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ABSTRACT

Recent experiments on ¥He adsorbed on grafoil have shown a very rich phase dia-
gram: commensurate and incommensurate solid phases, coexistence of first solid layers
with liquid second or third layers. We focus here on the siuly of one incommensurate
solid layer, for densities between 0.08 and 0.1 atom/ Az, at temperatures less than 1K.
The solid forms a triangular lattice and its Debye temperature is between 20K and
30K. Below 1K, the phonons vanish and the physics is governed only by multiple spin
exchanges: the full hamiltonian can be mapped on to a generalized Heisenberg model.

Up to now, experimental data have been analyzed using approximate solutions of
the Heisenberg model with an effective pair exchange energy J: however measurements
of the specific heat lead to values of J different from those extracted from magnetic suc-
ceptibility measurements. In order to go beyond these approximations, we compute ab
initio various exchange frequencies (2, 3 and 4 body exchanges) at two densities by path
integral techniques by evaluating the probability of tunneling from one configuration
to its permuted one. These exchange frequencies are then introduced in a generalized
Heisenberg model for which we calculate the full spectrum for small periodic systems
and derive the thermodynamics. '

INTRODUCTION

Helium 3 adsorbed on surfaces presents a large variety of phases depending on the
area density and on the strength of the attractive potential with the substrate. The po-
tential between an helium atom and the graphite is very attractive; its depth falls down
to —200K. On the contrary, it varies smoothly with the z,y coordinates, with an am-
plitude of the order of 10K. At low coverage, 3He is well described as a two-dimensional
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Fermi liquid. The solid phase begins for a densitie larger than p = 0.041 :«Ju'com/f\2
First, the adsorbed helium atoms sit on the minimum of the potentla.l surface to give a
commensurate phase. Then for densities greater than 0.07 atom/ A the systern evolves
to an incommensurate phase[l, 2]. For densities larger than 0.11 atom/ &?, the second
layer is promoted, which leads in the second layer to a similar scenario as the coverage
increases: first, it is a Fermi liquid, then a commensurate solid phase, and finally an
incommensurate solid phase.

Here, we focus on the study of an incommensurate solid monolayer, and hence ne-
glect the z,y-dependence of the interaction potential between helium atoms and the
substrate. We believe that, in this phase, the corrugation effects are weak. Including
them would complicate considerably the calculations. Then, in the incommensurate
solid phase, and without the corrugation, the helium atoms form a triangular lattice.
The lower collective density-density excitations are the phonons whose energy scale is
the Debye temperature 8p, which is of the order of 20 K, and whose contributions to the

specific heat Cy vanish as (T'/0p)®. The picture of this system is that helium atoms vi= 3

brate randomly in their local ground state. As the temperature decreases, the DeBroglie
wavelength increases and very rarely, as the random zero point motions of atoms per-
mit, a few helium atoms permute their position and therefore their spin. These spin
exchanges (P) bredk down the degeneracy of the distinguishable particle ground state
into a spectrum of 2V states, whose energy scale is now given the exchange frequencies
Jp, which are in the range of uK to mK. The physics is therefore well described with
a generalized Heisenberg hamiltonian for triangular lattice in two dimensions. The sign
of the effective pair exchange fixes the ferro or antiferromagnetic character of the sys-
tem. For dense solids, the cyclic triple exchange is the largest exchange, which leads to
a ferromagnetic phase, whereas for less dense solids the two body and the cyclic four
body exchanges become comparable to the cyclic triple exchange, which may lead to an
antiferromagnetic phase. A possible ferro/antiferromagnetic transition is then possible
in the first or in the second layer!.

Specific heat[2] and magnetization[3] measurements are now available as functions
of the coverage and the temperature. Effective pair exchanges are evaluated from these
two kinds of experiments, but lead to somewhat different values. Among the possible ex-
planations one can propose: the importance of other multiple exchanges which can lead
to different temperature dependencies, the role of defects or the presence of vacancies
which would imply more complex effective hamiltonian.

We assume that the lattice is perfect and evaluate its “exact” thermodynamical
properties. Exchange frequencies are computed with path integral techniques and, in a
second step, the generalized Heisenberg model is solved for small periodic clusters. For
simplicity, we focus on the ﬁrst layer.

THE MODEL )
First, we check if our potential model recovers thermodynamical experimental data:
solid phase and Debye temperature. The hamiltonian is written down as:

Hiyer = Hyux + Z Vs(z:) (1)

where z; is the distance from the surface, Hyux is the hamiltonian for bulk helium,
where we use the Aziz potential[4). Vs is the potential between an helium atom and the
surface of graphite. This potential is fitted to reproduce the excitation spectrum of one

1Because the J’s vary very rapidly with the density and the layer, we can assume in a first approx-
imation that the first and the second layers are uncoupled.
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Figure 1: Energy versus temperature for a *He monolayer ,

atom at the surface:,

Vs(z) = Voexp(—z/z,) — C3/(z — ) (2)

where V5 = 3.7 108, z, = 0.281, C3 = 2130 and z, = 1, the distances are expressed in
angstroms and energies in Kelvin. Its depth is about —200K.

The thermodynamical properties are evaluated from path integral techniques, us-
ing an analytical expression for the approximate many-body density matrix at high
temperature: ‘

N
PT(R, RI; T) = H Po("i, Tf; T) exp(u;?(z,-, zs{; T)) (3)

=1

H exP(u?j (ris, Téj; 7))
1<i<i<N

where po is the free particle density matrix, exp(u®) is the contribution of the exact
density matrix of one helium at the surface of the grafoil and exp(w®) is the contribution
the exact density matrix of two isolated helium atoms?. In Eq,ék 3, R = {ry,...,rn}
stands for 3N-dimensional vectors and r for 3-dimensional vectors. The correction to
this trial density matrix is evaluated by calculating 8p/87 — Hiayerp [5]. We believe that
the error on the energy due to this approximate density matrix is less than 0.5K. In
figure 1 are reported the total.energies for the two densities 0.08 and 0.1 atom per A2.
In the simulations, we check the stability of the solid phase by computing the average
one body density. The density plots show a tendency for melting at temperatures
. greater than 5K in agreement with experimental results[6]. The Debye temperature is
determined by fitting the energy at the lowest temperatures using[2, 7]:

Br)=Er=0+ 28T 0

A 2Corrugation would lead to a 6-dimensional potential tabulation of u® instead of a 2-dimensional in
our case .
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At the lowest density the Debye temperature is close to the experimental evaluation of
20K, and the variations with the density agree with a p* dependence(8).

The one body density profile n(z) is very close to ¥3(z), where ¥, is the ground
state of an helium atom in the external potential Vs(z). n(z) does not depend on the
density, but as the temperature increases some particles jump to the second layer and
one can see a second maximum around the equilibrium position of a second layer. It
is important to notice that the second excited state of the one boby problem has an

energy 60K above the ground state[9].

PATH INTEGRAL EVALUATION OF EXCHANGE FREQUENCIES

We evaluate the exchange frequencies with the same method as was used in solid *He
by Ceperley et al.[10]. The equilibrium lattice sites are denoted by Z = {z1, 23, ..., 2n},
and a permutation by P._ If the barriers between the N! equilibrium positions PZ
are infinite, all configurations have the same energy. This degeneracy is broken by the’

exchange of atoms.
Permutations are very rare and occur roughly every 10° atomic vibrations. So it is

not practical to wait for the system to jump by itself from one configuration to another.
But this property allows us to focus on one permutation at a time.

To define the exchange frequency Jp associated to a permutation P, we assume that
the ground state is split into two states ¢o and ¢, with even and odd symmetry, and
energies Eo and E;. If the system is localized around Z (resp. PZ), it is described
by ¥z = o+ ¢ (¥pz = o — #1). It oscillates from Z to PZ at the frequency

ﬁwp = E1 - Eo = 2JP.

For solid 3He, it is the repulsive part of the potential and not the Fermi statis-
tics, which creates a cage effect, restricting the motion in the phase space around Z.
Therefore the density matrix around an equilibrium position Z or PZ is given by the

distinguishable particle density matrix:

p(R,R;8) =Y e P, (R)du(R')

and for the unpermuted and permuted reference positions, we have:

p(2,2;8) ~ e PB [g2(2) + e P BBl g(7)]
P(Z,PZ;B) ~ e B [4o(2)¢o(PZ) + e PEE4 (Z)4,(PZ)]

From the ratio of these two matrix elements, we deduce:

Fo(p) = BETZL) — tas (75 (5 - ) (%)

where Jpfp = In {$4(Z)/84(2)}.
Inserting (M-1) intermediate points Ry, Rs,..., Ry—1 into Eq. 5 we convert it into
a path integral:

Fp(B) = JdR\dR, ... dRy1p(Z, Ry; 7). .. p(RM—1, PZ;7) o
JdRydR; ... dRy_1p(Z, Ry;7)... p(RM-1,Z;T)

with 7 = /M. If M is large enough, an accurate expression for p(R, R';7) can be
written down, and we use Eq. 3.
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Since the potential between helium atoms is hard-core like, most of the points R; are
close to either Z or PZ. This means that only a few points of the path in the numerator
of Eq. 6 go from Z to PZ. This picture implies that the numerator of Eq. 6 can be

written as:

o(Z,PZ,0) = / dRydR;...dRy-1p(Z, Ry;7) ... p(Rag-1, PZ;7) (1)

/ dRidRiy1p(Z, Ri;i)p(Ri, PRiy; k7)p(PRiyk, PZ; (M-k-i)T)

(8)
./thth+kp(Z9 Rl; ZT)p(Rn PRH—I:; kT)p(Ri+k’ Z; (M'k'i)T) (9)

/ dRy...dR:dR.,,...dR.y, 1dRisk...dRys
x p(Z,Ry;7)...p(Ri-1, Ri;7) .
X p(Riy Riy1i 7). p(Riyimys PRiya; 7) (10)
X p(Ritk Rivks1;7) ... p(BM-1,Z;7)

/ dRy...dRidRip1 ... dRiskydRisi ... dRay

X P(Z, RI;T)"'P(RM—l,Z; T) B ‘ (11)
x de$+1 e dR$+k—1p(Ri, R:’+1; T) I p(R;=+i—1a PR',+k; T) .
p(Riy Riy1;7) ... p(Rrgi-1, Rizi;T)

where we use p(PR, PR'i1) = p(R, R'; 7) to go from Eq. 8 to Eq. 9. Eq. 10 is found by
introducing again elementary paths with the time stép 7 and by labeling R’ the dummy
variables for the exchange part of the path. The last step is obtained by introducing
new variables Ry ...Rix-1 and multiplying and dividing by the corresponding p’s.
The points R are near Z, and the points R’ form a path which goes from R; to PR, in
a time k7. This means that during an equilibrium walk of distinguishable particles, we
try to map a path between R; and PRiyt. Fp(f) is then the mean value of the last line
of Eq. 11. For a given path {Ry, ..., Ram—1}, we choose all initial positions R; and try all
permutations P’ equivalent to P (for example, all first neighbors pair permutations): the
permutation P’ fixes the end point of the partial path at P'R; ;. Then the multisampling
of R,;,..., Rl 4, is done and the histogram of path contribution ratio is accurnulated.

Computed directly by this algorithm, the convergence of the method will be poor.
The reason is, that during an equilibrium configuration only the points close to Z (per-
mutation identity) are sampled and there is a small probability of finding configurations
R; and Ry so that p(R;, PRiy; 7) is not small. Much faster convergence is achieved
by splitting this computation in two parts: the first one is described above and in the
second one evaluate the inverse of Eq. 5: starting from a permuted configuration, one
tries to map on to unpermuted configurations. Optimization of the computational time
spent in these two parts is done as in classical statistical mechanics by Bennett[11].

The advantage of this method combining classical statistical mechanics and quantum
techniques is that the convergence is independent of the magnitude of Jp, the tunneling
frequency, since we evaluate the ratio of two probabilities and not the differences between
eigenvalues. v :

The following excha{nge frequencies have been obtained from simulations at T = 1K,
with M = 40 and k = 4. We do not find a ferromagnetic/antiferromagnetic transition
in the first layer. The comparison with a pure 2D model (see the table I) shows that
the additional motions of atoms in the z-direction enhance the exchange frequencies,
specially for high densities and for the two and four body exchanges.
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Table 1. Exchange frequencies in pK. pisin atom/ A% o is fitted from Jp~p7* Jg
is defined by Eq. 16. The upper box is the 3D simulation with the substrate potential,
while the lower box corresponds to pure 2D exchange frequencies.

3D [p=.0185 p=.00 p=1 P
oo | 29+2 13+02 0.157+0.014 |22
A | 1815 35+03 033+ 0.03 |21
SL| 25+4 0781014 00660009 |25

Ja | 36 i 0.31 19

2D | p = 081 7= .105
46£0.6 0.0026 £ 0.0003 | 29
B2 cozto002 |27
L8| 2602 0.00055 -+ 00005 | 33
Tz 45 0.044 %

GENERALIZED HEISENBERG MODEL, COMPARISONS WITH EXPERIMENTS

Here, we evaluate the thermodynamical properties for the generalized Helsenberg
model, where the hamiltonian is defined by:

H=-) (-1)"JpP (12);
P

IS

where the summation includes all cyclic permutations involving up to four nearest
neighbor partlcles and P is the spin permutation operator (for a transposition P;; =
1/2+ 28.5; ;). The system is an infinite periodic triangular lattice where the separation”

between two neighbors is a = 1/2/p+/3. On this lattice, we superpose a lattice of dia-
mond cells with a side length d (see figure 2), and acute angles of 7/3. The side of a -
diamond can be any line between two sites and is of the form /% + m®, where @ and ¢
are vectors of length a and with an angle of /3. The length d of this vector fixes the .
number N of atoms in the cell: N = (d/a)? = I> + m? + Im. The cases where N is less
or equal to 16 have been studied. i

The full spectrum of the generalized Heisenberg hamiltonian is calculated by the
Lanczos method. The group G of symmetries of the hamiltonian is the direct produc

Figure 2. Example of a periodic system: N = 7, [ = 2 and m = 1. The diamond side
length d is v/7a, where a is the separations between sites.
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G, x G of the spin symmetry group G, (= SU,) and the lattice symmetry group G,
which contains N translations X 6 rotations = 6N permutations of the sites. Casually,
G| may also contain axial reflexions and then it has 12N elements. These symmetries are
responsible for the energy degeneracy. Each eigenvalue is associated with an irreducible
representation (I.LR.) of G which characterizes the symmetry of its eigenvectors. Its
multiplicity is equal to the dimension of this irreducible representation. For each relevant
LR., 1, the Lanczos method is applied in a space, £;,where the degeneracy is removed.
Because the dimension d; of &; are small (the maximum is 116 for N = 16), the full
spectrum may be computed. In fact, we use only the LR. of the group G’; to reduce the
dimensionality. The LR. of G, (i.e. the total spin) are taken into account in another
way. At each iteration of the Lanczos method, the new vector is projected on the eigen
subspace of S? under consideration and then orthogonalized to all the previous ones.
This last precaution, even if expensxve in computational time, is necessary to prevent

wrong degeneracxeé from appearing.
The general ha.rmltoman involving up to four body exchanges is wntten from the

hamlltoman of one dxamﬁogd\lﬁbehng partlcles as follows . : o

‘1..,« Aot

S L?‘

the most general hq.miltonia.n for a diamond involves 8 different types of permutations:
—Hp = —Jul[Pi+ Pis+ Puu+ Pou+ Pay) — J13Pis
- +Km|Pia¢+ Pz + Prsy + Pags)

+K113[P123 + Pisa + Piss + Piag)

~L1111[Pi23s + Prgz3)

—L1113[Pi243 + Pisaz + Prazs + Pisad

+Ly311[Pi2Pas + PiyPsy) + Ly13Pi3 Py
Al]] cyclic permutations are then grouped using the properties for cyclic permutations [12,
13 :

,f“,

Pys+ Pia; = PyaPis+ Pi3Pia =P+ P+ Pis—1
Pyoag+ Pz = PiaPisPiy+ PiyPisPpy
~1+ Pig+ Py + P13 Poy + Py Py3 — P13P24

and when summing over all diamonds, one finally gets: -
Z juR';" + E j13Pij (13).

<11> <13>

+ > junPiijl + Y jllls-Piijl + CN

<1111> <1113>

where < 11 > means ﬁrséelghbors and < 13 > means second neighbors (1—3 means a
distance of /3 3a) and the J’s are defined as:

Ju = Ju-2Ky; —4Kys + Ly + 4L

Jis = Jia—2Kns + Lun
{uu = =L+ Lun ' (14)
Jus = ~Lj3— Lun + 2L

C = 2Klll + 6Kll3 - 3L1111 - 6L1113
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Figure 3. Deviations of Cy from its high temperature limit (Eq. 15) for two different:
sets of exchange frequencies. Down (up) is the (anti)ferromagnetic case.

Note that with these definitions, the J’s are not necessarily positive. The phase diagram
for this hamiltonian depends only on four independent parameters[14]. The specific heat -
at high temperature for this model is then given by: ‘

9 ’ £
Cv/(NB?) = Zszf (15) 8
where

J% = J4 +4Judin + Judins
+J5 + JisJus (16) 3

- s = L
+6J%11 + 3Jundis + Zlens

When we retain the three most important exchange (Jy;, K1y and Lyyy;) in Jog, w
obtain J% = (Ju — 2K + $L1111)? + 2L%;;. In table are given the values of Jug fo
three densities. i

On figure 3 are plotted the specific heat deviations from the high temperature limi
for the case of a pure Heisenberg model (only pair exchange) and for the case of multi
exchange frequencies (of a 3He monolayer at the density 0.08 atom/ A%, For comparison
the data are scaled with J.g. Important changes in Cy are obtained between these two 3§
cases, where the effect are more dramatic in the antiferromagnetic case (reverse all the
signs of J). '

By comparison with the experiments of Greywall[2], it appears that our values are
one order of magnitude smaller than his last evaluations of J.g. Our data seem to be °
in better agreement with magnetization data[15), even if the complete analysis of this
comparison is not yet achieved.
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