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1. Introduction

In this chapter, I briefly review some of the quantum Monte Carlo methods that
have been used to calculate properties of many-fermion systems. It is hoped that
QMC will be useful in providing exact results, or at least exact constraints, on
properties of many-body fermion systems. Except in a few cases this hope is not
fully realized today. Fermion statistics remain a challenge to the practitioner of
simulation techniques. Nonetheless, the results are competitive with those from
the other methods discussed at this school.

This will not be an exhaustive review. In variance with the other lectures, I
will primarily discuss continuum models, not lattice models, although most of the
techniques can be carried over directly. Monte Carlo techniques appropriate to
spin systems are discussed by Young. As an example I will discuss applications
of these methods to liquid helium. More extensive discussion of these topics can
be found in refs. [1-3].

First a few words on notation. I will always assume that the system is a non-
relativistic collection of NV particles described by the Hamiltonian:

N
H = 4)\ZVZ.2+ZU(7'”'), (1.1)
i=1

i<j

where A = TL2/2m and v(r) is a two-body pair potential. I will stick to the first-
quantized notation in the canonical ensemble. A boson wavefunction is then to-
tally symmetrical under particle exchange and a fermion function is antisymmet-
rical. The permutation operator acting on particle labels is denoted by PR. The
symbol R refers to the 3N -vector of particle coordinates, o to the N spin coordi-
nates, and (r;, o;) to the three spatial and one spin coordinate of particle ¢. Some-
times I will refer to the exact eigenfunctions and eigenvalues of the Hamiltonian:
(o (R), E). A known (computable) trial wavefunction will be denoted by W(R).
The symbol [ will imply an integral over the full 3V-dimensional configuration
space of the particles.
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432 D.M. Ceperley
1.1. Random walks

Monte Carlo methods for many-body systems are exclusively examples of Markov
processes. Let us briefly review the basic concepts of random walks. Let S be a
state space and let (sg, sy,...) be a random walk in that space. The choice of
the state space will vary depending on the method, but for now let s; represent
the 3N coordinates of all the particles. In the simplest Markov process, there is a
constant transition probability for generating state b given that the walk is presently
in state a, which we will denote by Pp,. The transition probability, or moving rule,
generates the walk. Under very general conditions [4], the asymptotic probability
distribution of the walk converges exponentially fast to a unique distribution:

Psn) — I(sn). (1.2)

In projector Monte Carlo, to be discussed in section 3, the transition rules are set
up so that the asymptotic population is the ground-state wavetunction for a given
Hamiltonian. But, let us first review the Metropolis [5,6] rejection method, where
moving the particles is a two step process; first one samples a trial position (state
') from a transition probability 1, then this trial move is either accepted (i.e.
b = a’) or rejected (i.e. b = a), with a probability given by:

Ha’rfaa’

The acceptance probability has been chosen to satisfy the detailed-balance rela-
tion, which implies that its asymptotic probability will converge to I1,, indepen-
dent of the transition rules T,, . The rate of convergence or the efficiency of the
walk in sampling-state space is very much determined by the transition rules. The
rejection method is appropriate when one wants to sample a known, computable
function. If one had an exact analytic expression for the many-body wavefunction,
then it would be straightforward to use this method to determine quantum expec-
tation values in that state. However, such is not the case, and one is forced to
resort to either more complicated or more approximate methods. The Metropolis
method is discussed in more detail by Young in this volume.

2. Variational Monte Carlo
The variational Monte Carlo method was first used by McMillan |7] to calculate

the ground-state properties of liquid “He and then generalized to fermion sys-
tems by Ceperley et al. [8]. The variational theorem says that for ¥ a proper trial
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function, the variational energy of the trial function is an upper bound to the exact
ground-state energy:

_ U @HE®R)

Ey = = P
VT T UH(R)U(R)

Ey. 2.1

One occasionally sees mistakes in the literature, so let me remind you of the con-
ditions that the trial function must satisfy:

(1) ¥ has the proper symmetry: U(R) = (—)PU(PR) for fermions, and the
right behavior at the periodic boundaries.

(2) HV is well-defined everywhere, which means that both ¥ and VW must
be continuous wherever the potential is finite.

(3) The integrals [ U2, [ W>HY, and [(¥H)? should exist. The last integral
is only required to exist for a Monte Carlo evaluation of the integrals. If it does
not exist, the statistical error in the energy will be infinite.

For a lattice spin model, only item (1) is applicable. In the continuum, it is
important to show analytically that properties (2) and (3) hold everywhere, par-
ticularly at the edges of the periodic box and when two particles approach each
other. Otherwise, either the upper-bound property is not guaranteed or the Monte
Carlo error estimates are not valid.

The variational method is then quite simple. Use the Metropolis algorithm to
sample the square of the wavefunction:

| U(R)?

N =Ty mp

2.2)

Then the variational energy is simply the average value of the “local energy” over
this distribution,

Ey - / (R)EL(R) = (EL(R)), 23)

where the local energy of W is defined as:
E(R) = U "HU(R). (2.4)

Variational Monte Carlo (VMC) has a very important “zero-variance property’:
as the trial function approaches an exact eigenfunction, ¥ — ¢,, the local energy
approaches the eigenvalue everywhere, Ey (R) — E,, and the Monte Carlo esti-
mate of the variational energy converges more rapidly with the number of steps
in the random walk. Of course, in this limit the upper bound is also becoming
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closer to the true energy. It is because of the zero-variance property that quantum
Monte Carlo calculations of energies can be much more precise than Monte Carlo
calculations of classical systems. Fluctuations are only due to inaccuracies in the
trial function.

2.1. The pair-product trial function

The pair-product trial function is the simplest generalization of the Slater deter-
minant and the ubiquitous form for the trial function in variational Monte Carlo:

W(R,0) = exp [ -3 U(m)} det[04(rs, :)], @.5)

1<g

where 8¢ (r, o} is the kth spin-orbital and u(r) is the “pseudopotential” or pair cor-
relation factor. This function also goes by the name of Jastrow [9] wavefunction,
although Bijl [ 10] much earlier described the motivation for its use in liquid “He.
Closely related forms are the Gutzwiller function for a lattice and the Laughlin
function in the fractional quantum Hall effect. Both w(r) and 8, (r, o) are in prin-
ciple determined by minimizing the variational energy.

2.2. Details

I will only mention a few details concerning VMC. First, how do the particles
move? On a lattice one can make a random hop of a particle or a spin flip. In
the continuum it best to move the particles one at a time, by adding a random
vector to the particle’s coordinates, where the vector is either uniform inside a cube
centered about the old coordinates, or is a normally distributed random vector.
Assuming the first kind of move for the ith particle, the trial move is accepted
with probability:

[W(R/ V(R = CXP{ =2 Ll 1)~ ulr - ”)]}
j#e

X , (2.6)

> 0k(r})Crs
K

where the matrix C' is the transposed inverse of the Slater matrix. Let me remind
the reader that the evaluation of a general determinant takes O(/N?) operations.
The evaluation of the fermion part of the acceptance ratio will take O(NV) opera-
tions it C' is kept current. If a move is accepted, C needs to be updated [8], which
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takes O(NN'?) operations. Hence, to attempt moves for all N particles (a pass) takes
O(N?) operations.

The local energy, needed to evaluate the variational energy, is calculated by
applying the Hamiltonian to the trial function:

BB = VIR +AY {v;v 3 VrCh - G2, @)
% k

where G; = ~V,U + 3, Vibi(ri)Cis and U = 3 u(r;;). Thus the inverse ma-
trix is also needed to determine the local energy. Very often the orbitals are taken
to be exact solutions of some model problem, in which case the term Vf&k(m) will
simplify. Finally, note that using Green’s identity allows several alternative ways
[8] of calculating the variational energy. While some of them are simpler and do
not involve so many terms, for a sufficiently good trial function, the local-energy
estimation of eq. (2.7) will always have the lowest variance. The other forms of
the energy give useful tests of the computer program and the convergence of the
random walk.

2.3. Optimization of trial functions

Optimization of the parameters in a trial function is crucial for the success of the
variational method and important for the projector Monte Carlo method. There
are several possibilities for the quantity to optimize, and it is not yet clear which
is best.

— The variational energy: Ey. Clearly, one minimizes Evy if the objective of the
calculation is to find the least upper bound. There are also some general arguments
suggesting that the trial function with the lowest variational energy will maximize
the efficiency of projector Monte Carlo [11].

— The dispersion of the local energy: f[(H — Ey)¥12. If we assume that every
step of a QMC calculation is statistically uncorrelated with the others, the disper-
sion is proportional to the variance of the calculation. There are some indications
that minimization of the dispersion is statistically more robust than that of the
variational energy, since it is a positive definite quantity.

— The overlap with the exact wavefunction: | W¢. This is equivalent to finding
the trial function which is closest to the exact wavefunction in the least-squares
sense. This is the preferred quantity to optimize if you want to calculate correlation
functions, not just ground-state energies. Optimization of the overlap will involve
a projector Monte Carlo calculation to determine it, which is a more computer-
intensive step.

I will now review the analytic properties of the optimal pseudopotential. As-
sume that the spin orbits come from an exact solution for some model potential.
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Consider bringing two particles together and let us examine the dominant terms
in the local energy. In a good trial function the singularities in the kinetic energy
should cancel the potential. The local energy will have the form:

EL(R) = v(r) + 2AV2u(r) = 2A[Vu@)P + - - -, (2.8)

where 7 is the distance separating the particles. An intuitive result emerges: e ="
will equal the solution to the two-body Schrodinger equation. For He atoms inter-
acting with the Lennard-Jones potential 4¢(o/r)!?, at small distances this gives:
u(r) = [(2e0%)/(25M)]'/%(a /7)’. For the Coulomb potential this equation can be
used to derive the cusp condition.

Now let us turn to the large-r behavior of the optimal u(r), where a descrip-
tion in terms of collective coordinates (phonons or plasmons) is appropriate. The
variational energy can be written as:

By =Ep+ Y (ve = APup)(Sy — 1), 2.9)
k

where Er is the fermion energy in the absence of correlation, v, and uy, are the
fourier transforms of v(r) and u(r), and Sy is the static structure factor for a given
u(r). Minimizing Ey with respect to uy and making the RPA assumption of how
S, depends on uy: S,:' = S&cl +2pug, where p is the particle density and Sy, the
structure factor for uncorrelated fermions, we obtain [12] the optimal pseudopo-
tential at long wavelengths:

| I 2006 \/?
2 = —— P . 2.10
puk = gt (SOk Ve > (210)

For a short-ranged potential (e.g. liquid helium), v, can be replaced by a constant
and we find the Reatto—Chester [13] form: u(r) o r~2. But for a charged system,
where vy o k72, then u(r) oc 7",

This raises a very important point, which we will not have space to go into. Op-
timal pseudopotentials are always long-ranged in the sense that the correlation will
extend beyond the simulation box. The ground-state energy is little affected by this
tail in the wavefunction, but response functions, such as the dielectric function or
the static structure factor, are crucially dependent on using the correct long-range
properties. In order to maintain the upper-bound property, the correlation func-
tion must be properly periodic in the simulation cell. For high-accuracy results
and physically correct properties in the long-wavelength limit, the Ewald-image
method [14,12] is needed to represent the correct long-range behavior of the opti-
mal trial function.
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It is possible to carry out further analysis of the optimal correlation factor using
the Fermi hypernetted chain equation. However, at intermediate distances or for
highly correlated or complex systems, a purely Monte Carlo optimization method
is needed. The simplest of such methods consists of running independent VMC
runs with a variety of different variational parameters, fitting the resulting energies
with a quadratic form, doing more calculations at the predicted minimum, etc.,
until convergence in parameter space is attained. The difficulty is that close to the
minimum the independent statistical errors will mask the variation with respect to
the trial-function parameters. The derivative of the variational energy with respect
to the trial-function parameters is very poorly calculated. Also, it is difficult to
optimize by hand functions involving more than three variational parameters. A
correlated sampling method, known as reweighting [1,8], solves this problem.

2.4. Beyond the pair-product trial function

Relatively little has been done to take the variational results beyond the two-body
level. T will describe several of the recent directions.

(1) One can replace the spin orbitals with pairing functions. For example, if the
particles are paired in a spin singlet state, one obtains a determinant of the form:

de[[Xs(Tz Tv”‘j i)], (21])

or, if the particles are paired in a spin triplet:

N/2

A H Xp(r2i, T2i-1), (2.12)

i=1

where A is an antisymmetrizer. Bouchaud and Lhuiller [15] have pointed out that
this object is a Pfaffian, and hence one can use the theorem that the square of a
Pfaffian is a determinant, to sample it with VMC.

(2) The dominant term missing in the trial function for liquid *He, is a three-
body term with the functional form of a squared force:

2
Us(R) = = [Zam)ru} : (2.13)
z 7

The form makes it particularly rapid to compute. It is no slower than a two-body
function.
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Table 1

The energies of liquid *He in K/atom at zero pressure and zero temper-
ature with various forms of trial functions. In the first column u refers
to pair correlations, £ implies that three-body terms were included, and
1 means that back-flow terms were included. BCS refers to the spin-
paired trial functions in eqs. (2.11), (2.12). The second column shows
the variational energies and the third column the percentage of the en-
ergy missed by the trial function. The fourth column shows the results
with the fixed-node Green function Monte Carlo method, which will be
described in section 3.2. The numbers in parenthesis represent the sta-
tistical error in units of 0.01 K.

Terms EV (EV - E())/(ZT) EFN Ref.
{K/atom) (%) (K/atom)

u —1.08(3) 57 —1.95(3) [16]
u, € —1.61(3) 46 —1.95(3) [16]
u, 7 —1.554) 37 =2.37(1) [l6]
u,&,n —-2.153) 13 =2.37(1) [17]
BCS,s =0 —1.2 [18]
BCS,s =1 -2.05 [18]
Exp. —-2.47 0.0 —2.47

(3) For liquid *He the dominant correction for the pair-product trial function is
the modification of the spin orbitals to include back-flow correlations. The particle
coordinates in the Slater determinant become “quasiparticle” coordinates:

det|Oi(x;, 03], (2.14)

where the “quasiparticle” coordinates are defined by: x; = », + Zj (i )Tris.
Back-flow is needed to satisfy local current conservation.

Table 1 gives VMC energies for a variety of trial functions. It is important to
realize that the kinetic and potential energies are almost completely canceling out,
liquid *He is very weakly bound. The third column, (Ey — Ey)/(2T), is a measure
of the accuracy of the trial function, where 7' = 12.3 K is the kinetic energy and
Ey = —2.47 K is the ground-state energy. This ratio is independent of how the
zero of potential energy is defined and is equal to the percentage error in the upper
bound for a harmonic potential. The chief motivation for the simulation of *He
is that the results can rather directly be compared with experiment, assuming of
course that the assumed interatomic potential is known accurately enough. There
is a gratifying convergence toward experiment as more terms are added to the trial
function. The most important terms beyond the pair-product level are the back-
flow terms. The results with BCS paired trial functions should be compared with
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the other results with caution, since a different interatomic potential was used and
the corrections for size effects are very large.

2.5. Problems with variational methods

The variational method is very powerful, and intuitively pleasing. One posits a
form of the trial function and then obtains an upper bound. By contrast to other
theoretical methods, no further essential approximations need to be made and there
are no restrictions on the trial function, except that it should be computable in a
reasonable amount of time. To be sure, the numerical work has to be done very
carefully, which means that convergence of the random walk has to be tested and
the dependence on system size needs to be understood. To motivate the methods
to be described in the next section, let me list some of the intrinsic problems with
the variational method.

— The variational method favors simple states over more complicated states.
One of the main uses of simulations is to determine when and if a zero-temperature
phase transition will occur. As an example, consider the liquid—solid transition
for helium at zero temperature. The solid wavefunction is simpler than the liquid
wavefunction since in the solid the particles are localized, so that the phase space
that the atoms explore is much reduced. This means that if you compare liquid
and solid variational energies for the same type of trial function (e.g. a pair-product
form), the solid energy will be closer to the exact result than the liquid energy, and
hence the transition density will be systematically lower than the experimental
value. Another illustration is the calculation of the polarization energy of liquid
3He, shown in fig. I. The wavetunction for fully polarized helium is simpler than
for unpolarized helium, so that the spin susceptibility computed at the pair-product
level has the wrong sign!

- The optimization of trial functions for many-body systems is very time con-
suming, particularly for complex trial functions. This allows an element of human
bias; the optimization is stopped when the expected result is obtained.

— The variational energy is insensitive to long-range order. The energy is dom-
inated by the local order (nearest-neighbor correlation functions). If one is trying
to compare the variational energy of a trial function with and without one range
of order, it is extremely important that both functions have the same short-range
flexibility and both trial functions are equally optimized locally. Only if this is
done, can one have any hope of saying anything about the long-range order. The
error in the variational energy is second order in the trial function, while any other
property will be first order. Thus variational energies can be quite accurate while
correlation function completely incorrect.

— You almost always get out what is put in. Suppose the spin orbitals have a
Fermi surface. Then the momentum distribution of the pair-product trial function
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E (K)

€2

Fig. 1. The energy of liquid 3He at zero pressure and zero temperature as a function of the square
of the spin polarization. Zero is unpolarized and unity fully polarized. The boxes with a linear fit
arc variational Monte Carlo calculations with the pair-product trial function. The plusses (+) and
fitted line are from the fixed-node diffusion Monte Carlo calculation with the same trial function. The
scatter results from the fact that no size-dependence corrections have been made to the Monte Carlo
data. The lowest line is the extrapolation of a low-polarization experimental measurement of the spin
polarization energy. Recent experiments at high polarization indicate that the ground-state energy is
somewhat below this line.

will also have a Fermi surface, although it will be renormalized. This does not
imply that the true wavefunction has a sharp Fermi surface. Only if localized
spin-orbitals are used will a gap appear.

3. Projector Monte Carlo

In the last section, I discussed the variational Monte Carlo method. Now I will
turn to a potentially more powerful method, where a function of the Hamiltonian
projects out the ground state, hence the name, projector Monte Carlo. In fact, the
nomenclature of the various quantum Monte Carlo methods is not at all standard-
ized. Table 2 shows the operators that have been used as projectors, or Green’s
functions. For simplicity, I will only discuss diffusion Monte Carlo, although most
of what I say carries over immediately to the other projectors.
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Table 2

The Green functions for various projection methods. Here 7 is the
time step and Err is the trial energy.

Method G(R,R") Refs.
Diffusion (DMC) exp[—T(H — E7)] [19,22,23]
Green’s function (GFMC) [l + 7(H — Eqp)]~! [20,21]
Power (PMC) [l — 7(H - Er)] 241

A sequence of trial functions is defined by applying the projector, G(R, R'):

G (R) = e~ Fn (R — / dR’ G(R, R'yn(R), 3.1

with the initial condition ¥(R) = W(R). The effect on the trial function of the
Green function is seen by expanding the trial function in the exact eigenfunctions
of the Hamiltonian:

Pu(R) =D da(R) (¢a|T)e "TE—FD, (32)

The Green function will project out the state of lowest energy having non-zero
overlap with the initial trial function.

lim 9, (R) = po(R) (go¥) e~ ED, (3.3)

The role of the trial energy is to keep the overall normalization of v, fixed, which
implies By ~ Fp. The time step, 7, controls the rate of convergence to the ground
state.

The projection can only be done directly for few-body systems. For many-body
systems, the trial function and the Green function are sampled. For the moment,
let us discuss the case where W is non-negative, the boson case. In the limit that the
time step approaches zero, a coordinate-space representation of the Green function
is:

<R| e——’r(’HfE-r) lR/>

(R - R

= (471')\7')73]\{/2 exp (— T

> exp[-T(V(R) — E7)]. (3.4)

The iteration equation, eq. (3.1), has a simple interpretation in terms of branching
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random walks, since the first factor is the Green function for diffusion and the
second is multiplication of the distribution by a positive scalar.

An ensemble of configurations is constructed with a Metropolis sampling pro-
cedure for ¥(R). This is called the zeroth generation, i.e. n = 0, and the number
of configurations is the population of the zeroth generation, . Points in the next
generation are constructed by sampling the Gaussian distribution in eq. (3.4) and
then branching. The number of copies of R’ in the next generation is the inte-
ger part of u + exp[—7(V(R) — Er)}, where u is a uniform random number in
(0, 1). If the potential energy is less than the ground-state energy, duplicate copies
of the configuration are generated. In future generations, these walks propagate
independently of each other. In places of high potential energy random walks are
terminated.

The above procedure, depicted in fig. 2, is a Markov process where the state of
the walk in the nth generation is { P,; Ry, Ra, ..., Rp, }. Hence, it has a unique
stationary distribution, constructed to be the ground-state wavefunction. The num-
ber of walkers fluctuates from step to step. The trial energy, Et, must be adjusted
to keep the population within computationally acceptable limits.

3.1. Importance sampling

The above scheme, first suggested by Fermi, was actually tried out in the first days
of computing some forty years ago [25]. But it fails on many-body systems since
the potential is unbounded. For example, a Coulomb potential can go to infinity
both in the positive and negative direction. Even with a bounded potential the
method becomes very inefficient as the number of particles increases. But there
is a very simple cure, discovered by Kalos [21], for GFMC, but equally applica-
ble to any projector method. In importance sampling the underlying probability
distribution is multiplied by a known, approximate solution. Multiply eq. (3.1) by
U, the trial function, and let f,(R) = V(R)Y,(R). Then:

Fapr = We T ED Yy / dR (R, R) fu(R)), (3.5)

where G(R, R') = U~ e~7M~ED [ is the importance-sampled Green function,
and the initial condition is fo(R) = U2(R). It is easily shown by differentiating
G with respect to 7, that it satisfies the evolution equation:

3G(R, Ry:7)
or

=->"N V,[V,G + 2G V,In U(R)] + [EL(R) — Er]G, (3.6)
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Possible new
Generation configurations

Old of new and their New
configurations configurations muiltipticity, m configurations
a
o
. . aFloa °
m=0.8
a [ ] VO [ ] o e
{0 [o] —— []
- " Na o [
m=1.6

] ~ - -
A

m=0.3

Fig. 2. Schematic of the DMC algorithm, showing the evolution of the random walks which make up
a generation. Illustrated is a three-particle system in a box; the squares represent old positions, the
circles new ones. The old population has four walkers, the new population has three. The process
leading to the new generation consists of drifting of the electron positions with the gradient of the log
of the guide function (straight arrows), adding a random diffusion (wiggly lines), and branching with
the local energy. With the three new walks the process is repeated.

where E_is the local energy defined in eq. (2.4). The first three terms on the right-
hand side correspond to diffusion, drifting, and branching. As the trial function
approaches the exact eigenfunction, the branching factor approaches unity; thus a
sufficiently good trial function can control the branching.

The importance-sampled DMC algorithm, as illustrated in fig. 2, is:

(1) The ensemble is initialized with a VMC sample from T2(R).

(2) The points in the configuration are advanced in time as:

Rpi1 = Rn + x + A7 VIn¥(R,), (3.7
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where  is a normally distributed random vector with variance 2\ and zero mean.
(3) The number of copies of each configuration is the integer part of

exp{—7[EL(R,) — Erl} + u, (3.8)

where v is a uniformly distributed random number in (0, 1).

(4) The energy is calculated as the average value of the local energy: Fy =
<EL(R’IL)> .

(5) The trial energy is periodically adjusted to keep the population stable.

(6) To obtain ground-state expectation values of quantities other than the en-
ergy (e.g. the potential energy), one should correct the average over the DMC
walk, the so-called “mixed estimator”, Viix = (¢o|V |¥), by using the variational
estimator [1],

(¢olVigo) = 2{o[V[¥) — (T|V|T) + O[(do — T)*]. (3.9)

If the mixed estimator equals the variational estimator, then the trial function has
maximum overlap with the ground state.

In the GFMC algorithm there is no error resulting from taking a finite time step,
which makes it very usetul for performing precise energy calculations. Its essence
is identical to the above algorithm. The new algorithmic features of GFMC are
the introduction of intermediate points and the sampling of the value of the time
step. Note that repeated use of step (2) alone would generate a probability density
proportional to U2, i.e. if we turn off the branching, we recover VMC.

3.2. The fixed-node method

We have not discussed at all the problem posed by Fermi statistics for projec-
tor Monte Carlo. Consider the difficulty in implementing the non-importance-
sampled algorithm: the initial condition is not a probability distribution, since a
fermion trial function will have positive and negative pieces. Hence, we must use
the initial sign of the wavefunction as a weight for the random walk. That leads
to an exact, but slowly converging, algorithm, which we will discuss in the next
subsection.

Consider the effects of using an antisymmetric trial function in the importance-
sampled algorithm. The initial distribution is positive, but the Green function,
G(R, R'), can be negative if a step changes the sign of ¥. Thereafter, a minus
sign will be attached to the walk, which will lead to a growing statistical variance
of all estimators. But there is a simple way to avoid this: forbid moves in which
the sign of the trial function changes. This is the fixed-node (FN) approximation.
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In a diffusion process, forbidding node crossings gives a zero boundary condi-
tion for the evolution equation for the probability. This solves the wave equation
with a boundary condition that it vanishes wherever the trial function vanishes.
One can easily demonstrate that the resulting energy will be an upper bound to
the exact ground-state energy [26]; the best possible upper bound with the given
boundary conditions. With the FN method we do not necessarily get the exact
fermion energy, but the results are superior to those of VMC. No longer do we
have to optimize two-body correlation factors, three-body terms, etc., since the
nodes of the trial function are not changed by those terms. One is exactly solv-
ing the wave equation inside the fixed-nodal regions, but there is a mismatch
of the derivative of the solution across the boundary. The nodes have an un-
equal “fermion” pressure on the two sides, unless the nodes are exact. Where
comparison has been done between the VMC, the FN-DMC, and the exact an-
swer, one generally finds that the systematic error in the FN calculation is three
to ten times smaller than it would be for a well-optimized VMC energy. See
table I.

The nodes obviously play a very important role, since, as we have seen, if the
nodes were exactly known, the many-fermion system could be treated by Monte
Carlo methods without approximation. The ground-state wavefunction can be
chosen real in the absence of magnetic fields; the nodes are the set of points where
¢(R) = 0. Since this is a single equation, the nodes are in general a 3N — 1-
dimensional hypersurface. A very common confusion is between these many-
body nodes and those of the spin orbits, which are 2D surfaces in a 3D space.
When any two particles with the same spin are at the same location, the wave-
function vanishes. These coincident planes, with r; = r;, are 3/V — 3-dimensional
hypersurfaces. In 3D space they do not exhaust the nodes, but are a sort of scaf-
folding. The situation is very different in one dimension, where the set of nodes
is usually equal to the set of coincident hyperplanes. Fermions in one dimension
are equivalent to 1D bosons with a no-exchange rule.

Nodal volumes of ground-state wavefunctions have a tiling property [27]. To
define this property, first pick a point, Ry, which does not lie on the nodes. Con-
sider the set of points which can be reached from Ry by a continuous path with
#(R) # 0. This is the volume in phase space accessible to a fixed-node random
walk starting at Iy. Now consider mapping this volume with the permutation op-
erator (only permute alike spins), i.e. relabel the particles. The tiling theorem says
that this procedure completely fills phase space, except, of course, for the nodes.
Thus one does not have to worry about where the random walk started; all starting
places are equivalent. This theorem applies for any fermion wavefunction which
is the ground state for some local Hamiltonian, and it can be proved by a simple
variational argument. Excited states, ground states of non-local Hamiltonians, or
arbitrary antisymmetric functions need not have the tiling property. A more ex-
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tensive discussion of fermion nodes and some pictures of cross sections of free
particle nodes are given in ref. [27].

3.3. Exact fermion methods

As accurate as the FN method might be, it is still unsatisfactory, since one does
not know how the assumed nodal structure will affect the final result. One might
guess that long-range properties, such as the existence or non-existence of a Fermi
surface, will be determined by the assumed nodes. The FN algorithm is only
improving the bosonic correlations of the trial function, not the fermion features.
There are some fairly simple ways of improving on the FN method, but their use
is limited to small systems.
With the transient-estimate (TE) method, one calculates the ratio:

[ UH e tH—-E1)
[We-tH-Bn ¢

Erg(t) = (3.10)

Clearly the variational theorem applies: Erg(t) 2> Eo. Also, the energy converges
exponentially fastin ¢:

Jim Eqe(t) = Ep + O(e™tF%), (3.11)
— 00

where F, is the gap to the next excited state with the same quantum numbers as
the fermion ground state. In a Fermi liquid this is the gap to the state with the same
momentum, parity, and spin, and would be obtained by creating two particle-hole
excitations.

For a method to self-consistently find its own nodes, the walks must be able
to go anywhere, and so the drift term in eq. (3.6) must not diverge at the nodes.
Hence, we must distinguish between the antisymmetric trial function that is used
to calculate the energy, W(R) (this is always assumed to be our best variational
function), and the strictly positive guide function, ¥(R), used to guide the walks.
The guide function appears in the drift and branching terms of eq. (3.6) and will
be assumed to be a reasonable boson ground state trial function, while the trial
function appears in eq. (3.10). The ¥ importance-sampled Green function is:

G(R, R';t) = UG(R)(R| e~ ""=E0 |RYWC (R, (3.12)
and we can rewrite eq. (3.10) as:

'o(R)Eur(RYG(R, R';t)o(R)WE(R')

Epg(t) = J =
[ o(RG(R, R';t)o(RYVE(R)

(3.13)
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where o(R) = U(R)/¥Ys(R) and Epr(R) is the local energy of ¥. In the limit
U — [P, o equals the sign of the trial function.

The transient-estimate algorithm is:

(1) Sample configuration R’ from the square of the guide function with VMC.
This corresponds to the rightmost factor in the above integrands.

(2) Record the initial sign of the walk, o(R’).
_(3) Propagate the walk forward an amount of time, t, with the Green function,
G(R, I/;t). If a branch occurs, each branch will count separately.

(4) The weight of the walk arriving at R is o(R)o(R’). The energy at time ¢ is
computed as:

(IEir(R) 4+ Evr(R))o(R)o(R'))

Erg(t) = 2o(R)o(R) ;

(3.14)

where the averages are over all random walks generated by this process.

The weight of the walk is positive if the walk crosses an even number of nodes
(or does not cross at all) and is negative if it crosses once or an odd number of
times. The trial function nodes are displaced by an unequal diffusion of walks
from one side or the other.

The release-node (RN) algorithm [26,28] is an improvement on this TE method.
Instead of projecting from the trial function, one begins the projection from the
fixed-node solution. There are several advantages. First of all, the boson correla-
tion within the fixed-nodes is already optimized, thus the projection time is only
determined by the time to adjust the position of the nodes (of course this will in-
directly affect the bosonic correlation). Second, one can directly calculate the dif-
ference between the exact result and the fixed-node solution. It turns out that it is
given by the local energy of the walks as they cross the nodes. Thus the difference
is obtained with more statistical accuracy than either energy alone, which allows
the convergence to be carefully monitored. Finally, the release-node method can
be conveniently integrated into a fixed-node program. The only modifications are
introducing a guide function and keeping track of the energy as a function of time
since nodal crossing.

However, there are serious problems with both the TE and the RN method. Let
us examine how the statistical error of eq. (3.10) depends on the projection time.
Note that the values of both the numerator and denominator are asymptotically
proportional to exp[—t(¥r — Er)]. Thus, to keep the normalization fixed, our
trial energy must be equal to Er. But, since the guide function allows the walks
to cross the nodes, the population will increase as expl—t(Es — Et)], where Ep
is the boson energy. One can demonstrate that the signal-to-noise ratio vanishes
exponentially fast. This is a general result. In any fermion scheme, as soon as
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negative weights are introduced the statistical error will grow as:
Estat = e B Be) (3.15)

The behavior is physically easy to understand. Our estimator depends on finding
differences between random walks crossing an even or an odd number of times.
As soon as there is substantial mixing, the difference becomes harder and harder
to see. Note that the exponential growth rate depends on a total-energy difference.
This implies that the transient-estimate algorithm is guaranteed to fail if V is suf-
ficiently large; the statistical errors will be too large. Nonetheless, reliable results
have been obtained for systems of up to 54 fermions.

The convergence problem is actually a bit more subtle, since the projection time,
t, can be optimized. The projection time should be chosen to give approximately
equal statistical errors and systematic errors coming from non-convergence of the
projection. Taking these errors from eqgs. (3.11) and (3.15), we find that the total
error will decrease as:

Ey

_ iy 3.16
2(Er — Eg + Ey) (3-16)

ex P7T, n

where P is the total number of steps in the random walk. Only for bosons will
n= % Any excited state will converge at a slower rate. Note that 7 o< 1 /N for a
fermion system. Inverting this relation, we find that the computer time needed to
achieve a given error will increase exponentially with V.

One possibility for improving this convergence is to use all of the information
given in the function Epg(t), rather then just the value of the energy at the largest
time. Crudely speaking, we can fit this function with a sum of exponentials and
thereby try to extract the asymptotic limit. This “inverse Laplace transform” prob-
lem is well-known to be numerically unstable. Recently it has been suggested [29]
in the context of quantum Monte Carlo for lattice models, that the proper way
to perform such a functional fit is with the maximum-entropy statistical method,
wherein a model of the expected denstity of states is used to bias the result, thereby
regularizing the fitting problem. Recently we [30] have applied these ideas to the
TE and RN method with simiple problems and showed that they do indeed reduce
the statistical and systematic errors. When this is done the statistical errors again
decrease with 7 = —%.

There have been many attempts to “solve” the fermion sign problem. For ex-
ample, an obvious method is to try to pair positive and negative random walks in
the TE method. This is difficult in many dimensions, simply since the volume of
phase space is so large that random walks rarely approach each other, and no such
schemes have yet succeeded for more than a few particles.
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There is some confusion about the nature of the *“fermion” problem in the lit-
erature. Note that the TE and RN method do converge to the exact fermion en-
ergy. The fermion problem has to do with how long it takes to achieve a given
error estimate, and, more precisely, how this scales with the number of fermions:
the computational complexity of the calculation. Clearly, one of the important
tasks of simulations is to calculate properties of systems near phase transitions,
so the ability to do this for large systems is important. In the TE method, the
computer time to reach a given precision grows exponentially with the number of
fermions. I would say that a complete solution of the fermion problem would be
an approximation-free algorithm which scales as some low power of the number
of fermions.

Let me just briefly mention the computational complexity of simulations of a
few physical systems. Properties of classical systems can be simulated in a time
O(NV). Simulations of equilibrium properties of quantum bosons at zero or non-
zero temperature are also O(N). A Heisenberg model on a bipartite lattice or any
1D fermion system is O(/V). Variational MC calculations of fermions systems
are O(N?) in general, but the exponent would be smaller if localized spin-orbits
are used. The Hubbard model at half filling on a bipartite lattice [31] 1s O(N?3),
using the projection Monte Carlo method and auxiliary field techniques. This is
the only non-trivial “fermion” problem solved. But known algorithms for general
fermion systems are O(e*" ). Barring a breakthrough, one can still reduce the rate
of exponential growth, x, or use the TE or RN method to gain confidence in FN
and VMC calculations of much larger systems.

3.4. Lattice models

Let me briefly discuss the application of these methods to lattice problems. Most
of the methods described here work also for lattice models. First, it is convenient
to use the power Green function to project out the ground state. The Hamiltonian
can directly be used to hop the spins without time step error if the time step is
chosen

2

— 3.17
Emux - E’l'7 ( )

T <

where E,,.x is the maximum energy. Since lattice models have a bounded energy
spectrum, the power method is appropriate. Since the maximum energy is propor-
tional to the number of sites, 7 o | /N. This is normal, since after N time steps
all spins on the average will be updated, just like in a classical Monte Carlo cal-
culation of a lattice model. Importance sampling enters in the same way; details
can be found in ref. [24].



450 D.M. Ceperley

The fixed-node approximation is different for a lattice model, because random
walks can directly pass from one nodal region to the other without crossing a
place where the trial function vanishes. The problem occurs when there are two
many-body configurations (s, s') with ¥(s)¥(s’) < 0 and (s|H|s’) # 0. If this
is possible, the fixed-node energy cannot, in general, be an upper bound to the
energy since these unknown “surface terms” can contribute to the energy. If one
thinks that the lattice model is a reasonable approximation to a continuum model,
the fixed-node approximation should still be useful, and it seems to work well in
the one case that has been tried [32]. Going to a lattice does not change the TE
and RN method at all. In fact the RN method is a useful way of estimating the
surface terms left out in the lattice FN method.

The conditions for a lattice model to be bosonic, and not to have a sign problem,
are easy to state. The Green function must be non-negative, so it can be interpreted
as a probability. This implies that the off-diagonal elements of the Hamiltonian
should be non-positive:

(s|H|s') <0, Vs#s'. (3.18)

Of course we can choose to do the random walk in any convenient basis, so the
question becomes: is there any local basis that can be shown to satisfy the above
inequalities? The exact-eigenfunction basis satisfies these conditions, but we do
not know how to transform into that basis unless the eigenfunctions are known.
Anyhow, the eigenfunction basis is non-local and would not scale very well with
the number of lattice sites. As far as I know, there has not been a systematic search
through all possible local bases to see if some of the other interesting lattices might
be solvable. This approach is, of course, equivalent to finding a “Marshall sign
rule” for a lattice model.

What I have not discussed are the usual methods for performing simulations
of lattice models. These are based on applying the Stratonovitch-Hubbard trans-
formation [31] to e~*"*. An auxiliary field is introduced in place of the electron—
electron interaction. Several recent reviews are given in ref. [33]. In general the
sign problems remain.

3.5. Problems with projection methods

The projection method shares many of the problems with the variational method.
In fact it is useful to think of the projection method as a “super-variational”
method. Figure 3 shows how the statistical and systematic error decrease with
computer time in both the variational and the fixed-node method. The dashed
lines show what would happen to the diagram if the trial function were im-
proved. In both methods there is a premium for good trial functions; that is the
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Fig. 3. The rate of decrease of the statistical and systematic error in VMC (solid line) and FN (dotted
line) versus computer time. In VMC the total error initially decreases as P~ 172 until the statistical
crror equals the intrinsic error of the variational trial function. The “critical time” is where the line
becomes horizontal. A similar history is followed with the FN-DMC, but the method is slower, hence
the curve is displaced to the right, and the intrinsic error of the FNA is an order of magnitude smaller.
The dashed lines show the effect on the critical time of using an improved trial function.

most straightforward way of making progress to solving the many-fermion prob-
lem.

— The fixed-node result is guaranteed to be closer to the exact answer than the
starting variational trial function. Since the FN algorithm automatically includes
bosonic correlation, the results are much less likely to have the human bias than
with VMC. There is also the possibility of new things coming out of the simula-
tion. For example, one may observe a particular type of correlation completely
absent from the trial function. Hence, it is always good to pay close attention to
correlation functions computed by DMC, since this is a good way of learning what
is missing in the trial function. But it is slower than VMC because the time step
needs to be smaller. The cost in computer time is typically a factor of two to ten.

— Although the probability distribution does converge to the exact answer, in
practice this does not always occur in any given calculation of a many-body sys-
tems. The situation is similar to that of a classical simulation near a phase bound-
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ary. Metastable states exist and can have a very long lifetime. However, with
DMC the importance sampling always biases the result. If the trial function de-
scribes a localized solid, even after complete convergence, the correlation func-
tions will show solid-like behavior. Careful observation will reveal liquid-like
fluctuations, indicating the presence of the other state. The ability to perform sim-
ulations in a metastable state is useful, but the results must be interpreted with
caution.

— Importance sampling is only a partial cure to the unbounded fluctuations of
the branching method. As N increases, sooner or later the branching becomes
uncontrollable. Most projector Monte Carlo calculations have fewer than several
hundred fermions. Finite-temperature Metropolis methods do not suffer from the
problem of uncontrolled branching.

— Although the fixed-node approximation dramatically improves energies,
other properties, such as the momentum distribution, may not be improved. To
explore the metal-insulator phase transition with FN-DMC, one must come up
with a sequence of nodes spanning the transition and use the upper-bound prop-
erty of the fixed-node approximation.

— Release-node calculations only improve the nodes locally. If ¢ is the release-
node projection time, then we can move the nodes a distance of at most V6N At.

— The projector methods can only calculate energies exactly. For all other prop-
erties one must extrapolate out the effect of the importance sampling. This s areal
problem if one is interested in obtaining asymptotic behavior of correlation func-
tions. There are ways of getting around some of these problems, but none are
totally satisfactory. The path-integral finite-temperature methods are superior to
projector Monte Carlo for calculating correlation functions.
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