 or the Lennard-Jones
potential (marked with *) and at zero temperature. The notation is the same
as Table 7.1. Additionally, BF indicates the wavefunction including backflow
(7.12), and BCS indicates the pairing wavefunction with singlet (s = 0) or triplet
(s=1) pairs (7.14,15. GFMC-FN, GFMC-TE, and GFMC-MP are
fixed-node, transient estimation, and mirror potential calculations using the
indicated wavefunction

Method Trial function Energy Reference
vMC McMillan —1.08(3) [7.93]
vMC 2B+ 3B —1.61(3) {7.93]
VMC 2B + BF —1.55(4) [7.93]
VMC 2B + 3B + BF —2.15(3) [7.21]
vMC BCS (s=0)* -12 [7.47]
vMC BCS (s=1)* —2.05 [7.47]
GFMC-FN 2B + 3B + BF —2.37(1) [7.21]
GFMC-MP 2B + 3B + BF —2.30(4) [7.21]
GFMC-TE SB + 3B + BF —2.444) [7.21]
Experiment — —247 [7.35]

Since we are dealing with spin-independent forces and operators symmetric
under particle interchange, antisymmetry can be enforced by assigning particles
a particular spin and antisymmetrising the spatial part under interchange of
like spin particles, leading to a determinant for up spins and a determinant for
down spins. For quantum solids, @ is often taken to be the localised form
[7.30,31]

d)=exp<—CZ|r,~—zi|2>, (7.4
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where z; are assumed lattice positions, and C is a variational parameter.
Exchange effects are ignored in this wave function since particles are assigned
to specific lattice sites. The solid also loses invariance to simultaneous translation
of all the particles, but the wavefunction will give an upper bound to the energy of
a Bose solid. The effect of exchange is generally small in 3D solids [7.32]. In
practice, including an antisymmetrised or symmetrised form using Monte Carlo
sampling is not difficult [7.20,33].

The results using the simple Jastrow wavefunction, while physically reason-
able, are not very accurate as seen in Tables 7.1 and 7.2. For example, the energy
of *He and 3He at the experimental equilibrium density both differ by about
1.2K from the experimental values of —7.14K and —247K [7.29, 34-36]. As
the densities grow, the Jastrow results become worse.

7.1.3 Three-Body Correlations

The difference between the Jastrow form and the experimental results for *He
is due mainly to the absence of three-body correlations in the trial wavefunctions.
An early calculation of model 2D helium was done, using the Monte Carlo
method, by Woo [7.37]. Later, good variational functions with 3-body correla-
tions were developed using integral equation methods [7.38-40]. The work of
Pandharipande was motivated by a correlation operator method, while Chang
and Campbell minimised the energy using the convolution approximation. The
3-body correlated wavefunction used in Monte Carlo calculations is similar to
these forms, and is [7.41,42]

¥r= [l fRI1fu® (1.5)
i<j<k i<j
where
fffk’ = f(a)(rij’rik’rjk)’ (7.6)
fi= exp( ) _/lfijéik’ij"ik>, (7.7)
cyclic

where 4 is a variational parameter, the sum is over cyclic permutations of i, j,
and k, and &(r) is chosen variationally.

This form can also be motivated by operating on the pair product wave-
function with the Hamiltonian and looking at the local energy, E; (R) of (7.2).
The exact wavefunction must have a constant local energy, so terms which are
not constant should be added to the function space of the trial function. The
local energy resulting from a pair product trial function has 2-body terms pro-
portional to V} f,;/f;; or v;;, and 3-body terms like V,;log(f;;)-V;log(fy). Since
no choice of a 2-body term f(r) will eliminate the 3-body term, additional 3-body
terms must be added to the log of the trial function. These are taken to be
ré(r)~ Vlog[ f(r)] with &(r) chosen to minimise the fluctuations in the local
energy. A reasonable parameterised choice is simply a Gaussian since the short
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range behaviour of & is cut off by the repulsive 2-body potential, and the long
range behaviour can also be cutof since it should decay like r~* in 3 dimensions
because the long range part of the Jastrow correlation decays like r~? due to
zero point phonon excitations.

A nice feature of the 3-body form (7.7) is that it requires only order N?
operations to calculate instead of order N*. This can be seen by rewriting the
correlation as

~ 1
[1s; 11 f,?z:l_[.fijexP(—lel:Gz‘Gz)’ (7.8)

where

G, = i; Eurys (7.9)
and

7(r)=f(r)exp[§52(r)r2]. (1.10)

If correlations of shorter range than half the size of the simulation cell are used
and an average of M particles are within range of the correlation, the 3-body
correlations can be calculated in only MN operations.

Usmani et al. [7.43] have used integral equation methods to calculate the
effect of a more general 3-body correlation. They included terms with contri-
butions like

i}"k) = CXPI: 2;, ;1115(;?52?}’1(%"%)], (7.11)
cyclic

where the P, are Legendre polynomials with [=0,1,2 and # indicates the unit
vector. The [ = 1 term reduces to the form (7.7). They found that the I =0 term
contributes of order 0.1 K in *“He, and the [ = 2 term is small. Preliminary Monte
Carlo calculations agree with these general conclusions. Using the spherical
harmonic addition theorem, the Legendre polynomial can be split into a set of
21+ 1 2-body sums as in (7.8).

7.1.4 Backflow Correlations

The same arguments used above for the bose system “He can be applied to
motivate 3-body correlations in 3He. For a fermion trial function, the local
energy for a pair product trial function includes additional terms proportional
to V,log(fi;)-V;log(¢), where ¢ is a single-particle orbital in the Slater deter-
minant. Correlations that cancel these terms can be obtained by adding Feynman-—
Cohen [7.28] backflow correlations to the Slater determinant. The backflow
form for a liquid, derived by using a beautiful current conservation argument,
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is simply a replacement of the orbitals in the Slater determinant,

exp(ik-rj)—>exp|:ik-<rj+ Y rjmnj,n)]. (7.12)

m#j

The argument of the plane wave is simply changed from r; to r;+ 3 rjntljm-

m#j
Feynman and Cohen showed that n(r)~r~3 at large r from hydrodynamic
arguments. A similar replacement can be done in inhomogenous systems. For
example the orbitals of electrons in molecules should be modified by back flow
effects [7.44].

The inclusion of backflow and 3-body correlations has produced very good
variational wavefunctions for *He as judged by the variational energy. A dis-
advantage of the backflow form is that evaluation of the wave function requires
order N? operations if #(r) is long ranged, even if only one particle is moved
at a time. As a consequence, one usually moves all the atoms simultaneously,
and to achieve a reasonable acceptance ratio, the step size must be chosen to
be small. Often, directed sampling techniques [7.45] are used to improve the
efficiency of the Monte Carlo sampling. As in the standard fermion variational
Monte Carlo method [see I], the calculation of the derivatives is straightforward.
All terms can be calculated using the chain rule and the identity for the deter-
minants of matrices 4 and B,

det(4)
det(B)

= det(B~ ' 4). (7.13)

7.1.5 Pairing Correlations

Bouchaud and Lhuillier [7.6,46,47] have developed variational wave functions
which contain pairing correlations. In particular, they show that the singlet
paired BCS [7.48] wavefunction for N particles can be written as a determinant,

Wpcs = det[o(r;, — rig)l, (7.14)

where u and d stand for up and down spin particles, and ¢(r) is the orbital part
of the single pair BCS wavefunction. One can show using the properties of
Pfaffians [7.49] or Grassman variables that the square of the triplet paired wave-
function is a determinant,

¥ics = det[d(r, — rj,)]-det[d(rig — rj0)]- (7.15)

Bouchaud and Lhuillier use these triplet and singlet BCS functions as the model
functions in (7.3) with a simple gaussian form for the ¢(r),

()= [(ﬁ;')]exx)<—7r>2, (7.16)

where fi-r goes with the triplet state, 1 with the singlet state, and b is a variational
parameter.
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Bouchaud and Lhuillier find that the single particle momentum distribution
with this pairing form is smooth, with no discontinuity at the fermi momentum
in contrast to the distribution resulting from the Slater determinant (see
Fig. 7.12, Sect. 7.5). The static structure S(k) is reasonable and close to that
calculated with the Slater-determinant [7.47] form owing to the small effect of
statistics on the pair correlations in *He. Results are given in Sects. 7.4 and 7.5.

7.1.6 Shadow Wavefunctions

A new variational wavefunction called the shadow wavefunction has been
devised recently by Vitiello et al. [7.7]. Their initial motivation was to produce
variational wavefunctions for the crystalline phase with the symmetries of the
Hamiltonian: translational invariance and particle symmetry. The localised
forms assume a particular broken symmetry and thus inhibit studies of the
phase transition, vacancies etc. They write the trial wavefunction as an integral
over a function of both real particle co-ordinates denoted R, and a set of para-
meters called the shadow variables, S,

Y.(R)= de Z(R,9), (7.17)
where they take

Z(R,S)=exp [ - Z ur(rij) - ;qs(rk —S)— 12 us(slm)]’ (7.18)
and

¢(r) = ar? (7.19)

with « a variational parameter, and u, and u, variational functions. The shadow
variables are in one-to-one correspondence with the real variables and can be
thought of as particles that are integrated out of the wavefunction, the shadow
particles. If the u, is chosen to be a classical potential that crystalises, this form
looks like a localised form, (7.3,4) around the classical crystal positions.
However, particle exchange and translational invariance are maintained since
the underlying classical crystal maintains these symmetries. Of course, if the
shadow variables are frozen into a particular crystalline state during a Monte
Carlo simulation, there is no particular advantage to this form over the original
localised form.

Two other motivations for the form (7.18, 19) were given by Vitiello et al.
The first is that path integral Monte Carlo simulations can give a wavefunction
of the shadow form. If we look at a Feynman path in a crystal, we see that a
particle is attracted indirectly to the centre of mass of its path, and this centre
of mass looks like a classical particle when interacting with the other particles’
paths. The crystalisation of these paths forms the quantum crystal. The shadow
co-ordinates are interpreted as these path variables. A slightly different motivation
comes from the projection technique used in diffusion Monte Carlo calculations
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(see Sect. 7.2) where a trial wavefunction of a pair product form, given by the
shadow u, term, is operated on by a many-body Green’s function, exp(— tH)
which is then approximated by the u, and ¢ terms of (7.18). Since the starting
function is a crystal, we expect to stay in the crystalline phase. The Green’s
function will build in the physical correlations between the particles, including
some 3-body and higher correlations. The shadow procedure will always improve
any variational trial function by building in additional correlations. A virtue
of the shadow wavefunction is that the same form can be used for the liquid
and solid phases and the trial function can undergo a liquid to solid transition
with only a change in variational parameters just as a classical system freezes
as the temperature is lowered.

The evaluation of expectation values with the shadow wavefunction is
straightforward. Both the real particle and shadow particle integrations are
done using the Metropolis et al. method. To calculate variational expectation
values there are two sets of shadow variables, one for ¥¥ and another for ¥y.

A disadvantage of the shadow form is that since the shadow integration
must be done to obtain ¥ (R) from Z(R, S), the energy variance will not be
zero even for an exact trial function. This may be offset by the extra correlations
built in by the projection. Of course, the shadow procedure can be systematically
improved by either adding 3-body and other correlations to the shadow form,
or by using a more accurate representation of the Green’s function as will be
discussed in Sect. 7.3.2. No work has been done along these lines. Another dis-
advantage of the shadow form is that the dynamics of the VMC or GFMC
seem to be significantly slowed down by the entanglement of the real variables
with the shadow variables so that Monte Carlo averages have more autocorrela-
tion and converge slower. It is not clear whether one achieves lower errors per
unit of computational effort by using the shadow form or by a direct GFMC
calculation with a simpler trial function.

The shadow wavefunction has properties that lend it to excited state cal-
culations in quantum fluids. The standard Feynman excitation spectrum is
obtained by operating on the ground-state wavefunction with the excitation
operator

Pr= Zexp(ik-rj). (7.20)

In the case of shadow wavefunctions, the excitation operator can operate on
the shadow variables as well as the real variables. That is the excitation operator
can be taken to be

0k=ZCXP{ik'[sj'*')’(sj—’j)]}- (7.21)

If it operates only on the shadow variables (i.e. y = 0), the projection argument
given above indicates that the shadow correlation will build in some state
dependent effects. Wu et al. [7.50, 51] show that the shadow form gives backflow
correlations. At the roton minimum they obtain energies within 0.5-0.8 K of
experiment [7.52,53] for a range of densities with error bars of about 0.6 K.
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These calculations are difficult because of the large phase fluctuations that can
occur using the excitation operator o, with y # 1.

Another interesting result of Wu et al. is obtained, similarly, by applying
the Feynman vortex excitation operator to the shadow variables. The vortex
core no longer has a singular vorticity. The singularity is smeared out by the
shadow correlations producing a much more physical vortex. Detailed numerical
calculations have not yet been done.

7.1.7 Wavefunction Optimisation

With increasingly complex variational wavefunctions, better methods to deter-
mine the optimal values of variational parameters are needed. Traditionally,
the expectation value of the energy is minimised to find the optimum values of
the variational parameters. Although repeated calculations of the energy at
various values of the variational parameters can produce good results, typically
reweighting techniques are used to calculate the change in energy when opti-
mising the parameters as described in L

The expectation value of an operator O, with wave function ¥, can be
written in terms of configurations sampled from a wavefunction 4. These
reweighting schemes often yield a much better estimate for the change in expecta-
tion value between ¥4 and ¥, than independent calculations, since many of
the fluctuations in the two calculations cancel. Often, reweighting calculations
take less computer time since some parts of the calculations will be the same
when using a V., close to ¥4 In any case, only independent samples from
W .14 are used which can further reduce the computer time required. We can write,

(0 Yoy = §aR 22 0 (R P(RY SR wR)PCR), (1.22)
with
'//old( )
P(R) = 7.23
( ) Ide//old(R) ( )
and
V2R
R) =¥ — 7.24
)=, (.29

and calculate {0 )., and {0 )4 from the same set of samples of P(R).

The variance of the energy is non-negative and equals zero only for the
eigenstates of the Hamiltonian. Recent results on atomic and molecular electronic
systems [7.15,44, 54,55] and on bulk *He [7.56] indicate that minimising the
variance or a linear combination of the energy and variance [7.57] by reweight-
ing methods and using standard minimisation techniques such as Levenberg—
Marquardt, Simplex, or Newton’s method, can optimise of the order of 10-50
parameters.
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Two-body correlation factors in quantum fluids have long been optimised
using integral equation methods such as the paired—phonon method of Feenberg
and coworkers [7.58]. Recently, Monte Carlo techniques have been used to
optimise correlation factors [7.56]. A simple method consists of writing the
2-body correlation as

Ny

J =3 a,f,0), (7.25)
n=1
where a, are variational parameters, and f,(r) are the solutions to the 2-body
Schrodinger equation

1
- ; szn(r) + v(r)f,,(r) = Anfn(r)9 (726)

and N, is the number of basis functions. Typical boundary conditions are those
used with a single function by Pandharipande [7.59] such that f,(r) goes smoothly
to 1 at r =d, with d either a variational parameter or fixed at a reasonable
cutoff distance. Boundary conditions that match smoothly to the correct long-
range tail at r =d could be used [7.43]. This basis set has the advantage of
automatically satisfying the 2-body Schrodinger equation at small r, and having
reasonable behaviour at large r.

Schmidt and Vitiello [7.56] have used the Levenberg—Marquardt method
and variance minimisation to calculate Monte Carlo optimised 2-body correla-
tion factors in liquid and solid “He. They find energies about 0.1 K lower in
both the liquid and solid than with analytic or integral equation forms. The
method can be generalised to other correlations, and the basis can be refined
by redefining v(r) in (7.26) to be an effective two-body potential that gives a
nearly optimum f(r) as its f,.

7.2 Green’s Function Monte Carlo and Related Methods

7.2.1 Outline of the Method

The Green’s function Monte Carlo (GFMC) method has been described in [
and I1, and a simple tutorial is available [7.60]. The interested reader is referred
to these articles and references therein. Here we give only enough to define
terms. The method simply projects a trial state to the ground state using, as a
Green’s function, the real space representations

Er+ Ec

= ! 7.27
G(R,R)) <R|H+ECIR> (7.27)

or

G(R,R,7)= (Rlexp[ — (H — Er)r]|R', (7.28)
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where E is a constant chosen to make the spectrum of H + E positive, and
E; is a trial energy adjusted to keep the population of Monte Carlo walkers
constant and equals the ground state energy. The Schrédinger equation becomes,

Y(R,t+ A7) = de’G(R, R, A7)¥(R',7), (7.29)
and
Y(R,n+1)= de’G(R, R)¥(R',n), (7.30)

for (7.28) and (7.27) respectively, which both converge to the ground state of
the Hamiltonian. Since the version using G(R,R’,7) maps the Schrodinger
equation in imaginary time onto a diffusion equation, it is often referred to as
diffusion Monte Carlo (DMC).

In II, both exact and short time versions of the diffusion Monte Carlo
method were discussed. Versions with higher order accuracy in the time step
than the simple short time approximation, have also been developed [7.61].

7.2.2 Fermion Methods

While giving good results for Bose ground-states, both methods suffer from
exponentially growing variance when naively applied to fermion problems. If
the negative signs associated with the antisymmetric wave function are carried
along as weights, the method is known as transient estimation. A common
technique, the fixed-node approximation, is to solve (7.29) or (7.30) in the region
where a fermi trial function is positive. See II for a review of some GFMC
methods for fermions. Some progress has been made in formulating fermion
algorithms. Straightforward improvements of the fixed-node approximation can
be made by regulating the walkers that cross the nodes, or by introducing softer
boundary conditions at the nodes. The method of mirror potentials has been
developed by Kalos and Carlson [7.62]. This method attempts to improve on
the fixed-node approximation by writing the antisymmetric ground-state wave-
function as

PA-Ypr _ o, ' (7.31)

where W+ and ¥~ are positive functions and the Schrodinger equation can
be trivially rewritten as two coupled equations,

[H+c(R\W*']¥ =E¥", (7.32)
and
[H+c(R¥ I¥*=EY¥Y*. (7.33)

The original Schrédinger equation is recovered by subtraction, and the function
¢(R) can be chosen arbitrarily. The mirror potential is the additional c(R)W*
in the coupled equations, and is defined by the population of the oppositely
signed walkers. Unfortunately, these walker populations are not normally dense
enough in real simulations to make well defined mirror potentials, and
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approximate trial functions are used instead. The method then loses some of
its appeal. By varying the magnitude of the function ¢(R) in (7.32) and (7.33).
the approximate mirror potential method can be made to interpolate between
fixed node and transient estimation results.

Calculations for lattice fermion systems, have been made using the
Stratonovich-Hubbard transformation [7.63,64]. The pairwise interaction is
replaced by auxiliary fields. The fermion part of the wavefunction can then be
solved, since the fermions will then only interact via the auxiliary fieids. These
fields are averaged using the Monte Carlo method. Some attempts at formulating
this technique for continuum systems have been made, for example, by Sugiyama
and Koonin [7.65], and a constraint similar in spirit to the fixed-node approxi-
mation has been implemented by Fahy and Hamann [7.66]. However, much
more work needs to be done before these methods can be applied to quantum
liquids, where the number and magnitude of the auxiliary fields is large due to
the continuous nature of the motion of the particles, and the range and strength
of the interactions. It is difficult to use the insight provided by the pair-product
and backflow trial functions to reduce the computational time once auxiliary
fields have replaced the pair interaction.

7.2.3 Shadow Importance Functions

In both Green’s function Monte Carlo and diffusion Monte Carlo, importance
sampling is introduced to lower the variance in the Monte Carlo walk. As
discussed in I, this is simply accomplished by replacing the iterative equation,
(7.29) by

¥+(R)
¥+(R)

¥(R,n +1)Pr(R) = [dR’ G(R,R)¥(R’,n)¥;(R), (7.34)

and solving for ¥7(R) ¥(R, n), using the importance sampled Green’s function

¥1(R)
¥1(R)

The use of a shadow wavefunction lI’T(R)=j'dSE'(R,S) as the importance
function introduces some extra difficulty, since the integral over the shadow
variables must be done by Monte Carlo. Vitiello et al. [7.67,68] show that one
method to accomplish this consists of making an arbitrary number M, of GFMC
steps with an importance function given by Z(R, S) with fixed S, followed by
an arbitrary number of Metropolis etal. steps M, on the shadow variables S,
at the fixed values of the real variables, satisfying the usual detailed balance
condition,

Z(R,S)P(R,S' - S)=E(R,S)P(R,S - 5, (7.36)

G(R,R). (7.35)

where P(R,S—§') is the Metropolis transition probability for the shadow
variables at fixed value of the real variables. The average results are independent
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of the values of M, and M,, but the variance and autocorrelations, of course,
will depend on these choices. Vitiello et al. report good results with M, = M, =1
although the use of the shadow trial function increases the computation time
needed for convergence by about one order of magnitude. Other methods of
sampling the shadow variables such as direct incorporation into the GFMC
sampling, Langevin, or molecular dynamics methods could also be used.

7.3 Path Integral Monte Carlo Method

Path integral Monte Carlo (PIMC) has emerged in the last few years as an
extremely powerful computational method for computing properties of quantum
fluids and solids at non-zero temperature, complementing the GFMC methods
used at zero temperature. There has been an enormous amount of work using
finite temperature methods on lattice models for applications in lattice gauge
theory and high temperature superconductivity which is covered elsewhere in
this volume.

7.3.1 PIMC Methodology

All static properties and some dynamical properties of a quantum system in
thermal equilibrium are obtainable from the density matrix

P(R,R’; f) =Y e P52 (R)$o(R)), (7.37)

a sum over the exact energy eigenstates of the Hamiltonian weighted by the
Boltzmann factor. As seen by direct substitution, the density matrix satisfies
the convolution identity

P(R, R, B) = I"'delddeRS"'dRM—lp(R’RI,T)
‘P(Ry, Ry, 1) p(Ry -1, R, 1), (7.38)

W 2 e

Fig. 7.1a—c. Three types of exchange possible among three atoms. The circles represent the
co-ordinates of the atoms at a given time slice with the filled circles denoting the first time slice.
The lines represent the “spring™ or kinetic energy part of the action and connect the same atom
on neighbouring time slices
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where 7 = /M. As M is increased and t approaches zero (the high temperature
limit), one can write down an explicit approximation to the density matrix. The
simplest, but by no means the recommended form, is the semiclassical or
primitive form

(R—RY
4it

where A = h%/2m. Substituting this approximation into the convolution identity
yields the Trotter formula. A quantum observable can be obtained by averaging
over the probability density: e~ where the “action” is defined as

¥ (Ri—Ri-,)’ '

S i; e + 1V(R)), (7.40)
for sufficiently large M. The 3N-dimensional points R; for 0 <i < M define the
path which is periodic in the index i, that is Ry, = R,,. This probability distri-
bution is similar to the classical Boltzmann distribution of a system of ring
“polymers” having a harmonic spring interaction between neighbouring beads
on the same polymer and with beads on different polymers interacting via the
original potential function V(r) as shown in Fig. 7.1a. Classical simulation
techniques can be used to perform the 3N M-dimensional path integral but one
must be careful to ensure that the simulation will converge in a reasonable
amount of computer time as we will discuss below.

Bose statistics introduce a very profound, yet simple, change in these paths.
One can obtain the boson density matrix [7.69] from the unsymmetrised density
matrix by applying a symmetrisation operator,

p(R, R, 1) = (4ni7) N2 exp[ — — tV(R):I, (7.39)

p(R,R', 1) = — ¥ p(R, PR, ). (141)
N!'F

The sum is over the permutations P of the particle labels. This simply means
that the polymers are allowed to reconnect in any manner they like, as seen in
Fig. 7.1b,c for 3 atoms. For Bose systems, the Monte Carlo procedure must
average both over ways of connecting the polymers and the paths for a given
connection. Superfluidity is simply the formation of a “macromolecule” which
stretches across the system.

There are two very important considerations in actually carrying out the
simulation. First, the approximate high temperature form for the density matrix
should be made as accurate as possible to reduce the value of M and, second,
the dynamics of the simulation must be chosen carefully in order to have an
algorithm which is effectively ergodic in permutation and path space.

7.3.2 The High Temperature Density Matrix

Although the primitive form for the action gives the right limit as the time-step
goes to zero, its use in simulations is inefficient. Luckily, it is relatively easy to
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find a more accurate expression for the high temperature density matrix. For a
soft potential, e.g. the harmonic oscillator or a lattice model, one can use an
improved action derived from an #, Wigner-Kirkwood (WK) [7.70] expansion

§= %Z(TZF,Z,‘ +21VF,) + 0(42), (7.42)
ik

where F, is the classical force on the ith particle in “time-slice” k. Such an
expansion is not appropriate for helium because the major corrections to the
density matrix come from small r. For a potential like r~'? the WK corrections
will be order r~26 but quantum diffraction effects tend to smooth the potential
to r 3. One needs an expansion appropriate to a hard sphere-like system.

One can generalise the Feynman—Kacs formula for the density matrix [7.71]
to get an exact non-perturbative correction to any density matrix p™,

p(R,R’, 1) = p"(R,R, T)<6Xp{ — [ dtE,[R(t), R 7~ t]}> , (7.43)
4] DRW
where DRW denotes an average over all drifting random walks from R to R,
and E, is the “local energy” of p™,

E (R R;7)= H+ 1>p‘")(R, R, 7). (7.44)

1
P™(R,R',7) ( dr
Starting with the free particle density matrix, and approximating the average
by assuming that pairs of atoms diffuse independently of the other atoms, one
arrives at the pair-product form [7.72] for the high temperature density matrix,

PR, R, 1) = pR,R’,7) exp[ — Y ulryrip T)], (7.45)
i<j

where p'@ is the free particle density matrix and u is defined to be exact for
exactly two atoms. This will go over to the Jastrow wavefunction at zero
temperature. To use this density matrix, one must make a numerical estimation
of the exact two-atom density matrix at high temperature. It is convenient to
transform the two-atom Bloch equation into spherical relative coordinates and
then to solve for the radial density matrices using the matrix squaring method
[7.73]. As an alternative, for hard sphere or coulomb potentials, one can use
their eigenfunction expansions. The pair density matrices are functions of three
co-ordinates. It is convenient [7.74] to use the variables q = (1/2)({r;;| + |r};]),
s=|r;—r;l and z=|r;| —|r};]. Since s and z will be order of \ﬂ one can
expand u as

FippTip D)= Zu (q)s?"z*. (7.46)

Ceperley and Pollock [7.75] have found that if the exact two-atom density
matrix is used in liquid *He, 7 can be chosen as large as 0.025K ™%, and one
can still obtain total energies accurate to 0.1 K. Thus at least 20 time slices
are needed for a simulation for superfluid “He.



Monte Carlo Techniques for Quantum Fluids, Solids and Droplets 221

In case even higher accuracy is needed, one can go to the next order by
finding the local energy of p‘"), and then make a trapezoidal approximation

PR, R',7) = p(R, R',7) exp[%?z(v,- U)Z], (7.47)

where U = Y u(r,;) is the 2-body action. This density matrix, p'”, has the same
i<j

functional form as the 3-body trial function discussed in Sect. 7.1.3.

7.3.3 Monte Carlo Algorithm

The numerical evaluations of the path integrals for many-body systems have
been performed with either the classical Molecular Dynamics or Metropolis
Monte Carlo methods. The Molecular Dynamics technique is straightforward
to apply, but does not allow the possibility of making a permutational move
so we will not discuss it further. Let us briefly recall the Metropolis rejection
method. A Markov chain is generated based on some a priori transition
probability, T(R’|R), which is the probability density of sampling the trial move
R’ based on the old point R. Then that move is accepted with probability

T(RlR’)e‘S“‘":I

ST 7.48
T(RllR)e—s(R) ( )

A(R'/R)= min[ 1
where S(R’) and S(R) are the actions in the old and new state. In a Metropolis
method it is possible to mix up moves in any blend as long as the probability
of making a given type of move is independent of the system state, and each
type of move individually satisfies the detailed balance relation. Eventual
convergence is guaranteed by the detailed balance condition but the rate of
convergence can be very slow, particularly with path integrals. A common
theme in all the improved methods is that the slow convergence is a consequence
of the kinetic energy term of the action in the limit of small z. But it easy to
device a way to sample this term a priori. Below we list the various types of
Metropolis transitions that have been proposed. Unfortunately there is little
comparison of their efficiencies in the literature.

7.3.4 Simple Metropolis Monte Carlo Method

In the simplest choice for the transition probability, a single atom at a single
time slice, a “bead”, is displaced uniformly inside a cube of side 4, with A
adjusted to achieve 50% acceptance. As M increases the random walk diffuses
through configuration space very slowly because the largest displacement
allowed by the free particle density matrix is order . /(At). Even worse, an atomic
path acquires an inertia, so that in following moves, fluctuations away from
the centre of mass are suppressed. As a consequence, it is difficult to achieve
convergence in a reasonable number of steps.
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7.3.5 Normal Mode Methods

The kinetic energy term for each atom can be diagonalised by working with
the fourier coefficients,

M
Qu= ) Re ™M (7.49)
i=1
The kinetic part of the action then has an expansion
1 nk
S=—Ysin?| — 2 7.50
B2 < - )Ile (7.50)

and each of the 3NM variables, Q,, can be sampled independently from the
resulting Gaussian distribution. In the absence of a pair potential, all moves
would be accepted. When a realistic potential is present the large k modes can
be sampled directly from the above distribution since they cause only a small
movement of the path. Usually the long wavelength modes are moved a small
amount, say |Q; — Q| < ,, with y, adjusted to get 509, acceptances. The centre
of mass mode (k=0) is treated separately and moved as a classical particle
[7.76-78].

7.3.6 Threading Algorithm

In this method, one cuts out a section of one or several atomic positions for n
time slices. Then one recursively generates a new path by growing from time
slice O to slice n with the diffusion algorithm

Riyy = R;—2tAVS[R;, R, (n — 1)1t] + 0,/ (214), (7.51)

where #; is a normally distributed random vector with zero mean and unit
variance and Sy is a trial action. Note that the time argument of S; will be
greater than 1 if more than one time-slice is being updated. The trial action is
only used to guide the walk and any convenient approximation can be used
for it. Inaccuracies will only affect the acceptance ratio, not the converged
distribution. After the new path is generated, it is accepted or rejected in the
usual Metropolis fashion based on the difference between the old and new
action and on the ratio of the sampling probabilities for the old and new paths.
The advantage of this method over the previously discussed ones is that a
completely new path can be generated and several atoms can be simultaneously
updated. The form of the diffusion can be shown to be optimal in the sense
that if the trial action were exact with all atoms being moved and t were
sufficiently small, the acceptance ratio would be one. However, in practice, moves
of more than a few time slices are often rejected [7.71].

7.3.7 Bisection and Staging Methods

The bisection method is closely related to the Levy method of constructing a
Brownian bridge. To construct a random walk from R(0) to R(f) in time p,
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one begins by sampling the trajectory at the midpoint as
R(B/2) = 3(R(0) + R(B)) + w1, (7.52)

where 7 is a normally distributed random vector of zero mean and unit variance

and w; = /Af/2. One then bisects the time intervals (0, 8/2),(8/2, B) to find the
points R(B/4), R(35/4) etc. until one has sampled all the points on the path.

In the bisection method [7.74], a move consists of several levels; the first
level is the midpoint, the next level consists of the two midpoints of the midpoint
etc. A decision is made at the end of each level whether to continue on to the
next level or to reject the entire attempted move. Only when one reaches the
final level are the co-ordinates updated. There are two ingredients in this
algorithm. The first is the method of sampling the midpoints. It has been found
best to use a correlated Gaussian distribution so that the midpoint is sampled
according to

R(B/2) = 3(R(O) + R(B) —w;VU +n, (7.53)

where U is the interaction part of the action and # is sampled from a normally
distributed random number with zero mean and covariance

() =wi(Il —wiVVU). (7.54)

This cortelated normal distribution is sampled using a Choleski decomposition
of the covariance matrix. The effect of atomic interactions on the a priori distri-
bution is to push the mean position of an atom away from its free particle mean
if another atom is there. This is similar to the techniques of “force-bias” Monte
Carlo and “smart Monte Carlo” [7.45]. The covariance has a crucial role to
play when an exchange of atoms is being attempted in order to change the
permutation. Then the covariance keeps the two (or more) moving atoms out
of each other’s way.

The second ingredient is the rule for accepting a given level and proceeding
onto the next level. For simplicity, let us consider only the acceptance of the
midpoint move R; , which has been sampled from the correlated Gaussian distri-
bution T(R,,). The probability to go onto the second level is given by

min[l,w} (7.55)
T(R:./z)"z(Rn/z)
where

Ta(R) = 2R Rz 120 Rz, R ne/2) (1.56)

p(Ry, R,; n7)

Note that one must compute the probability of sampling the old midpoint and
the old action.
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For multi-level sampling, until the final level, the density matrices will have
time arguments greater than 1. The approximation made will only affect
the rate of convergence, not the final converged values of physical quantities.
But as the density matrices approach the exact ones, and the sampling T(R;)
approaches its optimal value, the acceptance ratio approaches unity. In the
bisection algorithm, the parameter which controls the size of the move is the
number of time steps. The advantage of the bisection method over the threading
method is that places of high potential energy are most likely at the midpoint.
Unfavourable moves can be quickly identified and the process stopped instead
of continuing on to the inevitabie rejection.

The staging algorithm, which has been applied to a single electron in a classical
liquid [7.79], has ideas similar to the bisection method. The first level is con-
structed using with the Levy algorithm and then a second level repeatedly
sampled to find the action of the first level. This is not as efficient as the bisection
procedure because the amount of computation per accepted move is much
higher.

7.3.8 Sampling Permutations

The simplest Monte Carlo algorithm to change the permutation for a Bose
system, would involve interchanging a pair of particle labels without moving
the chain at all. This will not sample permutation space for small 7 as the following
argument demonstrates. In relative co-ordinates, a pair of *He atoms will move

on the average \/}; =1 A for a time step of 1/40K. As can be seen in Fig. 7.2,
since the relative co-ordinates are about 3 A apart because of the pair potential,
there is a very small chance (about 10 % =exp[ — ¢?/(447)]) of making an
exchange. In order to fully explore the configuration space of a superfluid, it is
necessary to couple permutation moves with moves of a portion of the polymer
chains of the atoms being relabeled.

It can be shown that the optimal function to sample a permutation P from
is p(R;, PR, , ;n7). To have a reasonable acceptance probability one wants the
move to be as small as possible. Let us suppose that the permutation change,
P, ranges over all cyclic permutations involving 2,3 or 4 atoms. It is important
to go beyond pair interchanges in a dense liquid since it is easier for three of

Fig. 7.2. Direct(solid) and exchange paths (dashed)
for two atoms in relative co-ordinates. The shaded
circle indicates the portion of phase space excluded
by the interatomic potential. In relative co-
ordinates an exchange path proceeds from a point
A to a point —A while a direct path is a loop.
The figure shows that a substantial change in the
path variables are needed to move from a closed
loop to an exchange path
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four atoms to cyclically permute than it is for a pair. Since the exact density
matrix is unknown, some approximation must be made to construct the a priori
chance of a permutation. The free particle density matrix is a convenient choice.
Then the probability of attempting a permutation P is proportional to

— . 2
T(P)= exp[ - (Ri—‘%fi]. (1.57)

A table of these probabilities can be quickly constructed and sampled since it
only involves inter-atomic distances between time slice i and slice i + n. If the
total permutation and path are accepted, the table needs to be updated.

7.3.9 Calculation of the Energy

The most straightforward way to calculate the energy is to differentiate the
partition function with respect to the temperature;

din(Z) 3N 1 M (R,—R;_;) dU;;_
E=__. =14 — _ i i—1 Li—1 , 758
ap 2 Mi;1< 412 M dt > (7.58)

where the brackets indicate average over the walk and U, ;_, is the interacting
part of the action as defined in (7.45) between time slices iand i — 1. At sufficiently
small 7, this reduces to the potential energy but (7.58) is exact at any 7 for an
exact expression for the action. In taking the f derivative, the order of an
approximation to the action will be reduced by one, so if the expression for
the action has an error of order 73, this expression for the energy is only correct
to order t2. For that reason, it is best to include the force squared term of
(7.47). If U is the solution to the two-body problem, its time derivative can be
eliminated in favor of spatial derivatives. A comparison of the two will give
an estimate of the systematic error of the energy [7.76].

There is a difficulty in using (7.58) to estimate the energy, namely its error
grows as 7~ !, Thus attempts have been made to find lower variance estimators
[7.71,80,81]. It is possible to eliminate the troublesome kinetic energy term by
integrating by parts over the path variables, and using a form reminiscent of
the virial expression for the pressure;

3N 1 M J4U;;., FA 1
E="" 4+ himl 7R Ry+i—~R)R;s1—R) ), (15
28 M.~=Z1< dr 2 4131/1( uei = R)Rivs )> (7.59)
where F, is the analog of the classical force
1
Fi=—-V(U;i-, + Ui,i+l), (7.60)
T

and A4, is the deviation from the particle’s centroid

A 1 M-1
(== R, —R;,)). 7.61
zM,=§+1( ) (7.61)
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This virial estimator is exact (if the exact U is used) but care must be taken in
interpreting terms (R; — R;) to ensure the atoms have always continuous trajec-
tories with periodic boundary conditions and bosonic exchange. For free
particles, we can obtain the following estimator for the energy,

E=§E_<(_IE°__RM)2>, (7.62)
28 4p%A

where the difference in distances may include winding around the periodic
boundaries of the box and bosonic exchange. Quantum free particles in a box
can have an energy less than 2k T'; witness bose condensation. Only the primitive
estimator has been applied for superfluid helium since the virial does not have
lower variance for the T and potentials used.

7.3.10 Computation of the Superfluid Density

The path integral framework translates superfluidity into very intuitive concepts.
As is discussed in Feynman’s papers, at approximately 2 K the polymers become
long enough so that exchange becomes probable. The partition function will
increase as this new phase space opens up and the second derivative of it, the
specific heat, will have the familiar lambda shape. Figure 7.3 shows the
probability of a given atom participating in a cyclic exchange of n atoms, as
calculated with PIMC.

Superfluidity is experimentally defined by the equilibrium response of the
system to a gentle motion of the walls. If the walls are rotated slowly, the normal
fraction will be entrained with the walls at equilibrium while the superfluid will
remain at rest. By doing a transformation from a co-ordinate frame where the
walls are moving to one where they are at rest, it is possible to use PIMC to
determine the dependence of the free energy on the motion of the walls. The
superfluid density is proportional to the second derivative of the free energy
with respect to the wall velocity at zero velocity, and in periodic boundary
conditions can be shown [7.82] to be equal to the mean squared number of
paths in PIMC which wind around the periodic walls,

2
ps_<WO (7.63)
p 2diBN
where W is the winding number,
8 dr
W=y fdi—. (7.64)
io dt

The winding number which describes the net number of times the paths have
wound around the periodic cell is an invariant of the path. For a system without
boundaries such as a droplet, one can define the normal fluid mass as that part
of the system which contributes to the moment of inertia.

Pt _ 2{A%)
p I, I.4B

, (7.65)
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Fig. 7.3. The probability of a given atom being involved in an exchange in 2D *He as a function
of temperature. The upper curve are non-exchanging atoms while the 5 lower curves are the
probabilities of exchange with 2-6 other atoms. Because there are a total of 25atoms in the
simulation these probabilities approach 1/25 at low temperature. The Kosterlitz-Thouless superfluid
transition occurs at a temperature of 0.7K g

where I, = <Zr,2> and A is the area swept out by the paths,

B dr.
A =12jdi X 1. (7.66)
Todt

An example of winding is shown in Fig. 7.4 and the results for the superfluid
density are given in Sect. 7.4. A major difficulty in the PIMC calculations is
getting the winding numbers to converge, since a change in winding number
can only occur with a global change in path configuration. It has been shown
recently that an estimator [7.83] based on the local diffusion of paths can give
an alternative method of calculating superfluid density.

7.3.11 Exchange in Quantum Crystals

Crystal *He at millikelvin temperatures is one of the simplest and cleanest
examples in nature of a lattice-spin system. Its magnetic properties result from
infrequent atomic exchange, since it is only through exchange that the Pauli
exclusion principle comes into play. Careful analysis of experimental data made
plausible the model that the frequency of exchange of two, three, and four atoms



228 K.E. Schmidt and D.M. Ceperley

Fig. 74. A typical path configuration at T=0.8K in 2D liquid *He. The basic periodic cell is
replicated 4 times. There are a total of 25 atoms present. The heavy line indicates a path winding
across the cell in both the x and y directions

are approximately equal to each other, but calculation of exchange frequencies
is necessary for the model to be verified [7.84, 85].

To define the exchange frequencies and the lattice-spin model, one assumes
that most of the time the atoms are close to lattice sites. The N! degeneracy of
arranging N atoms onto N lattice sites is broken by the exchanges. Suppose
we allow only two ways of arranging the atoms which we will denote as Z and
PZ. Here P is a permutation and Z the perfect lattice vector of 3N positions.
Then the ground state is split into an even and odd state and the frequency
with which the system oscillates between the two localised states is
2Jp = E, — E,. Atlow temperatures, the system of spin 1/2 fermions is described
by a lattice Hamiltonian acting only on the spins: Y Jp(—1)"P,.

P
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The exchange frequencies are difficult to calculate since the helium atoms
have large zero point motion and correlation. Variational methods fail since
they require knowledge of the wavefunction in regions where it is very small.
For temperatures well below the Debye temperature only the two lowest states
will contribute to the density matrix, and if we consider the element of the
density matrix connecting Z with PZ it can be shown that

p(Z,PZ; ﬂ)'
P(Z,Z; )

Expanding the density matrices in terms of path integrals as in (7.38) and
speaking in terms of the polymer picture, the quantum exchange rate is related
to the free energy necessary to “cross-link” two or more “polymers” in a “polymer
crystal”. It is then possible to take the computer method developed to simulate
superfluid “He and thereby find these magnetic coupling constants in the crystal
3He. The results are in quite good agreement with experiment and show that
many exchanges are relevant in a quantum crystal and that a quantum crystal
is more complex than previously thought.

This calculation is technically demanding. Bennett’s method [7.86] of the
two sided acceptance ratio was used to determine the free energy ratio.
To calculate the above ratio we define the state of the walk to consist not only
of the path, but also of the connection of the endpoints which is either P or I
(the identity permutation). Just as for superfluids, the Monte Carlo moves must
allow for transitions between these two states. It is actually not necessary to
make moves between the two states but only necessary to compute the
acceptance probabilities for proposed transitions. Then the exchange rate is not
expressed as the difference between two eigenvalues but as the ratio of two
rates. The error is independent of the magnitude of the exchange frequency
which is on the order of 460 uK in *He and 4 uK in *He. It is quite important
in this calculation to have an accurate high temperature density matrix.

tanh[Jp(8 — Bp)] = (7.67)

7.3.12 Comparison of GFMC with PIMC

GFMC and PIMC are very closely related methods since both are based on
sampling of the thermal density matrix. The density matrix is a solution of the
Bloch equation

_dp(R,R,f)
ap

which is the “dynamics” of the GFMC algorithm. The object held in the
computer’s memory in GFMC is an ensemble of configuration walkers {R}
while in PIMC it is the entire imaginary time path R; and the permutation.
The dynamics in GFMC is that of a branching random walk with an assumed
guiding function while in PIMC it is a generalised Metropolis method. Insight
into the physics may influence the transition probability in PIMC. GFMC can

= Hp(R,R’, B), (7.68)
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calculate energies very accurately but has difficulty with other quantities.
Estimates coming from PIMC have larger statistical errors, but they have less
systematic error since they do not have the bias from the importance function.
GFMC usually converges faster since the walks are less constrained while PIMC
has a kind of critical slowing down as the time step goes to zero. But of course,
one is comparing apples and oranges since GFMC is the method of choice for
calculation of ground state properties and PIMC for calculations at non-zero
temperatures.

7.3.13 Applications

There have been numerous applications [7.87] of PIMC to the situation where
a single quantum particle (for example an electron or muon) is inserted into a
classical system. Examples are an electron in gaseous classical helium, or a
single electron on a protein. Without the possibility of particle exchange, getting
the system to converge is not difficult, but on the other hand, to reach room
temperature takes on the order of one thousand electron steps, much more
than is needed for liquid helium because an electron is so much lighter than a
He atom. There have also been PIMC calculations on almost classical systems
like liquid argon, neon, and water. Monte Carlo methods used on those systems
are straight-forward generalisations of the classical Monte Carlo or molecular
dynamics methods, since quantum exchange is not taken into account. The
results of the PIMC method that we will discuss in Sects. 7.4-6 are the applica-
tions to systems of liquid and solid helium.

7.4 Some Results for Bulk Helium

7.4.1 “He Results

The bulk “He liquid and solid ground-state behaviour is well characterised by
the variational wavefunctions described in Sect. 7.1, and good equation of state
results are obtained using the GFMC method. In Fig. 7.5, we show the equation
of state of liquid *“He at zero temperature from experiment [7.36], GFMC
[7.88], and variational wavefunctions with 2- and 3-body correlations [7.89].
Figure 7.6 shows similar results for solid *He where there are small discrepancies
between experiment [7.90] and the GFMC calculation which may be due to
3-body potential energy contributions. The variational results in the liquid and
solid are qualitatively correct and in reasonable quantitative agreement. Figure
7.7 shows the GFMC and experimental [7.91] 2-body distribution function g(r).
The agreement between experiment and theory is quite good.

Simple shadow wave functions, (7.18), reduce the variational energy at the
equilibrium liquid density of *He by about 0.31K from a pure Jastrow trial
wavefunction. This can be compared with about 0.85K reduction for a 2- and
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Fig. 7.5. The ground-state energy of liquid “He as a function of density. The solid line is experiment
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Fig. 7.6. The ground-state energy of solid *He as a function of density. The notation is the same
as Fig. 7.5, except that triangles are the experimental results for the hexagonal close packed crystal
[7.90]. The variational and GFMC results are for a face centred cubic crystal, and use a one-body
localisation factor, (7.4), around the lattice sites
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Fig. 7.7. The experimental (at 1.0K) [7.91] (circles) and GFMC [7.88] extrapolated (solid line)
two-body distribution functions g(r) for liquid *He at equilibrium density
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as computed with PIMC
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the experimental superfluid
transition temperature
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3-body correlated wavefunction. Table 7.1 gives some other results for the
liquid *He ground-state energy using various methods.

Detailed path integral Monte Carlo calculations have been performed on
liquid *He [7.19, 75,82, 92]. Figure 7.8 shows the comparison of the energy with
experiment. It seems that PIMC can get energies accurate to 0.1 K except above
the transition where rounding due to finite system effects occur. Path integral
calculations for other properties at low temperatures agree well with GFMC
results, and are in reasonable agreement with experiment. A particularly nice
result is the calculated behaviour of the superfluid fraction as shown in Fig. 7.9.

7.4.2 3He Results

The *He Monte Carlo results are not nearly as accurate as those for “He. The
fermi nature of *He makes even the ground-state energy difficult to calculate
as described in Sect. 7.2 and in II. In Table 7.2, we show some results for the
unpolarized liquid *He ground state. The 2-, 3-body and backflow correlated
wavefunction produces the best variational results [7.93], although the pairing
wavefunction of Bouchaud and Lhuillier [7.47] also gives a reasonable value.
Unfortunately the pairing function used in that calculation has a large dis-
continuity at the edge of the simulation cell, thus the results are not necessarily
upper bounds. The discontinuity introduces large additional size dependence
that must be corrected for. Size dependence of the order of 0.1 K is a problem
in all 3He simulations as mentioned at the beginning of this chapter.

We also show in Table 7.2 fixed-node, approximate mirror potential, and
a transient estimate result [7.21]. By comparison with experiment it appears
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that the transient estimate result has converged. Unfortunately, the situation is
not clear-cut due to differences in potentials, system sizes, estimation of errors,
etc. It is still not clear precisely how good the various proposed nodes, trial
functions, potentials, algorithms and methods for correcting for the finite sizes
are for liquid *He at the level of 0.1 K. A satisfactory calculation of the energy
of *He versus spin polarisation has not yet been completed.

7.4.3 Solid He

In the solid phase, the shadow form at a density of 0.0329 A3, gives an energy
of —3.5610.03 K compared to a localised-Jastrow result of —3.324+0.02K and
—3.79+0.01 K when 3-body correlations are added [7.7]. PIMC calculations
in the solid phase do not have symmetry breaking terms which are introduced
with the localised trial functions in GFMC or VMC. PIMC calculations have
been made of the quantum solid of hard spheres and of *He with the Aziz
HFDHE?2 and Lennard-Jones potential [7.71,94]. Elastic constants and the
phase diagram of *He have also been extracted from these hard-sphere cal-
culations [7.76,95,96].

The exchange frequencies of *He and “He atoms in the bulk solid have
been calculated with PIMC [7.97]. It is found that pair interchange is most
frequent, but that is followed closely by three and four atom exchange. The
multiple exchange model [7.84] is strongly supported, but the calculations differ
from that model in that a spectrum of exchanges is predicted to result in the
experimental values of the magnetic ordering temperature and magnetic suscep-
tibility. Even though the frequencies of some of the exchanges are small they
are numerous. The importance of so many exchanges complicates the already
difficult task of determining from the lattice Hamiltonian, the low temperature
magnetic properties.

7.5 Momentum and Related Distributions

7.5.1 The Single-Particle Density Matrix
The single particle density matrix is
palry,ra) =Y (rY(ra)),

where the brackets indicate the thermodynamic average over the states of the
system, and  * (r) is a creation operator for a particle at position r. For a system
in a normalised eigenstate P,

pylry,r)= de3r2 "‘der WAy, ry, .. ry)P(r ey, 1y, (7.69)
and for a system at inverse temperature f,

pilri, ¥, By =Nfdry---dPryp(ry,ry,... .15 ¥ gy iy B, (7.70)



Monte Carlo Techniques for Quantum Fluids, Solids and Droplets 235

where p(R, R’, B) is the N-particle density matrix with the symmetry or antisym-
metry required by bose or fermi statistics. Equation (7.70) is just the Boltzmann
average of (7.69) over the states of appropriate particle statistics. These equations
have tacitly assumed spin independence of the density matrix. For partially spin
polarised systems, the density matrices of the spin up and spin down particles
are calculated by choosing particle 1 in (7.69) or (7.70) to be spin up or down
respectively, and the factor N is replaced by the number of up or down spins.
For homogeneous systems,

palry,ry) = pi(lry —ryl) (7.71)

because of translational and rotational invariance. The fourier transform of
p,(r) is the momentum distribution,

n(p)=<a, a,>, (1.72)

where a' is a creation operator for a particle in a state of momentum p.
Typically, n(p) is calculated by Fourier transforming p,, and rather than enforce
the periodicity of the simulation cell, the spherically averaged p,(r) is extra-
polated smoothly to large r, and

n(p) = Nnod, o + [e™"(p(r) — pno)d°r, (7.73)

where n, is the condensate fraction, and p is the bulk density. The condensate
fraction is directly given by the large r behaviour of p,,

lim p,(r) = pn,. (7.74)
The kinetic energy is

*> _ &pmipp” (1.75)
2m  2m([d3pn(p)

and should agree with direct calculations. The kinetic energy is proportional
to the curvature of p,(r) at r=0.

Calculation of p, for bosons is conceptually quite simple with PIMC. One
simply cuts one of the polymer chains and measures the end-to-end distribution
of the two cut ends. The condensate fraction is the value of the distribution at
large end-to-end separations, divided by its value at the origin. Thus condensation
is equivalent to the unbinding of the two ends of a cut polymer. Hence, momentum
condensation can only occur when a macroscopic polymer is present. Several
tricks can be employed to achieve a more efficient estimation of this fraction.
First, it is easy to estimate p, for small r by displacing an arbitrary atom from
the diagonal simulation (no cut ends), and finding the change in the action.
Second, when the ends are cut, one should apply importance sampling of the
end-to-end distance so the errors coming from small distance approximately
equal the errors from large distances. Third, one should preferentially move
and permute the cut ends of the polymer. The computation of the momentum
distribution in PIMC is inconvenient since a special calculation needs to be
performed.
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7.5.2 y-Scaling

The main interest in calculating n(p) is to understand, approximately, the
dynamic structure factor of quantum many-body systems. The impulse approxi-
mation for neutron scattering at large momentum transfers follows from the
assumption that a neutron scatters off a single particle, and the outgoing wave-
function is a plane wave. At large momentum transfers, with soft potentials,
y-scaling holds. That is, the scattering is proportional to the impulse approxi-
mation result, and the dynamic structure factor can be written as

m
S(k, w) = 4 ned(y) + pJ (), (7.76)
where in the impulse approximation, J(y) is
2 1/2 d’p, 1%
Ja) = [n((? + p,)"*) L=~ { py(r)cos(yr)dr, (7.77)
2r)° =mo
and y is the West scaling variable [7.98], i.e. the longitudinal momentum transfer
2
y=T<w—i—>- (7.78)
q 2m

The important result is that for large momentum transfers, S(k,w) does not
depend on k and w independently, but only on y in Jj,(y). For hard-core
potentials, final state effects modify the simple impulse approximation result
[7.99-102]. Silver [7.101,102] has given a simple prescription for including
approximately final state effects by replacing J,(y) by a convolution of the
longitudinal momentum distribution with a function that depends on the 2-
body density matrix, with one particle diagonal and the other off-diagonal,

p2(ry, o ry,13) = YT (P T ()W (r )Y (r2)). (7.79)

The main correction in this theory is therefore from an additional contribution
from a spectator particle carrying off a portion of the momentum. Equation
(7.79) is calculated straightforwardly using either PIMC or GFMC [7.94].

Carraro and Koonin [7.103] have recently studied final state effects in
“He directly, using a variational wavefunction and the Monte Carlo method.
Instead of assuming an outgoing plane wave as in the impulsive approximation,
they explicitly solve for the outgoing wavefunction using the static positions of
the spectator particles, sampled from a pair product trial function. The method
therefore includes multiple scattering corrections to all orders. Because only the
longitudinal component of the momentum is important, their method is com-
putationally simple since only a 1D scattering problem needs to be solved for
each independent set of sampled particle positions. Their derived effective final
state broadening function becomes narrower at lower momentum transfers in
contrast to Silver’s result. Although they used a variational wavefunction, the
incorporation of their method into a path integral or Green’s function Monte
Carlo calculation would be feasible.
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7.5.3 Momentum Distribution Results

Momentum distributions have been calculated, for both *He and *He ground-
states [7.18,47] and for *He at finite temperatures [7.19,94]. Kalos et al. [7.88]
and Whitlock and Panoff [7.18] have calculated the momentum distribution
of liquid and solid *He using GFMC. For the equilibrium density liquid,
p =0.0218 A~ 3, they obtain a ground-state condensate fraction of 9.2% + 0.1%
as compared to the experimental estimate of 109, +2.09 at T=1.5K [7.104].
The experimental estimate may be more uncertain than this, due to the extreme
difficulty of pulling out the contribution of a delta function from inelastic neutron
scattering cross sections which have been broadened by final state effects, instru-
mental resolution and multiple scattering. The GFMC condensate fraction
decreases to 3.8%+0.2% at p =0.0262 A~ 3 [7.88]. An interesting variational
result, using the shadow wavefunction, is a condensate fraction of 4.51%, +0.03%,
at equilibrium density [7.29]. This illustrates the difficulty of drawing firm
conclusions about quantities (other than the energy) with the variational method,
particularly in regards to long-range order.

Ceperley and Pollock [7.19] calculate a condensate fraction at SVP from
T=1-4K. They get a value of 8% with error bars of order +19 between
T=1K and T =2K. The condensate fraction drops rapidly above 2K as the
system goes through its lambda point, with results consistent with no condensate,
as expected, for temperatures greater than 3K. Accurate estimation of the
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Fig. 7.10. The measured J(y) of (7.76) at 0.32K (circles) compared with the GFMC ground state
result (solid line). The GFMC [7.18] result has been modified as described in the next. Data from
Sokol et al. [7.105]
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Fig. 7.11. The measured J(y) of (7.76) at 3.33 K (circles) compared with the PIMC result (solid line)
[75]. Data from Sckol et al. [7.105]

condensate fraction in the critical region requires simulations of much larger
systems than have been used to date. At the higher density of p = 0.0262 A3,
PIMC predicts a condensate fraction of 2.6%.

In Figs. 7.10 and 11 we show results taken from [7.105] of the measured
J(y) along with the calculated J(y) [7.18, 19] at two temperatures. The calculated
J(y) have been convoluted with an instrumentation resolution function, and the
zero temperature GFMC results have been modified by convoluting with a
final state effects function [7.101]. The results agree within experimental errors.
Without the final state effect corrections to the GFMC results, the low tem-
perature experiment and theory differ by about 10% at the peak of J(y). Carraro
and Koonin [7.103] calculate an equally good fit at these momentum transfers.

For Bose solids, the possibility of a condensate has not been thoroughly
investigated. The importance functions used by Whitlock and Panoff [7.18]
were of the localised form, and do not allow a condensate. At finite temperature
one will have a condensate only if the two ends of a cut path become delocalised.
Thus condensation is associated with the formation of bounded vacancy-
interstitial pairs and with the existence of arbitrarily long ring exchanges. PIMC
calculation find the exchange frequencies for three and four atom exchanges in
solid “He are 1-4 uK. The low temperature and the small value of the expected
condensate are discouraging. Recent calculations show that shadow trial wave-
functions do have a non-zero condensate in the solid [7.106], but numerical
calculations have not extracted a non-zero value [7.29]. The p,(r) in the solid
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Fig. 7.12 The calculated ground-state momentum distribution of liquid *He at equilibrium density
from fixed-node GFMC [7.18] (squares) and using the pairing wave function of Bouchaud and
ILhuillier [7.47] (circles). The curves are drawn through the points only as a guide

phase is well represented by a gaussian; typically, the moments of p, deviate
by only a few per cent from gaussian behaviour [7.29].

There are few experimental results for liquid *He and simulations are not
as reliable as those for Bose systems. The momentum distributions for the
ground-state of 3He liquid have been calculated variationally and using fixed-
node GFMC [7.18,20,47]. Shown in Fig. 7.12 is the momentum distribution at
equilibrium density calculated variationally with the Bouchaud and Lhuillier
pairing trial function and with fixed-node GFMC. The GFMC results has a
fermi liquid discontinuity at the fermi momentum, but it is unlikely that this
type of calculation can break away from the initial assumed symmetry of the
model function, a perfect fermi gas. The Bouchaud and Lhuillier pairing form
does not have a fermi surface. Unfortunately, final state effects may make *He
neutron scattering experiments insensitive to this difference [7.102].

Sokol et al. report an experimental kinetic energy for *He at equilibrium
density of 8.1717K [7.107], while fixed-node GFMC calculations give
12.2840.04K and transient estimates give 12.40+0.10K [7.21]. The
discrepancy here is about 2.5 standard deviations. This may be due to any of
the following: statistical errors, the difficulty of extracting the kinetic energy
from the experimental neutron scattering, the GFMC extrapolation errors, the
fixed-node approximation or lack of convergence of the transient estimation,
or simulation size dependence.
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7.6 Droplets and Surfaces

Although experimental results for small helium droplets are not yet available,
clusters have been seen in rare gas jets [7.108, 109]. The main motivation of
studying droplets is to obtain a better understanding of finite systems where
physical boundary conditions can be handled exactly; to understand the transition
from the finite system to the bulk limit; and to understand liquid-gas interfaces.
In the future the same methods will be used to understand systems with pores
and other restricted geometries [7.110].

7.6.1 Ground States of He Droplets

Calculations on *He droplets with N up to 728 were done by Pandharipande
et al. [7.22,111] using Green’s function Monte Carlo and variational Monte
Carlo. Their variational wavefunctions contained 2- and 3-body correlations
as discussed in Sect. 7.1. However, for N < 10 they find that their best variational

Table 7.3. The ground-state energy (in K) and radius (in A) for N atom “He droplets
calculated with various methods. VMC1, VMC2 and VMC3 are the variational results
of [7.111,112,23] respectively. GFMC is the Green’s function Monte Carlo result from
[7.22], and DMC is the diffusion Monte Carlo result from [7.23]. Energy error estimates
are given in parenthesis. Where more than one energy is given, we have reported the
results with the lowest variational value. The PIMC result [7.113] is at a temperature
of 0.5 K. The last column is an estimate of the lowest energy excitation with zero angular
momentum

N Calculation Eq(K) ro(A) Eg — E((K)
3 GFMC —0.0391(1) 5.35
8 VMCl1 ~0.5989(8) —
8 GFMC —0.6165(6) 3.19
20 VMCl —1.5734(13) 227 2.85(1)
20 VMC2 —1.514(3) 2.73 3.42
20 GFMC —1.627(3) 271
40 VMCl1 —2.389(2) 2.54 2.79(4)
40 VMC3 —2.196(1) 2.63
40 GFMC —2.487(3) 2.57
40 DMC —2.529(3) 2.55 3.53
64 PIMC —2.81(5) 2.46
70 VMC1 —3.031(3) 248 2.75(15)
70 VMC2 —3.005(3) 242 4.22
70 GFMC —3.12(4) 247
70 DMC —3.188(2) 2.44 391
112 VMCI —3.498(5) 243 2.63(7)
112 VMC3 —3.143(2) 249
112 GFMC —3.60(1) 244
112 DMC —3.702(3) 2.40 392
240 VMC1 —4.193(5) 2.37 2.64(8)
240 VMC2 —4.192(4) 222 2.86
768 VMC! —4.938(5) 232

o0 Experiment —7.14 222 0.0
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results are obtained with the 2-body correlation chosen to have the asymptotic
form

lim f(r)=¢ " VN-1), (7.80)

r—aw

which has the effect of holding the droplet together. For N > 10 they add a
one-body correlation between each particle and the centre of mass of the droplet
to bind the droplet. Similar calculations have been done recently by Chin and
Krotscheck [7.23], who did variational and DMC calculations of droplets up
to N =192 and by Rama Krishna and Whaley [7.112] who have calculated,
using variational Monte Carlo, droplets up to N = 240. These latter results used
the newer HFDB potential of Aziz et al. [7.11] while the others used the
HFDHE?2 potential [7.8]. This must be taken into account when comparing
their results. Chin and Krotscheck used a simple 2-body McMillan, f(r) =
exp[— H(b/r)*], correlation and a gaussian 1-body factor for their importance
function. Rama Krishna and Whaley used a wavefunction similar to that of
Pandharipande et al.

In Table 7.3 we have collected ground-state energies per particle and unit

radii, defined to be ,/(5/3)r,ms N~ /3, where r,,, is the root mean square radius
from the centre of mass, for droplets up to N=768. We see that there is
reasonable agreement, but discrepancies between the GFMC and DMC results,
particular at N = 112, may indicate lack of convergence. The variational results
using the HFDHE2 potential (VMC1) also are remarkably close to those using
the HFDB potential (VMC2). The density profiles of the droplets are much
harder to calculate due to statistical errors and slow convergence of the GFMC
and DMC methods. The result of Pandharipande et al. and Rama Krishna and
Whaley show results consistent with a smooth profile. Chin and Krotscheck
show a small oscillatory structure in their DMC density profiles for N > 70
which persists for large numbers of iterations. Similar oscillations were seen
earlier by Pandharipande et al. In both calculations, large initial oscillations
die out. It is not clear how much, if any, of this structure will remain in a
completely converged calculation. Some of these effects may also be caused by
the extrapolation from the mixed and variational estimates. The PIMC results
at finite temperature [7.113] do not have this problem of extrapolation (but
are at finite temperature though a superfluid has few excitations) and do not
show the same structure as Chin’s density profile.

Pandharipande et al. have fit their GFMC energies and those of the bulk
[7.88] as

E
N(K) = —7.10+17.6x + 1.15x% — 30.6x> + 19.5x*, (7.81)

where x = N~ /3, Taking the derivative and assuming a liquid drop radius, they
extract a surface tension of 0.28 K A 2 as compared to an experimental values
of 0.274K A~2 [7.114] and 0.265K A~2 [7.115].
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7.6.2 Excitations in Droplets

All three groups have calculated an upper bound to the low energy excitations
of *He droplets using the Feynman excitation operator method [7.116]. They
assume the excited state wavefunction can be approximated by

lI’E=ZX(ri_rcm)qlo=F.I’O9

where ¥, is the exact ground-state wavefunction, and r_,, is the centre of mass
of the droplet. x is a function to be determined variationally. A bound on the
excited state energy Eg is written as

_1{W|[F,[T,F1]1 %)
2 <WO|F2|.P0>

E 0

, (7.82)

where T is the kinetic energy operator. Equation (7.82) is the ratio of two
ground-state expectation values and can be written in terms of ground-state
distribution functions. Typically, y is expanded is spherical harmonics and (7.82)
minimised, subject to the constraint that ¥ is orthogonal to the lower energy
states, to obtain approximate excited state wavefunctions.

The calculations of Pandharipande et al. [7.111] and Rama Krishna and
Whaley [7.112] have used the variational wavefunction as an approximation
to the ground state, while Chin and Krotscheck have used their DMC results
for the distribution functions. A comparison of some excitation energies of the
lowest angular momentum zero states are shown in Table 7.3. We see that there
is qualitative agreement, but little quantitative agreement between the calcula-
tions. Calculations of other states have been done by each of these groups. The
results of Chin and Krotscheck are probably the most reliable, because of their
use of the diffusion Monte Carlo ground-state wavefunction. Calculations with
backflow correlations in the excitation operator are more difficult, and have
not yet been done, but would presumably give better excitation energies.

7.6.3 3He Droplets

The ground states of >He droplets have been studied by Pandharipande et al.
[7.111] and Lewart et al. [7.117] using variational Monte Carlo and wave-
functions containing 2-body, 3-body, and backflow correlations of the type
described in Sect. 7.1. They fit their variational *He energies to polynomials of
the form of (7.81). Their results indicate that the 20 particle droplet is not bound,
but is in a metastable state. The 20 particle droplet was found to be unbound
in an earlier fixed-node GFMC calculations [7.118]. Fixed-node Green’s function
Monte Carlo calculations indicate that the 70 particle variational energy is only
about 0.1 K too high per particle. The single particle density shows shell structure
expected in a fermi droplet.

Lewart et al. calculate the single particle density matrix (see Sect. 7.5) of
both “He and 3He droplets using variational Monte Carlo. They also define
and calculate the quasi-particle wavefunctions defined by

Pap(ri)af PER) Po(R)dr; - dry (7.83)
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where W, is a single hole state of N — 1 particles, and is approximated by
omitting a particle and an orbital from the model function. For bulk systems,
the orbitals in the Slater determinant, the quasiparticle wavefunctions, and the
natural orbitals, y;, defined by diagonalising the single particle density matrix,
pi(ry,ry) = Z nyfry Yi(ry) (7.84)
are all plane waves. For droplets these functions are all distinct, and related to
different excitation properties. The n; in (7.84) are the analog of the momentum
distributions, and n, is the generalisation, in a droplet, of the condensate fraction.

7.6.4 Droplets at Finite Temperature

Helium-4 droplets of 64 and 128 atoms have been studied at temperatures below
2K [7.113]. The specific heat shows a broadened transition from the normal
liquid to the superfluid as expected. The normal (i.e. non-superfluid) density is
defined as the ratio of the moment of inertia of the droplet to its classical value
defined in terms of the radius of gyration as discussed in Sect. 7.3.10. The
superfluid density is then calculated as proportional to the mean squared area
swept out by a path. Most of the droplet becomes superfluid below 1.5K. The
density profiles are in reasonable agréement with those calculated with GFMC.

7.6.5 Surfaces and Interfaces

Helium adsorbed on substrates can be simulated directly once a helium-substrate
potential is assumed. One approximation for monolayer systems is to assume
that the substrate strongly binds the helium, and view the monolayer as a 2D
film. A number of calculations have been done on 2D helium atoms at both
zero and finite temperatures [7.0, 119-122]. Whitlock et al. [7.119] have found
that the liquid *He freezes at a density of 0.0678 A~ 2 and melts at a density of
0.0721 A~ 2 at zero temperature. The zero pressure, zero temperature density
of the liquid is 0.04356 A~2. At this density the condensate fraction is
approximately 0.25, much larger than in 3-dimensions due to the reduced
interatomic spacing.

The PIMC method has also been applied to 2D helium [7.92]. At zero
temperature, the 2D and 3D systems are similar, but at any non-zero temperature
the 2D system is described by the Kosterlitz—Thouless picture of a vortex
unbinding transition. According to this theory, the single particle density matrix
decays algebraically with a temperature dependent power, instead of to a constant
as it does in 3D. In addition, the superfluid density should jump from zero at
high temperature to a finite value at the critical temperature. These effects are
what are observed in the simulations, although finite-size scaling is needed to
understand the rounding that occurs in a simulation of a finite system. At a
density of 0.0432 A~ 2, the superfluid transition is predicted by the PIMC cal-
culations to occur at a temperature of 0.72 K. The vortex diameter and the core
energy is estimated to be 3.7 A and 2.7 K respectively.
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Approximating the effective two-body potential in a monolayer as the bare
potential is equivalent to assuming that the atomic separations in the monolayer
are much greater than the thickness of the layer. A somewhat better approximation
can be made by assuming a substrate potential, and using its ground state to
define the layer profile and the effective interaction in the 2D system. However,
for a model graphite substrate, the effect on the energy difference is only about
0.05K per particle [7.123]. A discussion of some other effects of the 2D approxi-
mation is given by Cheng and Cole [7.124].

The surface tension and surface profile has been calculated for a self-bound
slab of *He by Valles and Schmidt [7.24]. They get a value for the surface
tension of 0.265 K A2 as compared to an experiméntal values of 0.274 K A™2
[7.114] and 0.265K A2 [7.115], and the value, given above, extracted from
droplet data of 0.28 K A2

An area where much further work needs to be done is the calculation of
the properties of helium on realistic substrates. An interesting calculation study-
ing the registered phases of a monolayer of *He on graphite is given by Abraham
and Broughton [7.125] using a PIMC. Abraham et al. [7.126] have studied with
VMC and PIMC, the detailed structure of two solid players of *He on graphite
in an attempt to understand the unusual phase transitions that occur at this

density. They find that the proposed ﬁ X ﬁ registered structure is stable at
low temperatures and melts at approximately 1 K.

7.7 Future Prospects

GFMC and PIMC methods have given us the ability to calculate from first
principles, properties of many-body boson systems, at zero and non-zero tem-
perature with computable errors. What are some of the challenging problems
given that the basic equilibrium situation for bosons is in good shape? Some
of the obvious applications for many-boson systems yet to be investigated are
bosons in disordered environments or on surfaces, impurities in helium, and the
study of excitations such as vortices, rotons and maxons.

One of the major unsolved problems in computational physics is to devise
a method to simulate large many-fermion systems without uncontrolled ap-
proximations. The auxiliary field (Stratonovich-Hubbard transformation)
method does just that for the Hubbard model at half filling on a bipartite
lattice. For general models, the most successful ground state methods use a
fixed-node approximation, but the bias introduced by the trial nodes restricts
the applicablity of the method to systems where the long-range order is well
understood. Currently the path integral fixed-node method is under investigation
for the simulation of fermion continuum systems at finite temperature. One
chooses a trial density matrix and throws out walks which cross the nodes of
the trial density matrix. If the nodes are chosen correctly then the method is
exact. This method will be useful at temperatures larger than the fermi energy
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where the nodes are closely related to the classical nodes, and goes over smoothly
to the ground state fixed-node method. Again it is only applicable if the long-
range structure of the density matrix is understood. Thus the fermion simulation
problem, to calculate the properties of a many-body fermion systems in time
which is a power of the number of fermions and the inverse temperature, is
very largely unsolved.

A second major unsolved problem is to calculate dynamical properties of
quantum systems. To calculate general dynamical properties seems very difficuit.
Even specifying the initial conditions would require an exponentially large
amount of data. Luckily, most interesting questions come down to equilibrium
dynamics in the linear response regime. In PIMC one can easily compute
imaginary time correlation functions. The problem is to rotate it back into real
time. A simple example is the dynamical density—density response function,
S(k, w). Its Laplace transform can be calculated in either DMC or PIMC as

Lo}

F(k,t) = {pO)p (1)) = | dwe™ “'S(k,w),

where p,(t) means the phonon operator (7.20) evaluated at imaginary time t.
However the inversion to obtain § from F is numerically unstable. Recently
maximum entropy methods [7.127] have been applied to this inversion procedure
with some success for lattice models. These methods combine highly accurate
Monte Carlo generated imaginary time response functions with any theoretical
input that may be available, and effectively give the most likely dynamical
response function consistent with all the available data. We anticipate that the
method will have broad application in understanding equilibrium dynamics of
quantum systems.
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