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INTRODUCTION

Quantum Monte Carlo (QMC) is a general method to calculate the exact (or nearly
exact) ground state energy and correlation functions of a many-body quantum system.!
Green’s Function Monte Carlo (GFMC) can find exact results for Boson systems; however,
for Fermions the famous "sign problem” has prevented the formulation of an exact method
that is feasible for more than a few particles. Nevertheless, the fixed node approximation
is extremely accurate if one has a trial function with appropriate nodes. The accuracy has
been established by carrying out "release node” calculations for many systems, including
the homogeneous electron gas, small molecules, and solid hydrogen. 234

The work described here is part of our efforts to make it possible to carry out
such nearly exact calculations on general condensed matter systems. The obstacles to be
overcome are caused by the presence of core electrons. Although they are relatively inert,
core electrons have crucial effects upon the active valence electrons. (The ideal would be
to devise a theory that involves only valence electrons, yet takes into account all effects
" of the cores and respects the fact that all electrons of the same spin - core and valence
- are in fact identical.) The core states are problematic because their characteristic
energy scales are so large and time scales so small; in GFMC this causes an increase in
computational time to achieve a given accuracy for the total energy which scales as 2,
where Z is the atomic number.® For this reason, direct calculations are not feasible for
heavy atoms, let alone solids! QOur approach involves full many-body calculations on the
valence electrons only, with effects of the core electrons replaced by a pseudopotential®
(PP) or pseudohamiltonian® (PH). One of our primary results is that for a given PP
or PH, it is indeed possible to calculate the total valence energy to a precision of order
0.05eV per atom.” This is sufficient for many real problems and leads to properties of Si
in good agreement with experiment, including improvement of the well-known errors in
the cohesive energy found in the local density approximation (LDA).2 Fahy, Wang, and ‘
Louie® have also done VMC pseudopotential calculations using the same types of trial ‘
functions as considered here. ‘ |
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The second part of our work addresses the question: how can one generate a pseu-
dopotential or pseudohamiltonian that treats the effects of the cores with sufficient ac-
curacy that they are worthy to be used in such accurate valence calculations? One point
is that the pseudohamiltonian approach cannot be applied in all cases®™1% and the nen-
local potentials, which are more general, are not consistent with the fixed node approach
m GFMC. Progress in this direction has been made in recent work,!* which has shown
how to estimate the non-local term from a variational function while treating the local
terms in the full fixéd-node GFMC. We also must face the fact that up to now pseudopo-
tentials have been generated only in approximate one-electron methods such as LDA
or Hartree Fock.® Any errors made in generating the potentials propagate directly into
the final answers. To overcome this defect, we have recently developed methods for a
more rigorous many-body ”core-valence partitioning” that-incorporates core-valence ex-
change and correlations into a self-energy for the valence states.!? The most convenient
form of the results are “quasiparticle pseudopotentials”'%!® which can be used as read-
ily any non-local pseudopotential (with only a change requiring a simple modification
of the electron-electron interaction). We have tested our pseudopotentials by essentially
exact valence-only CI and QMC calculations on many atoms and on the Nag dimer.1313
Comparison with experiment shows excellent agreement in many cases and significant
improvements over previous one-electron type pseudopotentials in essentially all cases.

CALCULATIONS ON SOLIDS

In VMC one minimizes the energy with respect to a trial function, which we choose
to have the Jastrow-Slater form:

N
¥(ry,...,TN) = exp Zx(r.-)-zd(r.-,-) D(r;,...,TtN) (1)

i=1 i<s

The trial function is also the starting point for GFMC!* where the the operator exp(—tH)
projects out the ground state from the starting trial function. Here u(r) is a two body
correlation function obtained from random phase approximation for a homogeneous elec-
tron gas?; x{(r) is a one body term which modifies the VMC charge density® and D is a

Slater determinant of single particle states. In our work to make a practical algorithm,
LDA calculations are used in two important ways - construction of good trial orbitals
and in the extrapolation to large cell size. The orbitals are taken from LDA calculations
with a plane-wave basis set, including all reciprocal lattice vectors with an energy less
than the “energy cutoff.” We have used two energy cutoffs, 7 Ry and 15 Ry to test the
influence on energy. In VMC, the energy obtained with orbitals cutoff at 15 Ry is 0.44 eV
lower than the energy with a 7 Ry cutoff, while the two GFMC energies are the same
within statistical errors {(0.04 eV/atom.) This test suggests that the error in the nodal
locations caused by the truncation of the LDA trial function is small. We use the larger
cutofl in our calculations here which is more efficient because fluctuations are reduced.

The present results are calculated with a cubic supercell containing 64 S1 atoms with
periodic boundary conditions. The difference in an LDA calculation between a 64 atom
and infinite system is 0.11 eV, and our QMC results are corrected assuming that they
have the same size dependence as LDA. The number of walkers in the GFMC ensemble
is chosen to be 200 and the initial distribution was obtained from VMC. A time step of
0.015 in atomic units was used. (This gives an acceptance ratio of 98% in the Metropolis
portion of the time evolution.) A test calculation using half the time step gave identical
results, showing that the time step error is less than 0.03eV/atom. A typical run with
3 x 104 steps, took 20 hours of CRAY-XMP time.
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Fig. 1 shows the energy as a function of lattice constant from the LDA, VMC and
GFMC calculations. The curves are least square fits to Murnaghan equation of state.!
The total energy dropped 0.21(3) eV in the atom and 0.34(3) eV/atom in the solid at
zero pressure (with the most accurate variational function) in going from the VMC to
GFMC. This difference reflects the fact that it is easier to construct a good trial function
in.the atom than in the solid. In VMC it is important to construct equally good trial
functions at all the lattice constants, otherwise there will be a systematic bias in the
results. To achieve the same error bars, the GFMC calculation takes only 2.6 as much
computer time as VMC but does not require systematic search of trial functions.

Also shown in Fig. 1 are the LDA total energies using the same PH. For semicon-
ductors like silicon, LDA is known to work very well, and indeed the total energies from
LDA are very close (~ 0.2 eV) to those from GFMC (even closer to those of VMC).
Although these differences are not negligible, the largest change is in the atom where the
spin polarized LDA energy is about 0.8 eV higher than GFMC.
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Fig. 1. Total energy of silicon versus lattice constant. The upper curve with error
bars is from VMC and the lower from GFMC. Both have been corrected for the finite
size of the system using LDA. The error bars show the estimated statistical errors. The
solid lines are the fits to the Murnaghan equation of state. The dashed line represents
the results of an LDA calculation with the same PH.




Table I. Comparison of the GFMC and VMC results with experiment and other calcula-
tions. All quantities have been corrected for finite size effects, zero point motion of the
Si ions but here are no corrections applied to the difference between the pseudo- Hamil-
tonian and the pseudo-potential. Footnotes: ® Our calculation using the pseudopotential
from Ref. 8 with an energy cutofl of 30 Ry. ® Fahy, ei. al,, Ref. 9. ¢ At T=0 K, Y. Okada
and Y, Tokumaru, J. Appl. Phys. 56, 314(1984). ¢ At T=0 K, J.J. Hall, Phys. Rev.
161, 756(1967). ¢ Landolt-Bornstein: Numerical Data and Functional Relationships Sci-
ence, New Series, Vol.3, 17:a, (Springer, New York, 1982). / JANAF Thermodynamical
Tables, 3rd ed., J. Phys. Chem. Ref. Data 14, Suppl. 1, 1795(1985); and B. Farid and
R. W. Godby, Phys. Rev. B43, 14248(1991). -

lao (V)| Bo(A) | dBo/dP | Eur (¢V) | Eui. (V) | Eumt (V)

LDA PP 5.373 0.946 4.00 -102.71 -108.01 5.30
LDAPH | 5455 | oo | -33 | -027 | .l0m79 | 5.08
VMCPP | 5.40(4) | 10820) | —  |-103.42(3) { -108.23(6) | 4.81(7)
vMePE | s422) | 1085) | 35(6) |-103353) | -107.7(2) | 4.384)
GFMC.PE | 5.45(2) | 1.03(7) | 3.8(8) |-103.56(2) .108.07(2) | 451(3)
Exp. | 5430° | o992 |320-468 | — — | 4638y

The final comparison with experiment and other calculations is given in Table L. For
solid silicon, at least, LDA is working very well, and the LDA error in the cohesive energy
comes mainly from using the LDA value for the energy of the atom. Our VMC energy is
0.43+0.08 eV smaller than that of Fahy, et al. After correcting for the difference between
the PH and PP as calculated by LDA, there is still a 0.2 ¢V difference. We performed
additional VMC calculations with their non-local pseudopotential, and reproduced their
results. This implies that the transferability of the pseudopotentials is different between
LDA and a many-body calculation such as VMC or GFMC (by 0.2 eV /atom). Together
with evidence discussed below, this shows that accurate construction of the pseudopo-
tentials from a many-body theory is necessary for the full accuracy of the QMC approach
to be reached.

The structural properties from GFMC are in slightly better agreement with experi-
ment than the VMC results of Fahy, et al. Our GFMC cohesive energy, bearing in mind
the unknown transferability of the PH, should be between 4.51 (assuming no correction)
and 4.73 eV (assuming the LDA gives correctly the difference between the PH and PP),
in general agreement with the most quoted experimental value, 4.63(8) eV (see Table
caption). In future work, we plan GFMC calculations with a non-local “quasiparticle”
pseudopotential (described below) using a new method,!! which treats the non-local parts
in a variational mannet.

QUASIPARTICLE PSEUDOPOTENTIALS

As the work above has demonstrated, the accuracy of QMC calculations applied to
real solids is now limited by the quality of the pseudopotentials used to represent the
effects of the cores. However, essentially all work to derive theoretical pseudopotentials
has been in the context of a one-electron method such as Hartree-Fock or LDAS In a
one-electron method it is straightforward to carry out this operation because core and
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valence states are separate eigenfunctions and a pseudopotential can readily be derived
which reproduces the valence function outside the core. In a maay- body theory it is
not clear a priori how to make such a separation. We have devised a way to do this
“core/valence partitioning” taking into account the exchange and correlation between
the core and valence electrons.!?

The essence of our core/valence partitioning method is to treat the valence electrons
as "quasiparticles” with self-energies which reflect the effects of the cores, i.e., exchange,
dynamical correlation, and relaxation. These effects are calculating in the atom (or ion)
using the Greens function method'® which is a variant of Hedin’s GW approximation,
based upon the generalized RPA. We call our way of including vertex corrections the
generalized GW {GGW) which is fully conserving.!” The basic reason that summing
diagrams is successful in describing the effects of cores is that the large gap for core
excitations makes the sums converge rapidly.}? The result is that the Green’s function for
electron addition and removal in the range of valence energies can be described by valence
electrons moving in the presence of frozen core orbitals plus a self-energy described by a
"core polarization potential” V,, which takes into account core relaxation and dynamic
correlation. The form of V,, was chosen following the work of Muller, et. al.!® In
addition, core polarization modifies the electron-electron interaction in a simple way near
the ion cores. Finally, usual methods®!2 can be used to transform this to a non-local
pseudopotential valence-only problem.

The first test of the ”quasiparticle” pseudopotential is for one electron outside a core.
In that case the valence problem is a simple one-electron problem and the eigenvalue of
the ”quasiparticle” pseudopotential should agree with the experimental binding energy of
the electron in the exact many-body atom. Representative examples of results on atoms
showing accuracy of our potential are given in Table II. The row labelled GGW shows the
results of our full atom GGW calculation; the next row (GGW/PP) shows the small errors
introduced in the pseudopotential transformation. Both agree very well with experiment
compared to the single body methods listed below in the table. This is a necessary,
but not sufficient test for any pseudopotential, and we see the the new quasiparticle
pseudopotential has substantial improvements Conversely, the errors shown in table II
for the one electron methods will propagate in any many-body valence calculation which
uses them.

Table II. Removal energies (in eV) for one electron bound to a core from experiment,
the full atom generalized GW (GGW), the quasiparticle pseudopotential (GGW/PP)
derived from the GGW, Koopman’s eigenvalue (HF), self-consistent HF, and pseudopo-
tential local spin density (LDA PP).

| Be2s [Be2p [ Na3s [Nadp Scda | Sc dp Se 3d | 5¢c 4f
Expt. 18.21 | 1425 ] 5.14 | 3.04 | 2158|1699 | 24.73 | 7.76

GGW 18.21 { 14.25 | 5.11 | 3.08 | 21.56 | 1T.0C | 24.53 | 7.T7
GGW/PP | 18.21 | 14.25 | 5.12 | 3.03 | 21.58 | 17.01 | 24.54 | T.77

HF 18.13 | 14.14 | 4.06 | 2.98 | 20.90 | 16.57 | 23.09 | 7.89
HF-SCF 18.13 | 14.14 | 4.96 | 2.98 | 20.97 | 16.60 | 23.76 | 7.69
LDF PP 18.30 | 14.61 | 5.30 | 3.20 |21.34 | 16.91 | 25.12 | —




Fig. 2. GFMC calculations of emergy vs. distance for the two-valence electron
Na dimer and the GGW quasiparticle pseudopotential. Points with error bars are the
theoretical results compared to the experimental curve derived from spectroscopic data.
Comparison with HF and LDA pseudopotentials is described in the text.
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Our goal, however, is to apply these potentials to many-valence-electron systems
such as molecules and solids. This involves also the changes in the e-e interactions and
static core relaxations. We have carried out one nearly exact Monte Carlo simulation
to test the quality of the results: the binding curve for the Na dimer. This is a two-
valence-electron system which can be solved exactly by QMC. Parallel calculations have
been done with different pseudopotentials’? - ones derived from the atom in the Hartree-
Fock approximation, our GGW “quasiparticle” pseudopotentials plus e-e and static core
polarization terms, and LDA potentials. Figure 2 shows the nearly exact agreement of
the QMC calculation using the GGW potential with the experimental binding curve for
the dimer. In contrast, the curves with the HF generated pseudopotential are too weakly
bound (0.02eV) with equilibrium distance about 5% too large. Results with an LDA
generated potential'? are overbound by a much larger amount, 0.1 eV.13

CONCLUSIONS

There are two primary conclusions of our work. The first is that given the pseu-
dopotential, the valence electron calculation can be carried out with an absolute accu-
racy of order 0.05 eV per atom in a real solid.” The precision can be better and the
fundamental limitation is the fixed node approximation, for which the error has been
estimated to be of this order in atomic and molecular calculations. However, there are
still developments required to have effective methods to carry out fixed node calculations
with non-local potentials.}! The second conclusion is that promising results have been
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found using a new approach to "core/valence partitioning” that leads to " quasiparti-
cle pseudopotentials.”13.12 These have been derived for atoms using many-body Green’s
function methods to determine the self-energy of a valence electron due to exchange and
correlation with the core. Tests have shown the new potentials are transferable and pre-
dict many different states of atoms and binding of the Na dimer more accurately than
potentials derived from single body metheds like Hartree-Fock or LDA. Together these
results are promising for accurate an initio calculations on molecules and solids.
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