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Abstract

We report on recent progress in the development of quantum Monte
Carlo methods including variational, diffusion and path integral Monte
Carlo. The basics of these methods are outlined together with descrip-
tions of trial functions, treatment of atomic cores and remaining prob-
lems such as fixed-node errors. The recent results for atoms, molecules,
clusters and extended systems are presented. The advantages, achieve-
ments and perspectives demonstrate that quantum Monte Carlo is
a very promising approach for calculating properties of many-body
quantum systems.



1 Introduction

This review is a brief update of the recent progress in the attempt to cal-
culate properties of atoms and molecules by stochastic methods which go
under the general name of quantum Monte Carlo (QMC). Below we will dis-
tinguish between basic variants of QMC: variational Monte Carlo (VMC),
diffusion Monte Carlo (DMC), Green’s function Monte Carlo (GFMC) and
path integral Monte Carlo (PIMC).

The motivation for using these methods to calculate electronic structure,
as opposed to methods of expanding the wave function in a basis, arises from
considerations of the computational complexity of “solving” the Schrodinger
equation for systems of many electrons. By the complexity we simply mean
the systematic answer to the question: “How long does it take to compute
some property of a system to some specified absolute error?” So the com-
plexity is the study of the function: T'(e,...) where T'is the needed computer
time and € is the error. The absolute magnitude of T" depends. of course,
on such features as the type of computer, the compiler and the skill of the
programmer which are hard to specify systematically. But the basic scaling
of T" with the required error, with the number of electrons and with the type
of molecule should be independent of such details.

The error ¢ in this expression must be the “true” error, i.e. all the system-
atic and statistical errors. Uncontrolled approximations cannot be allowed,
otherwise the complexity problem is not well-posed. Chemistry is unique
in that first, there is a well tested, virtually exact theory (the Schrodinger
equation) and second, the mean-field estimates of chemical energies are often
surprisingly accurate. Unfortunately, very accurate estimates are required to
provide input to real world chemistry since much of the interesting chemistry
takes place at room temperature. Currently, the level of “chemical accuracy”
is considered to be &~ 1 kcal/mol. However, in many cases higher accuracy
is necessary, €.g., to calculate energy differences (say between two isomers,
energy levels, or a binding energy) to better than room temperature requires
an error of ¢ <100 K ~ 0.01 eV ~ 0.35 mH ~ 0.1 kcal/mol. Of course,
there are many phenomena for which even higher accuracy is required (e.g.,
superconductivity).

To obtain errors of 1 kcal/mol or better, it is essential to treat many-
body effects accurately and, we believe, directly. Although commonly used
methods such as the density functional theory within the local density ap-



proximation (LDA) or the generalized gradient approximation (GGA) may
get some properties correctly, it seems unlikely that they. in general, will ever
have the needed precision and robustness on a wide variety of molecules. On
the other hand, methods which rely on a complete representation of the
many-body wave function will take a computer time which is exponential
in the number of electrons. A typical example of such an approach is the
configuration interaction (CI) method which expands the wave function in
Slater determinants of one-body orbitals. Each time an atom is added to the
system, an additional number of molecular orbitals must be considered and
the total number of determinants to reach chemical accuracy is then multi-
plied by this factor. Hence, an exponential dependence of the computer time
on the number of atoms in the system results.

Simulation methods construct the wave function (or at positive temper-
ature the N-body density matrix) by sampling it and therefore they do not
need its value everywhere. The complexity then usually has a power-law de-
pendence on the number of particles, 7' oc N°, where the exponent typically
ranges from 1 < ¢ < 4, depending on the algorithm and the property. The
price to be paid is that there is a statistical error which decays only as the
square root of the computer time so that 7" oc €72,

Recently, very accurate QMC calculations have been reported on few
electron systems with H, He and Li atoms and on many-electron systems in
the jellium model. QMC results are rapidly approaching chemical accuracy
on much more complicated systems such as clusters of carbon and silicon,
so the method is quickly becoming of practical importance. This progress
is coming about through improvements in methods (for example, the use of
pseudopotentials and fermion path integral methods), programming advances
(interfacing to standard chemistry packages for building high quality trial
wave functions) and advances in computer hardware (parallel computation).

We do not mean to imply that QMC has been rigorously shown to have
a more favorable complexity; this is the crux of the infamous fermion sign
problem of QMC that we will discuss later in this article. Rather we will argue
that QMC has a number of desirable features which, even if the fermion sign
problem is not solved, imply the method will still be useful:

e QMC has a favorable scaling with the size of the system with compu-
tational demands growing as ~ N?®.

e One can introduce thermal effects naturally. both for electrons and ions
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and zero point motion for the ions.

o Besides energies, QMC can compute properties such as the optical and
electric response, geometries, ete.

e QMC has general applicability for both isolated systems such as molecules
and extended systems such as solids.

e QMC has been shown to reach chemical accuracy or beyond for small
systems

Therefore, QMC has many of the ingredients of a method which can re-
ally “solve” the computational quantum many-body problem. We know of
no other general methods with these characteristics. In addition, QMC and
PIMC methods offer new ways of understanding chemical concepts and trans-
lating that understanding into a computationally efficient approach.

The idea of using a statistical approach for quantum many-body problems
was mentioned rather early both by Wigner [1] and Fermi. Serious applica-
tion began with McMillan’s [2] calculation of liquid helium by the VMC
method. Simultaneously, Kalos et al. [3, 4] had developed the GFMC meth-
ods which go beyond the variational approximation. Ceperley [5] generalized
the VMC method to treat fermions in 1978 and generalized the importance
sampled GFMC methods to fermion systems in 1980 [6]. Anderson intro-
duced the fixed-node approximation to avoid the fermion sign problem in
1975 and did the first simple molecular applications[7]. The first major ap-
plications to electronic systems were performed by Ceperley and Alder on
the electron gas model [6] and solid hydrogen [8]. These authors also intro-
duced the release-node method to go beyond the fixed-node approximation
for small and medium size systems [9] and applied it to systems of up to 54
electrons.

We will not exhaustively review previous applications and methods as
there is a recent book on the subject [12] and reviews [13, 14] with details
of methods and overviews of many applications. There are also very recent
reviews by Anderson on rigorous QMC calculations for small systems [15]
and on fixed-node applications [16]. The focus of this article is to examine
to what extent QMC could perform calculations of chemical accuracy for
larger chemical systems, to assess recent developments relevant to this quest
and to point out the remaining fundamental problems. We will summarize



only a few of the computational results that have been obtained, point to
changes since previous review articles were written, and present our point of
view as regards the future applications. We will not discuss the application
of QMC methods to study vibration energies in atoms, quantum effects of
nuclear motion, quantum Monte Carlo for real-time dynamics (see Ref.[10])
or to path integral calculations of single electrons in classical liquids [11].

The review is organized as follows. In the next section we briefly introduce
the three main methods: VMC, DMC and PIMC. In the following section we
describe the forms and optimization of trial wave functions. Then we discuss
the treatment of atomic cores. Next we briefly outline selected applications
to atoms, molecules, clusters and a few results for extended systems. Finally,
we conclude with prospects for future progress.

2 Quantum Monte Carlo methods

Here we briefly summarize the various quantum Monte Carlo methods which
have been used for calculations of electronic structure.

2.1 Variational Monte Carlo

In variational Monte Carlo (VMC) one samples, using the Metropolis rejec-

tion method, the square of an assumed trial wave function: |r(R)|*/ [ dR|¢r(R)|?
where R = {r;} are the coordinates of all the particles (possibly including
their spin coordinates.) Using the sampled coordinates one can calculate

any simple matrix element with respect to the trial wave function. In the
most common example, the estimate of the variational energy is taken as an
average over the sampled points:

M
B = Jim 7 3 r(R) Hir(R) 1)
where {R;} with 1 < ¢ < M are points sampled from the distribution

|¥r(R)|?/ [ dR]Y7(R)|*. The variational energy is obtained as the average
of the local energy Er(R) = ¥ (R)H¢r(R). The zero variance principle
applies: as the trial function becomes more accurate the fluctuations in the
local energy are reduced. The trial wave function is then chosen either: 1)
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to minimize the variational energy 2) to minimize the dispersion of the local
energy (the variance) or 3) to maximize the overlap with the exact ground
state. Any of these criteria could lead to a good trial function but there are
important differences in using them in practice. The reweighting method
[13, 17]is used to efficiently carry out this optimization.

VMC is a wave function based QMC method and hence is the most closely
related to standard basis set approaches. In methods such as configuration
interaction, based on expanding the wave function in Slater determinants.
correlation appears indirectly through sums of products of one-body orbitals.
However, in VMC correlation can be put into a trial wave function directly,
once the problem of doing the expectation value integrals is solved. Using
the pair product (Jastrow) trial function the correlation is included directly.
On the other hand, one pays the price of having a statistical error from
Monte Carlo integration which implies scaling of the computer time as ¢~
Fortunately the prefactor can be reduced with good trial functions. The
complexity of VMC versus the number of electrons is quite favorable as it
scales as NV, which is similar to scaling of mean-field approaches such as
Hartree-Fock (HF). This enabled Ceperley [5] already in the first VMC cal-
culations, to deal with 162 electron systems. The dominant piece for N — oc
is evaluating the determinants during the random sampling.

The difficulty with VMC is exactly identical in spirit to all the problems
of traditional methods: the basis set problem. Although the wave function is
vastly improved in VMC. it is difficult to know when the wave function form
is sufficiently flexible and therefore it is always necessary to show that the
basis set limit of a given class of trial function has been reached. Moreover,
the accuracy of energy in no way implies accuracy of other properties. One
can assume that many of the variational errors cancel out in going from one
system to another but it is not very hard to find counterexamples. With
the current class of wave functions it seems that we are far from getting
chemical accuracies from VMC when applied to systems more complex than
the electron gas or a single atom. In addition, in VMC one can waste a lot
of time trying new forms rather than have the computer do the work. This
problem is solved in a different way in the next two methods we discuss.



2.2 Diffusion Monte Carlo and Green’s function Monte
Carlo

DMC goes beyond VMC in that the wave function is sampled automatically
during the Monte Carlo process but without an analytic form being gen-
erated. The mathematical basis of DMC is that the operator, exp(—7H),
acting on any initial function, will filter out the lowest energy eigenfunc-
tion of ‘H from any initial state with given symmetry. Hence the following
procedure is iterated until convergence is reached.

GURA+7) = [ AR (Rleap[-7(H ~ Ep)] [R)$(R.1 (2)

where Fp is an adjustable trial energy. If we interpret the initial state as a
probability distribution, this process can easily be seen to diffuse the points
and cause them to branch (split or disappear). The branching originates in
renormalization of the kernel in (2) which comes from the potential energy
term. We already see the difficulty with the DMC method: the wave func-
tion cannot be interpreted as a probability distribution because it has both
positive and negative regions for more than 2 electrons.

The simplest way around this problem is the fized-node (FN) approxima-
tion introduced by Anderson [7]. Using the nodes of some good trial function
we put an infinite potential barrier at those nodes. Then we can use the pro-
jection technique in one nodal region at a time (in fact, there are typically
only two of them [18]) to solve for the energy and wave function. This addi-
tional potential has no effect if the nodes happen to be in the right location,
otherwise it can be shown to always increase the ground state energy [19]

Ey < Epny < Ly (3)

Hence we find the best wave function, consistent with an assumed set of
nodes. The nodes are not exactly known except for the simplest systems.
However, we can also go beyond the fixed-node approximation as will be
mentioned later.

In 1974, Kalos [4] introduced the idea of importance sampling by ask-
ing the following question: What is the expected number of walkers result-
ing from a walker at position Ry? The answer is seen to be ¢o(Rg), the
ground state wave function. With importance sampling we try to reduce
the branching by putting in the best estimate of ¢o(R). Therefore we work
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with the distribution f(R,t) = ¥r(R)¢(R.t) and the new Green’s func-
tion: Yp(R)Y7 (R'){(R |exp(—7H)|R). With importance sampling branching
is greatly reduced. A way of seeing this in detail is by taking the continuous
time limit of the iteration process and writing down the evolution equation for
the importance sampled distribution f(R.t). Ceperley and Alder [6] showed
that:

af(R t) al 2 2
O = 3 VHUR0) = Vi) Vi) = (B(F) = En)f (.1
(1)
where A = i*/2m. This equation is the basis for the diffusion Monte Carlo
approach. The three terms on the right-hand side correspond to diffusion,
drift and branching, respectively. The branching now is with respect to the
local energy and thus is under control. The details of the algorithm and its
application to molecules can be found elsewhere [20]. Umrigar et al [21] have
recently studied very carefully issues concerning the diffusion Monte Carlo
method and its speed-up.

GFMC is a very similar algorithm (but developed earlier[4]) which has no
time step error as it samples not only the wave function but also the Green'’s
function itself. It is to be preferred when highly accurate results are needed
and computer time requirements are not overwhelming.

We will show in the next section that, using the simplest nodes (a single
Hartree-Fock determinant) gives more than 90% of the correlation energy for
first row atoms and dimers (Fig.1) [22] and essentially 100% of the binding
energy for dimers. One can do better by using multi-configuration nodes or
even nodes from the natural orbital determinant. However, although using
many Slater determinants does allow very good upper bounds, as more and
more atoms are added to a system the computer time will grow exponentially
quickly (to keep the same accuracy) and hence it is really a solution only for
small systems.

2.3 Path integral Monte Carlo

PIMC is mathematically similar to DMC and shars many of the same advan-
tages [24]. In fact, it goes further since a trial function is not specified and the
method generates the quantum distribution directly from the Hamiltonian.

We define PIMC to be a QMC method which is formulated at a positive



temperature. Instead of attempting to calculate the properties of a single
quantum state, we sum over all possible states, occupying them according
to the Boltzmann distribution. This might sound hopeless, but Feynman’s
[23] imaginary time path integrals makes it almost as easy as DMC. The
imaginary-time paths, instead of being open-ended as they are in DMC, close
after an imaginary time 3 = (kgT')~', where T' is the temperature. Because
of the absence of boundaries in imaginary time, it is not necessary to have a
trial wave function. In DMC. the trial wave function is needed to start the
paths and to predict the future outcome of a path, but if the whole world-line
of a path is there it is not needed. A very important advantage of PIMC
is that all observables are obtained exactly, while in DMC only energies are
gotten correct. The rest have a bias caused by the importance function and
removal of this bias causes additional uncertainties.

Instead of having imaginary time evolution as in DMC, one keeps the
whole path in memory and moves it around. PIMC uses a sophisticated
Metropolis Monte Carlo method to move the paths. One trades off the
complexity of the trial function for more complex ways to move the paths[24].
One gains in this trade-off because the former changes the answer while the
later only changes the computational cost.

Particle statistics come in rather differently in PIMC. A permutation op-
erator is used to project bose and fermi symmetry. (Remember in DMC
the fixed-node method with an antisymmetric trial function was used.) The
permutations lead to a beautiful and computationally efficient way of under-
standing superfluidity for bosons, but for fermions, since one has to attach
a minus sign to all odd permutations, as the temperature approaches the
fermion energy a disastrous loss of computational efficiency occurs. There
have been many applications of PIMC in chemistry, but almost all of them
have been to problems where quantum statistics (the Pauli principle) were
not important, and we will not discuss those here. The review article by
Berne and Thirumalai [11] gives an overview of these applications.

Recently, there has been some progress in generalizing the path integral
method to treat fermion systems which is called restricted PIMC (RPIMC)
[25]. One can apply the fixed-node method also to the density matrix. The
fermion density matrix is given by

) o

(B Roit) xS [ dRexp (—/Oﬁdt [% [é—ﬂ +V(R()

7 /PRy
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where the integral (dR) is over all continuous paths starting at PRy and
ending at R, with the restriction that

p(R(t). Ro:t) # 0; 0<t<4. (6)

P is a permutation of atoms with the same spin and necessarily must be
even because of the restriction (V(R) is the potential energy)[24]. The exact
density matrix will then appear both on the Lh.s. of Eq. (5) and implicitly
in the restriction on the r.h.s. of Eq. (6). This implies that there exists a
restriction which does not have a fermion sign difficulty. In the fixed-node
approximation, a trial density matrix is used for the restriction on the r.h.s
of Eq. (6).

In the most relevant calculation to date using this method, Pierleoni et
al [26] placed 64 electrons and 64 protons in a periodic box, and cooled it
down to temperatures as low as 5000K = 0.5 eV. At higher temperatures
and pressures the expected behavior for a correlated hydrogenic plasma was
recovered. But at the lowest temperature, evidence for a first order phase
transition, where the electrons spontaneously went from an ionized state to
a molecular H, state was seen. This transition had been conjectured, but
the simulations have been the first strong evidence.

Although the computer time requirements were large (several months on
a workstation), the human input to the calculation was much less than very
similar studies with VMC and DMC (at zero temperature) [27]. RPIMC
appears to be a very promising direction for constructing a black-box pro-
gram for many-electron systems where correlation may be important. Also,
PIMC seems to lead more easily to a physical interpretation of the results
of a simulation, though very little work has yet been done on understand-
ing the restricted paths of fermion systems. As an example, PIMC could
lead to a more direct understanding of bond formation, electron pairing and
localization.

There are several technical difficulties with RPIMC. The first is that the
time step is smaller than 1 H™!, on the order of one million degrees. Hence
to work down to a temperature of 1000K takes on the order of 1000 points
on the path, which is rather slow. A more serious difficulty is to come up
with automatic ways of generating accurate restrictions.
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3 Trial wave functions

One of the main advantages of the Monte Carlo method of integration is
that one can use any computable trial function, including those going beyond
the traditional sum of one-body orbital products (i.€., linear combination of
Slater determinants). Even the exponential ansatz of the coupled cluster
(CC) method [28, 29]., which includes an infinite number of terms, is not
very efficient because its convergence in the basis set remains very slow. In
this section we review recent progress in construction and optimization of
the trial wave functions.

The trial function is very important for both the VMC and DMC meth-
ods. That one needs a good trial function in VMC is obvious. There are at
least two reasons for having a good trial function in DMC. First, as men-
tioned earlier, the error in the nodes of the trial wave function gives rise to the
fixed-node error. Secondly, it is utilized for the importance sampling which
increases the efficiency of the DMC simulations substantially (typically, by
more than two orders of magnitude) by decreasing the energy fluctuations
resulting from sampling the local energy instead of potential energy. One
can show [30] that the DMC error bar depends on the trial function as:

[2(Bv — E)]?

where 7 is the timestep and P is the number of steps on the walk. Thus it
is advantageous to improve the variational energy as long as that is not too
costly in computer time per step.

Currently, the ubiquitous choice for the trial function is of the so-called
Slater-Jastrow or pair-product form. It is a linear combination of spin-up
and spin-down determinants of one-body orbitals multiplied by a correlation
factor represented by an exponential of one-body, two-body, etc terms [17,

31]:

Ur(R) =3 duDet] [{¢a(ri)}] Dety; [{dg(r;)exp U+ U2+ Us +..] (8)

The sum of determinants in (8) can accommodate multi-configuration wave
functions which are especially important in systems with a near-degeneracy
features. Perhaps the simplest manifestation of this is in the Be atom [17, 21]
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where inclusion of an additional configuration has a very significant impact
on the final energies.
The terms in the correlation factor can be formally expressed as

Ur =3 uo(ri) (9)

k3

U2 = Zuee(ri,rj) -+ Zud(ri,rl) (10)

1<J

U3 = Z ueee(ri:rjvrk) + Z UEE[(I'Z',I']',I'[) + Z UEI[(I'Z',I'J,I'I) (11)

1<j<k 1< 4,1 i.I<J

ete (small index letters denote electrons and capitals correspond to ions).

One of the important features of the Slater-Jastrow form is that it can de-
scribe the electron-electron cusp in the wave function directly and efficiently.
The cusp is an important non-analytic feature of the true wave function when-
ever any two charged particles approach each other. The electron-electron
cusp region gives rise to the so-called dynamical correlation. Because elec-
trons repel each other by introducing the cusp term the electronic density is
spread from high density to low-density regions [9, 32]. To get the density
“back” to the optimal one, which is usually rather close to the mean-field
density, it is necessary either to reoptimize the orbitals (which can be rather
difficult) or to optimize the one-body term simultaneously with the electron-
electron and higher order terms. Therefore the one-body term Uy is retained
in the correlation factor, although formally it can be absorbed into the or-
bitals.

One can also include the leading terms of three-particle non-analytic
points with logarithmic terms from the Fock expansion, but their impact
on the variational energy is small [21].

Several forms for the correlation terms have been proposed and tested.
For example, Umrigar et al [17] used a Padé form of polynomials in linear
combination of electron-electron (r;;) and electron-ion (r;) distances,

Uy 4 Uy = Y o it T

12
i1 L+ Q(rirmj1,745) 12
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which was then further refined [21]. Schmidt and Moskowitz [31] also pro-
vided an interpretation of the correlation part in terms of an “average back-
flow” and used products of powers of transformed distances a(r) = r/(1+br)

Ur+ Us =Y cumalria) alrj) a(ry)™ (13)

0.1 klm

with b and {ckm, } as variational parameters. Mitas [33] used a similar form
but instead of higher powers he introduced a “tempering” scheme for the
Padé constant which controls the steepness of the transformed distance and
for the non-analytic part employed a separated exponential term [35]

U+ Us == Semo g 30> cummar(rin)ai(rir)bp(ri;) (14)

i<j 35,0 k,lm

where
apT

1+ agr

ak(r):< )2, ak:ao/Qk_l, k>0 (15)

2
bm(T‘) = (%) s ﬁm = ﬁO/Qm_lt m >0 (16)
with ao(r) = bo(r) = 1 while {¢kim }. ao, Bo are variational parameters. Very
recently, a systematic expansion of the correlation factor (8) in polynomial
invariants has been proposed by Mushinski and Nightingale [34].

These forms are good at capturing the dynamical part of the electron-
electron correlation as shown in Fig. 1. Typically one obtains about 85% of
the correlation energy. To obtain the same amount of the correlation with an
expansion in determinants one would need a large basis set which generates
an enormous number of determinants even for a rather small number of
correlated electrons.

An important step for getting high quality trial function is the optimiza-
tion process. One usually takes a set of configurations (Monte Carlo samples
of electron positions) from previous runs and minimizes the variational en-
ergy or the fluctuations of the local energy [17]:

o JV3(R)[HYy /Yy — Ey]*dR 1
B [WZ(R)dR M

S (HU(R:)/Wr(R:) = Ev]? (17)

1=
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where M is the number of configurations (for simplicity we omitted the
reweighting factors). With the new trial function, new configurations are
generated and the optimization process is repeated until the improvement in
o? becomes small.

It is also important to consider the fact that orbitals, which are generated
by a one-body approach, are not necessarily optimal when the correlation is
included [32, 21]. In general, the reoptimization of orbitals in the presence
of correlation is an unsolved task. For small systems like atoms or small
molecules one can use an expansion in some suitable basis set and reoptimize
the expansion coefficients [21]. For larger systems the number of expansion
coefficients grows rapidly. In addition, for larger systems the number of
sampling points (M in the above equation) used for optimization must grow
in order to find a stable minimum. Therefore the computational demands
grow rapidly and currently make the orbital optimization very slow.

Grossman and Mitas [56] tried another approach for improving the or-
bitals. For small silicon molecules they replaced the Hartree-Fock orbitals by
the natural orbitals which diagonalize the one-body density matrix. The cor-
related one-body density matrix was calculated within the multi-configuration
Hartree-Fock using standard quantum chemistry approaches. Natural or-
bitals improved the agreement with experimental binding energies by about
a factor of 2 with resulting discrepancies of 1-2%, i.e., 0.05 eV /atom.

In uniform systems there has been more progress on forms of the trial
function, going beyond that of Eq. (8) [57]. Translation symmetry greatly
reduces the possible forms of wave functions. Recently, Y. Kwon et al [101]
carried out calculations of the two-dimensional electron gas with wave func-
tions including a backflow effect derived by a current conservation argument
[36]. Backflow affects the nodes of the trial wave function, so by optimizing
it, one can lower the fixed-node energy. The backflow trial function is given

by
Up(R) =Y dnDet] [{¢a(xi)}] Dety, [{ds(x;) Hexp [Ur + Uy + Us + ..
(18)

where the quasi-particle “coordinates” x;,x; in the Slater determinants are
given as

X; =r;+ Z flrig)(ri —rg) (19)

ki
where f(r) is a variational function. The argument of the one-body orbital
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is a “dressed” position of the electron: it is a sum of its actual position plus
a correction which depends on positions of remaining electrons. The results
have shown that a significant amount of the fixed-node error (up to 90%) was
recovered by using “backflow nodes” in the 2D and 3D homogenous electron
gas.

Besides a speed-up in efficiency and higher accuracy, the calculations with
the trial functions (8) have also brought an important insight into the nature
of the electron-electron correlation: once the nodes of the wave function are
sufficiently close to the exact ones, €.g., by using a few configurations and/or
optimized orbitals, about 85% (or more) of the correlation can be described
by rather simple analytical forms (12-16) with of order 20-30 variational pa-
rameters. This is observed for all systems studied: atoms, molecules, medium
size clusters, surfaces and solids - some of these included more than 200 va-
lence electrons. In this way QMC has helped our understanding of electron-
electron correlation and has demonstrated a significant gain in efficiency for
describing these many-body effects.

4 Treatment of atomic cores in QMC

The core electrons pose a problem for QMC methods because the core energy
is much larger than chemical energies and the relevant distance scale of core
states is much smaller. It has been shown [30] that the scaling of computer
time grows ~ Z° with the atomic number, Z. Obviously, all-electron calcu-
lations quickly become unfeasible (at least to reach a fixed accuracy on the
energy) as Z increases.

Shown in Fig.1. ([22, 37]) is the Monte Carlo efficiency as a function of Z
using GFMC and DMC. In the GFMC algorithm the statistical efficiency is
seen to scale as Z~?-% while in DMC it scales as Z 7>, The GFMC method has
particularly unfavorable scaling with Z as compared with DMC presumably
because very small steps are taken. While all-electron calculations of Li and
Be are within our stated chemical accuracy of 0.01 eV, clearly the all-electron
algorithm cannot be used for heavier atoms and reach the needed accuracy.
For the QMC methods to become practical for heavy atom systems one has
to deal with core degrees of freedom in a different way.

The core electrons create two basic problems. The first one is that the very
small size of the core region requires a different strategy for sampling the core
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region otherwise the time step that controls the movement of electrons will
scale as Z72. Although this might be technically difficult it is not the main
obstacle. One can modify the propagator [21] so that it reflects the strong
localization of the core charge and thus to a large extent avoid substantial
slowing down of the simulations.

Far more severe are the local energy fluctuations caused by the strong
potentials and large kinetic energies in the core. Because of a rapidly chang-
ing density it is very difficult (although, perhaps, not impossible) to design
a trial function which can decrease these fluctuations. Even though correla-
tion is relatively less important in the core, on the absolute scale it is still
very large. The core, because of the high density, large potentials and large
kinetic energy, is always the strongest fluctuating term of the local energy.

First, we will briefly mention two methods in which the core electrons are
kept. but their deleterious effects are reduced somewhat. In the “damped
core” approach, introduced by Hammond et al [38], the efficiency was im-
proved by dampening the core energy fluctuations. In this method, the wave
function is written as a product of the core and valence determinants, and
electrons in the core region are treated variationally while the valence space
is treated by the DMC method. There is a smooth transition between the
valence and core region by suppressing the DMC branching with a smooth
cut-off function. Although the resulting energy depends, to a certain extent,
on the particular choice of the cut-off, nevertheless successful calculations
have been carried out for the atoms C, Si and Ge[38]. Carlson et al[39] tried
to smooth out the core energy fluctuations by decreasing the strength of the
electron-electron interaction inside the core region. The total energy was
corrected for the average value of the missing interaction. Tests on Li and
Li, led to an increase in efficiency by a factor of & 6. There has been no
further development of this method. Both approaches lack a systematic way
of understanding the transferability of the algorithm from one chemical en-
vironment to another. The core-retained methods will be much slower than
the pseudopotential methods because the computational effort of sampling
energy fluctuations with Z? scaling remains.

Fortunately, for most valence properties the core remains practically inert
and has a negligible impact on the valence properties. This fact can be used
to eliminate the core electrons from the calculations and replace them with
effective core Hamiltonians.
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4.1 Nonlocal pseudopotentials

In LDA calculations, pseudopotentials (or effective core potentials) are al-
most always used to increase the efficiency of calculations, even for calcu-
lations involving hydrogen! This allows smoother wave functions which in
turn reduces the number of basis functions. It has been found that transfer-
ability (the ability of a pseudo-atom to mimic a full-core atom) is governed
by norm conservation [40], and pseudopotentials are constructed so that the
pseudo-orbitals match the full-core orbitals outside the core.

Almost all pseudopotentials[41], including those which were used in QMC
calculations, were generated by mean-field approaches (notable exception is
the work of Dolg et al [42]). It is not obvious that pseudopotentials con-
structed in LDA or HF are appropriate for more exact approaches. Acioli and
Ceperley [44] showed that the transferability for correlated wave functions is
achieved if the sequence of one-body, two-body, etc ... density matrices for
the pseudo-atom and the full-core atom match outside the core region. The
most important effects are contained in the one-body density matrix which
can be expressed as a diagonal sum of its natural orbitals. Therefore the
pseudo-atom has to be constructed so that its natural orbitals (both occu-
pied and unoccupied) match those of the full-core atom in spatial regions
where atoms can overlap. Also the relevant part of the energy spectrum of
the full-core and pseudo-atom should match. This idea was tested on several
first row atoms [44], it was found that the natural orbitals generated with
DMC were very similar to those obtained from CI calculations. Having de-
termined the full-core natural orbitals, the next task is to find a valence-only
Hamiltonian which yields the same natural orbitals and the experimentally
measured atomic spectrum.

The error which is introduced by the pseudopotentials for valence proper-
ties depends on the size of valence space. One can also increase the accuracy
by taking into the account the most important effect omitted in the “rigid”
ion pseudopotential, namely the polarizability of the core. Polarizability,
which is important for improving accuracy beyond 0.1 eV, is straightforward

to introduce in DMC[43, 45].
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4.2 Local pseudo-Hamiltonians

Bachelet et al [48], in the pseudo-Hamiltonian approach, proposed to replace
the action of the core on the valence states by an effective single electron
Hamiltonian. The most general one electron Hamiltonain which is local,
spherically symmetric and Hermitian, has a local effective ionic potential
and a spatially varying radial and tangential mass. Outside the atomic cores
the potential becomes Coulombic and the mass becomes the usual scalar
constant mass. The freedom in the effective ionic potential, the tangential
and the radial mass can be used to tune the pseudo-Hamiltonian to mimic
the action of the core electrons on the valence electrons. The approach has
a great advantage in that the resulting valence Hamiltonian is local and all
virtues of the DMC method immediately apply. For example, the fixed-node
approximation gives an upper bound and release-node calculations can then
converge to the exact answer.

The disadvantage of the pseudo-Hamiltonian is that one does not have
very much flexibility in matching the core response to valence electrons with
different angular momentum because the restrictions on the mass tensor are
too severe, especially for first row and transition metal atoms i.e., for the
cases with strong nonlocalities. In particular, for transition metals it is not
possible to use an Ar core because the first electron must always go into
an s state [49]. In fact, this is of secondary importance since for accurate
calculations, which are the aim of QMC. one has to include 3s and 3p states
into the valence space for the 3d transition elements.

However, for the second row, which exhibits relatively small nonlocality
effects, a good accuracy pseudo-Hamiltonians can be constructed. Reference
([48]) gives results for several atoms and dimers. New pseudo-Hamiltonian
parametrizations for several elements from the first two rows were calculated
very recently[50]. X.-P. Li et al [51] used a pseudo-Hamiltonian to carry out
a DMC calculations on solid silicon, which resulted in excellent agreement
with experiment for the cohesive energy. This demonstrated for the first time
the feasibility of the DMC calculations on solids other than hydrogen.

4.3 Nonlocal pseudopotentials and DMC

The usual form of a valence-only Hamiltonian is:

Hval = Hloc + w (20)
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with the local part given by

Hloc = Z __VQ + Z Uloc rz[ —I' Z#: (21)
Ve

The nonlocal pseudopotential operator W includes pseudopotentials v(r) for
a small number of the lowest symmetry channels labeled by ¢ (usually spd)

2A+1 5 g — .
(RIWIR") ZZ + e(rir) (riz ,TZI)PZ(I‘H'I‘Z-I) (22)
¢

Ty

where P, is the Legendre polynomial. Therefore the valence states of different
symmetry experience different potentials in the core region. The variational
Monte Carlo can accommodate such Hamiltonians without major problems,
and Fahy et al [52, 32] used nonlocal pseudopotentials for the first VMC
simulations of solids.

The nonlocality, however, is a problem for the DMC simulations because
the matrix element for the evolution of the imaginary-time diffusion is not
necessarily positive. For realistic pseudopotentials the matrix elements are
indeed negative and thus create a sign problem (even for one electron) with
consequences similar to those of the fermion sign problem (see, e.g., work of
Bosin et al [50]).

In order to circumvent this problem it was proposed by Hurley and Chris-
tiansen [54] and by Hammond et al [55] to define a new transformed effective
core potential by a projection onto a trial function

Vers(R) = W' (R) [ dR'(RIW|R')¥r(R) (23)

The new effective potential is explicitly many-body but local and depends on
the trial function. We were able to show [53] that the energy H fl converges
quadratically to the exact energy of H,y; as the trial function converges to the
exact eigenstate. However, the DMC energy with V. will not necessarily be
above the true eigenvalue of the original H,,; and will depend on the quality
of Up(R). In addition, we have also pointed out [53] that the meaningful
solutions of this Hamiltonian are ones where the wave function vanishes at
the nodes of Wy since the effective Hamiltonian will diverge at the nodes of
Ur. Hence we need to write the fixed-node Hamiltonian as:

Hll = Hige + Vigs(R) + Vie [U1(R) = 0] (24)

val —
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Table 1: Comparison of the Fe atom calculations with all electrons, Ne-core
and Ar-core pseudopotentials.

all-electron  Ne core Ar core
Eur -1262.444  -123.114 -21.387
Evme -1263.20(2) -123.708(2) -21.660(1)
o? ~ 50 1.54 0.16
K/ Kall 1 ~ 0.3 ~ 0.05
efficiency 0.02 2.1 125.
valence errors 0. ~ 0.1 eV ~ 0.5 eV

where the last term, which is infinite on the subspace for which ¥ (R) = 0,
assures that the nodes of the solution will coincide with the nodes of Wy (R).
A study of the projection and fixed-node errors for B, Al, Ga and In atoms
has been carried out by Flad et al [46].

The speed-up resulting from the use of pseudopotentials can be demon-
strated on the example of the iron atom [33, 58]. Table 1. gives total energies,
typical values for the dispersion of the local energy, decorrelation time x for
obtaining an independent sample of energy normalized to the all electron
case, and finally, the efficiency is proportional to 1/(kc?). It is evident that
with increasing size of the core the efficiency but also the systematic errors
introduced by the pseudopotentials are increasing. For the given case of iron
the best compromise, if we accept the accuracy level 0.1 eV, is the Ne core.
This comparison gives a qualitative picture between various choices of va-
lence space and should not be taken as a definitive one: to some extent one
can always change some of these factors through improvement of the trial
function, more efficient sampling and so forth.

A number of VMC and DMC calculations of atomic, molecular and solid
systems have been carried out by this approach. This includes sp and transi-
tion element atoms [53, 33, 47], silicon and carbon clusters [56, 59], nitrogen
solids [60] and diamond [61]. Our experience indicates that with sufficient
number of valence electrons one can achieve a high final accuracy. This,
however, requires using 3s and 3p in the valence space for the 3d elements
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and. possibly, 2s and 2p states for elements such as Na. Once the core is
sufficiently small, the systematic error of the fixed node approximation is
larger than the systematic error from pseudopotentials and their subsequent
projection in the DMC algorithm. Of course, developments of better trial
functions or better pseudopotentials could change these errors. The accu-
racy of pseudopotentials is one of the important factors which should be
thoroughly tested. Rudin et al [62] have recently showed that commonly
used pseudopotentials reproduce all electron results for the Ny dimer with
an excellent accuracy.

Interestingly, ten Haaf, van Bemmel and co-workers [63, 64] have shown
that for a lattice model, it is possible to modify the effective Hamiltonian in
such a way that the resulting energy is an upper bound. One can write the
nonlocal operator as a sum of two pieces:

(R'|W|R) = (R|W4|R) + (R|W_|R) (25)

where (R'|W_|R) are these matrix elements for which (R'|W|R)Ur(R)VUr(R’)
0 and vice versa for W,. Then it is possible to construct the following Hamil-
tonian

A" = Hie+ [ dR(R\WLIR) + Vegp (R) + Vi [0r(R) = 0] (26)

where

Vegs-(R) = W' (R) [(R|W_|R)¥r(R')dR’ (27)

We can repeat the proof of the original paper [63] for electrons in continuous
space and show that the energy of nglf* will be an upper bound to the
eigenvalue of H,,;. However. the straightforward application of this will have
some new features. In particular, the variance of the energy used for the DMC
propagation will not go to zero even in the limit of exact trial function since
W, is directly sampled. One can understand this from the simple example
of one p electron in the field of an ion with repulsive s pseudopotential and
attractive potential for all higher angular momenta (e.g., the C** ion in ?P
(p') state). The s pseudopotential has a zero contribution to the energy of
the p state since the negative and positive contributions from the projection
integral exactly cancel. However, by evaluating W_ exactly while sampling
W, in the actual Monte Carlo, we obtain zero only after averaging over
many Monte Carlo samples. This means that the walkers might experience
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large fluctuations of energy especially in a region close to the ion where
pseudopotential is large. Until such calculations are done it is not clear
whether these complications will be minor for many-electron systems.

This claim can be, in fact, generalized: whenever there is a nonlocal term
in the Hamiltonian then its exact sampling will produce an estimator with
non-zero variance, even in the limit of the exact trial function. On the other
hand, projection of the nonlocal part onto the trial function has the zero
variance property, however, for a non-exact trial function the upper bound
property is not guaranteed.

5 Excited states

The calculation of excited state energies has only occasionally been attempted
with QMC methods. The simplest situation is to determine the excitation
energy from the state of one symmetry to a state of different symmetry (e.g.,
the Is to 2p excitation in hydrogen). Since both states are ground states
within their symmetries, one can do fixed-node calculations for each state
individually and get individual upper bounds to their energies.

There are several problems with this approach. In the two separate cal-
culations the statistical error is on the whole system while the desired energy
difference (say, of the gap) is a single particle excitation. Thus a method
that calculates the excitation energy directly, rather than as a difference of
two independent calculations, would be preferable. In addition, the differ-
ence in energies is not bounded. If the nodes of the two states are of roughly
comparable accuracy one hopes the difference will be accurate as well, but a
substantial systematic error can occur, particularly since excited state trial
functions are known less precisely. The final problem with this method is
more serious: one would like to calculate energy difference between states
with the same symmetries. €.g., 1s and 2s state of the hydrogen atom. One
can perform the fixed-node calculation with a 2s trial function but the result
may be above or below the correct answer and the state can collapse into the
s state. One needs to maintain orthogonality with lower states.

Ceperley and Bernu [65] introduced a method that addresses these prob-
lems. It is a generalization of the standard variational method applied to the
basis set: exp(—tH)¥, where ¥, is a basis of trial functions 1 < a < m. One
performs a single diffusion Monte Carlo calculation with a guiding function
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which allows the diffusion to access all desired states generating a ‘trajec-
tory” R(t) where ¢ is imaginary time. With this trajectory one determines
matrix elements between basis functions: N, 5(t) =< U, (t1)|¥s(ts +t) >
and their time derivatives. Using these matrix elements one can determine
a sequence of upper bounds to the first m excited states. The bounds de-
crease exponentially fast and monotonically to the exact energies. Since the
same MC data are used for all the states, some correlation of energies coming
from the various states is built in. Since the bounds converge to the exact
energies one has a systematic way of getting more-and-more precise energy
differences by increasing t. The statistical error will also increase because
of the “sign-problem”. so in practice one may not be able to converge. The
states are kept orthogonal, just as they are with the usual HF method.

Bernu, Ceperley and Lester [66] used this method to calculate some ex-
cited states of molecular vibrations. Kwon, Ceperley and Martin [67] used
it to determine the Fermi liquid parameters in the electron gas. Correlation
of walks reduced the errors in that calculation by two orders of magnitude.
The method is not very stable and more work needs to be done on how to
choose the guiding function and analyze the data, but it is a method that, in
principle, can calculate a desired part of the spectrum from a single Monte
Carlo run.

6 Exact fermion methods

Quantum Monte Carlo techniques do not yet solve rigorously the many-
fermion problem because of the sign problem. To map the quantum system
onto a purely probablistic process for fermions seems to require some knowl-
edge of the wave function before we start. Solving this problem would be
a major advance in computational quantum mechanics. There are a variety
of claims in the literature concerning what the fermion problem is. A co-
herent formulation of the “fermion problem” is stated in the introduction in
terms of complexity: how much computer time T" will it take to compute a
given property to a specified error €7 The error includes the effects of all
the systematic and statistical errors and must be of chemical interest. The
fermion simulation problem is to find a method to calculate the properties of
a many-fermion system that converges as T oc N%¢~2, where § is some small
power (say, 6 < 4) and N is the number of atoms or electrons. Although
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there has been some work on this problem in the last few years, the solution
is not in sight.

The fixed-node method does not qualify as a solution since the system-
atic errors are not under control, so they cannot be made arbitrarily small.
There have been some recent attempts to parameterize the nodal surface and
then determine the parameters dynamically. This will reduce the fixed-node
errors, probably by an order of magnitude. However. it does not solve the
problem since the error, even if it is smaller, is still uncontrolled. For a sat-
isfactory solution one would have to parameterize, in a completely arbitrary
fashion, the nodal surface.

In practice, there are several ways of generalizing the Slater determinant
nodes. With backflow one maps the coordinates into new quasi-coordinates
which then go into the orbitals of the determinant. This slows the calculation
down by a factor of the number of electrons. In the second approach, one
takes a sum of determinants, say, those coming from a CI calculation. The
difficulty with this strategy is that as molecules get bigger, the number of pos-
sible determinants grows exponentially in the number of atoms, so this is not
a viable solution to the complexity problem. What has been learned to date
is that backflow works well for homogenous systems and multi-configuration
wave functions for nearly degenerate systems. A systematic way of putting
these together has not yet been attempted.

Two related QMC methods without systematic errors are the transient
estimate and release node methods. Both of them advance the wave function
with the exact (antisymmetric) fermion Green’s function. They differ in that
transient estimate starts from the trial function while release node starts
from the fixed-node solution. Neither has the fixed-node restriction, so they
introduce a minus sign weight on the random walk whenever two electrons
exchange or, more correctly, whenever the walks cross the nodal surface of the
trial function an odd number of times. This gives rise to an exponentially
growing signal to noise ratio. The error is under control but the needed
computer time is not. Suppose one chooses the number of random walks and
the projection time optimally to achieve a given error. It has been shown
[65] that the total error will then be related to the computer time as:

T x Noe™® (28)
where a =2 4 2(Ep — Eg)/ E qp. Here Ep — Ep is the fermion ground state

energy relative to the boson ground state energy and E,,, is the energy gap
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between the fermion ground state and the next highest fermion state that
has some component in the trial wave function. For a boson calculation we
see o = 2; this is the usual Monte Carlo convergence. But once the fermion
sign is introduced, for large N the ground state energy is extensive in the
number of particles, £ = uN, so that 7' oc Noe="()#N It is no better than
an explicit basis set methods such as CI.

Not to leave the reader with the impression that transient estimate and
release node calculations are not useful let us briefly mention some results ob-
tained with these methods. Already in 1980 a good convergence was obtained
on the electron gas with up to 54 electrons[6]. Some of these calculations have
recently been redone by Kwon [101] using better wave functions and DMC
algorithms. Ceperley and Alder [9] also studied some small molecules (LiH,
Hs). Recently Caffarrel and Ceperley [68] used maximum entropy meth-
ods to analyze the transient estimate energy more efficiently and rigorously,
achieving the result for LiH wich agrees with experiment within 0.2 mH for
the ground state energy, far better than chemical accuracy. There is no very
strong reason to think that maximum entropy will change the complexity,
but clearly there is room for improving the accuracy of these methods. These
are valuable methods to see how good the fixed-node results are, and for local
potentials they can be implemented with very little additional programming.
but without future developments they will always be too slow for sufficiently
large systems.

Any exact scheme where the walkers propagate independently will have
the above mentioned sign problem and unfavorable complexity. To do bet-
ter, one has to somehow couple the positive and negative walkers. We call a
positive walker one that starts out in the positive region of W7 and a negative
walker one that starts out in the negative region of Wp. If a positive and a
negative walker approach each other. the future contribution of the pair is
nearly zero so they can be cancelled out. The correct nodal surface should
be established dynamically by the annihilation of pairs of walkers. This idea
was originally tried out by Arnow et al [69]. Anderson [15] reviewed recent
developments using cancellation methods including some of his own very ac-
curate calculations on few electron systems based on the walker cancellation
strategy. Bianchi et al have also studied the cancellation algorithms for few
fermion systems [70].

Essentially the simple cancellation only works for few electron systems
because the number of walkers needed to dynamically establish the nodal
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surface rises exponentially with the number of electrons. For stability one
needs many close approaches between positive and negative walkers; one has
to fill up the relevant part of phase space. Unfortunately, the size of phase
space grows exponentially with the number of electrons. Some schemes re-
duce the size of phase space by using various symmetries such as permutation,
translation, rotation or reflection symmetry [15]. Again, this helps only for
small systems. Anderson estimates that the computer time needed for a sta-
ble algorithm increases by a factor of ten for each additional electron[15].
Hence the cancellation schemes so far invented do not solve the fermion
problem as we have defined it in terms of complexity. Kalos, Zhang and Liu
[71, 72] has recently devised a scheme which forces pairs close together thus
increasing the chance for annihilation and “stabilizing” the cancellation. If
this can be done sufficiently well it could change the complexity and allow
for calculations on larger systems.

There has been some recent work on applying auxiliary-field techniques
to continuum systems. In these techniques, the pair interaction between
electrons is replaced, using the Stratonovitch-Hubbard transformation. with
an interaction between electrons and a random potential, thus reducing the
many-body problem to a mean-field problem. The auxiliary-field technique
is extensively used for lattice models (e.g., for the Hubbard model), but until
recently has not been used in the continuum. One advantage of this approach
is that for spin-symmetric ground states (such as the Hubbard model at half-
filling) there is no fermion sign problem. However, the repulsive electron-
electron interaction brings in a new sign, with difficulties similar to the ones
with ordinary fermion sign. Fahy and Hamann [73], introduced the fixed-
node-like method keeping only determinants with a positive projection on a
Slater determinant. Zhang, Carlson and Gubernatis [74] have recently shown
how to make this much more efficient with a DMC-type branching algorithm.
Silvestrelli, Baroni and Car [76] have applied a similar technique (without
fixed-node approximation) to an electron gas and to the H, molecule. They
have found that it is not as efficient as DMC except in the limit of a very
high density. Wilson and Gyorffy [77] recently generalized this approach to
the relativistic electron gas. Until more accurate auxiliary-field techniques
are developed, it is difficult to assess the prospects of these approaches for
reaching the chemical accuracy.
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7 Applications

7.1 Atoms and small molecules

There were many QMC calculations of the energy of atoms and small molecules.
Most of these have been reviewed previously by Lester et al [78] and by An-
derson [15, 16]. We have chosen only few of these to highlight the recent
achievements.

Among the most accurate calculations by any method were QMC sim-
ulations of the Hy4+H, HeH., HeHe systems by Anderson and collaborators
[79, 80, 15]. The high accuracy correlated wave function with the exact
Green’s function algorithm which did not rely on the fixed-node approxima-
tion and had a zero time step error was used. Because the system is small
one can deal with the fermion problem using a direct "brute force’ method:
the low-dimensional configuration space can be filled with walkers. Using
other algorithm improvements one can achieve an unprecedented precision
of the final results. For example, the exact ground state of H-H-H system
was estimated with error bar 0.0004 eV. In addition, a part of the energy
surface for Hy+H — H+H,; reaction was evaluated together with the barrier
height 9.61(1) kcal/mol. This illustrates one of the advantages of the QMC
method: one can internally estimate real error bars. An earlier calculation
([9]) using GFMC with release node obtained the barrier height of 9.65 +
0.08 kcal/mol. The difference in error bars is due to the improved trial func-
tions and algorithms and the much greater computational resources available
today. High accuracy was obtained also on other systems such as estimation
of LiH total energy with 0.05 mH error bar [81].

A systematic study of the first row atoms and ions by variational Monte
Carlo has been carried out by Schmidt and Moskowitz [31, 82]. These pa-
pers were important because for several reasons. First, they provided a rather
simple form of the correlation factor (see Eq.(13)) based on the work of Boys
and Handy [83], essentially validating their early insight. The interpretation
of this correlation term as an “average backflow” also helped to understand
the physical roots of the success of this form. Second. they showed that
this rather simple form with a few variational parameters can recover about
70% or more of the correlation systematically through the whole first row
of periodic table, as shown in Fig. 1. Third, the results also demonstrated
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the impact of the near-degeneracy effects which were largest for the Be atom
(getting ~ 68% of the correlation) while for the Ne atom the resulting corre-
lation was about 85% of the exact value. Further study included evaluation
of the first row ionization potentials and electron affinities with very good
agreement with experiment [82].

Other high accuracy all electron calculations have been carried out by
Umrigar et al [17, 21]. Calculations of the Be atom with a two-configuration
trial function and very accurate correlation factor with 109 variational pa-
rameters produced the best variational energy, with a statistical error bar of
0.03 mH and an energy higher than the estimated exact energy by only ~
0.2 mH. Calculations for the Ne atom obtained energy above the estimated
ground state by ~ 15 mH, which competes with the best variational result
(~ 10 mH above the estimated exact energy). The latter result has been
obtained by Rizzo et al [84] by a CI calculation which included spdfghi basis
functions.

Another interesting calculations of Be?t,Ne®*, Be and Ne atom have been
carried out by Kenny et al [86] in which they evaluated perturbationally the
relativistic corrections to the total energies. In particular, they found that
the Breit correction is systematically larger in the Dirac-Fock approximation
and calculated the most accurate values of relativistic corrections for the Ne
atom to date. These results demonstrate another useful capability of the
correlated wave function produced by QMC: to estimate relativistic effects.
Similar study within the VMC method has been done on examples of Li and
LiH [87]. We expect an important future application will be to carry out
similar calculations of transition metal atoms where relativistic effects have
a significant impact on the valence energy differences (e.g. 0.5 eV for the
s — d transfer energy for the Ni atom) [88]. Ounly very few estimations of
relativistic corrections for correlated wave functions are available for these
elements[89, 90].

Other QMC capabilities have been demonstrated on the calculation of Li
225 — 22P oscillator strength with significantly better agreement with ex-
periment when compared with previous calculations [91]. Various quantities
for a few electron atoms and molecules including the electric response con-
stants were evaluated by Alexander et al[92]. Study of vibrational properties
of molecules has been advanced by Vrbik and Rothstein for the LiH molecule
using DMC estimators for the derivatives of energy with respect to the ion
positions [93].
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7.2 Transition metal atoms

The 3d transition metal atoms are rather difficult systems for traditional
quantum chemistry methods and for the LDA approach. There are several
complications: a very compact high-density 3d shell, the near-degeneracy of
the 3d.4s and 4p levels and, as we have mentioned. the relativistic effects.
In addition, the 3s and 3p electrons occupy the same region of space as the
3d electrons and several previous calculations have shown that these states
must be included into the valence space if accurate results are desired. The
first QMC calculation of the correlation energy and ionization potentials for
transition metals atoms Sc and Y were carried out by Christiansen [94].

Table 2 shows the QMC calculated energies of the iron atom[58] compared
with LDA[95] and coupled cluster [90] calculations. These were systematic
calculations of the 3d atom with Ne-core scalar relativistic pseudopotentials
derived within the multi-configuration Hartree-Fock, and gave results very
competitive or better than the CI or CC [90] calculations with an average
discrepancy from experiment of ~ 0.15 eV.

The electron affinity, which is very small for the Fe atom (0.15 €V), has so
far not been reliably calculated. However, even the obtained essentially zero
affinity is a tremendous improvement from the uncorrelated value of -2.36
eV. One of the reasons for the small remaining errors is that only simple
trial functions were used. In particular, the determinants were constructed
from Hartree-Fock orbitals. It is known that the Hartree-Fock wave function
is usually more accurate for the neutral atom than for negative ion, and we
conjecture that the unequal quality of the nodes could have created a bias of
order of the electron affinity, especially when the valence correlation energy is
more than 20 eV. One can expect more accurate calculations with improved
trial functions, algorithms and pseudopotentials.

7.3 Clusters

Very recently, we were able to carry out simulations of much larger systems
using nonlocal pseudopotentials. The rapid ‘scale-up’ shows the power of
QMC to calculate properties of much large systems.

Silicon clusters provided interesting examples for testing the performance
of QMC and for the study of correlation energy as a function of the size of
the cluster. There are experimental data available for clusters of up to 7
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Table 2: VMC and DMC first ionization potential (I. IP), electron affinity
(EA) and excitation energies [eV] of the Fe atom as compared with experi-
ment and other calculations. CCSD(T) denotes coupled cluster calculations.

I. IP D — % D — °F EA

HF 6.35  7.94 2.06 -2.36

LSDA 793 3.04 0.10

CCSD(T) 7.79 ... 1.07 -0.16

VMC 7.61(6) 4.73(6)  0.84(4)  -0.72(6)
DMC 7.67(6) 4.24(9)  0.84(6)  -0.03(9)
Exp. 787 4.07 0.87 0.15

atoms which allowed for a direct comparison. There was also a controversy
between the results of LDA calculations of Réthlisberger and co-workers [96]
and theoretical arguments of Phillips [97] concerning the proper treatment
of correlation and structural stability of Sijs. Phillips argued that correla-
tion should stabilize the icosahedral structure against a lower C3, symmetry
trigonal capped antiprism (Fig.4). We have carried out a systematic study of
Si clusters with sizes between 2 and 20 atoms [56] to observe the structural
trends. The comparison of binding energies with LDA, HF and experimental
results are shown on Fig.3. The QMC results are within a few percent (0.2
eV/at.) of experimental data, decreasing the error of LDA by a factor of al-
most 5. These calculations also give insight into the impact of the correlation
for various isomers (Fig.4): the icosahedron has indeed a larger correlation
energy, but the (s, ground state structure is still lower by almost 4 eV. An-
other remarkable fact was the observation that the correlation energy of the
20-atom cluster was very close to that found in silicon bulk crystal.

Even more interesting are carbon clusters. Raghavachari and his co-
workers [98] discovered that mean-field methods have led to dramatically
different results for the low-energy Cyg isomers. The structures of these
isomers are very different: a ring (Dion) symmetry which is essentially a
one-dimensional system, a bowl (Cj,) where hexagons and a pentagon lie in
a slightly curved plane, and a cage (C3) which is a distorted dodecahedron.
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Table 3: Comparison of valence correlation energies (a.u.) for Cyg in the
ring, bowl, and cage geometries.

ring bowl cage
CCSD(T) -2.63 -2.70 -2.77
VMC -2.735(3) -2.888(4) -2.888(4)
DMC -3.24(1)  -3.34(1)  -3.36(1)

All these structures have closed shells with gaps ~ 1 eV. LDA calculations
predicted that the cage was the most stable structure with the bowl and
ring above by 1.6 and 3.8 eV, respectively. Surprisingly, GGA (Becke-Lee-
Yang-Parr functional), which is supposed to be a small correction to LDA,
completely reversed this ordering. Other GGAs with different exchange-
correlation functionals do not provide much more useful information: the re-
sults varied in a non-systematic way. An ambitious attempt by the CCSD(T)
method with & 107 single and double excitations self-consistently and & 10*°
triples perturbatively was done by Taylor and co-workers [99]. However, a
rather restricted basis set [59], which recovered about 75% of the valence
correlation energy, required extrapolations that did not allow for a clear-cut
prediction. The results indicated both the bowl and cage as possible lowest
energy candidates. Recent QMC calculations [59] show that the correlation
energy of the bowl and cage are very similar and thus the bowl is favored
because of its lower electrostatic energy. The ring has a smaller correlation
energy than the cage by about 3.8 eV, but with the most favorable elec-
trostatic contribution it is placed between the bowl and cage in the overall
energy ordering. This was perhaps the first time that the QMC method was
used as a predictive tool for large molecular systems. The obtained correla-
tion energies from the QMC [59] and CCSD(T) [99] methods are compared
in Table 3. The computer time for the QMC calculation of a Cyg system is
about 2 hours for VMC and about 40 hours for DMC on the Cray C90 (error
bar 0.01 eV /atom).
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7.4 Extended systems

We will briefly mention here calculations on extended systems which have
obvious relevance to chemistry and the development of QMC. Recent calcu-
lations of the 2D and 3D electron gas by Kwon et al [101] shed some light
on the nodes of the many-body wave function by using the backflow wave
function. The use of backflow modified trial functions has led to signifi-
cantly lower variational energy and lower fixed-node energy. indicating that
backflow modifications are important for the uniform electron gas. The im-
provement in the nodes was especially evident for the high density gas, while
many-body terms in the correlation factor were more important for the low
density case. Fahy et al [52, 32] first performed variational calculations of
solid silicon and carbon. X.-P. Li €t al performed the DMC calculations of
solid silicon using a pseudo-Hamiltonian [51]. Fixed-node DMC calculations
with local pseudopotential for solid Ge have been carried out by Rajagopal
et al[101]. These authors have introduced also a technique to decrease the
finite-size effects by using a more balanced sampling of the Brillouin zone.

There has also been some progress in expanding the solid state calcula-
tions to transition metal oxides. A VMC attempt to evaluate the cohesive
energy of the NiO solid was carried out by Tanaka [102]. Although the agree-
ment with experiment was very good. it was mainly because of a cancellation
of errors as the absolute accuracy was limited by a rather simple form of
trial functions. The first DMC calculations of copper oxide (CaCuQO,) were
tested by Mitas[103] with 164 electrons in the simulation cell and Ne-core
pseudopotentials on both Ca and Cu. For a nonmagnetic state the resulting
cohesive energy per CaCuO; unit was 12(1) eV. The error bar is rather large
because of a large total energy, but the attempt demonstrates the feasibility
of such calculations and ilustrates the need for new computational strategies
(parallel computing) and further method development to increase the perfor-
mance. Both of these calculations are paving the way towards simulations of
transition metal compounds where the accurate treatment of exchange and
correlation is essential for a proper understanding of these systems.

There has been some interesting progress on the excited state calculations
in insulating solid systems. Mitas and Martin [60] calculated an excited state
for a solid by evaluating an exciton in a compressed nitrogen insulating solid.
A similar calculation was also carried out for diamond [61]. The comparison
with LDA results and experiment shows that calculations of excitons pro-
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vide valuable and accurate information about the band gaps, which can be
estimated from exciton energies. This technique opens new possibilities for
band structure studies of insulating solids, where for excited states a proper
treatment of correlation is even more important than for ground states.

An alternative method for calculating the gap has been tested by Engel
et al [104] on a model of the 2D electron gas in a periodic potential. He
estimated the gap by adding an electron to the system and evaluating the
difference. The estimations were in excellent agreement with an alternative
many-body method.

8 Conclusion

In this short review we have pointed out only very few of the basic issues
involving the simulation of chemical systems with quantum Monte Carlo.
What has been achieved in the last few years is remarkable: very precise
calculations of small molecules, the most accurate calculations of the elec-
tron gas, silicon and carbon clusters, solids and simulations of hydrogen at
temperatures when bonds are forming. New methods have been developed
as well: high accuracy trial wave functions for atoms molecules and solids,
treatment of atomic cores and the generalization of path integral Monte Carlo
to treat many-electron systems at positive temperatures.

The reader may wonder why we have focused much of this review on
the computational complexity. We have chosen complexity because that is
the key to making these theoretical calculations an indispensable tool to sci-
entists and engineers. It is often far from the minds of the computational
scientists that “real-world” applications are much more complex than isolated
molecules with a few electrons. A prototypical application is a chemical reac-
tion of a large molecule in solution. Here, Car-Parrinello-like [105] methods
have a very large impact on condensed matter chemistry and physics. They
have this impact because almost any real application involves thousands if
not millions of electrons. Any method which can treat the real complexity
without reductionism (since that requires a highly trained theoretician) has
an inherent advantage and utility. However, not only must the method be
able to treat large systems, it must do so with high accuracy and reliabil-
ity and must be able to calculate a whole spectrum of physical properties.
For the moment that can only be done at the mean-field (LDA) level, which
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though often surprisingly accurate, is equally often inadequate.

The algorithms of the future will have at least three important compo-
nents: accuracy, efficiency and generality. One can see that current main-
stream methods fulfill at most two of these requirements. Accurate and
efficient methods are not general (for example, analytical methods for low-
dimensional or simplified models). Those which are general and efficient are
not accurate (mean-field methods). Finally, general and accurate approaches
are not efficient for large systems (such as the CI method).

It seems that QMC has all prerequisites to become the method of choice
in the future as, we believe, it can fulfill all three of these requirements.
Clearly, QMC’s ability to scale up and treat the many-body effects directly
is invaluable. But QMC also has many other attributes. For example, it is
straightforward to include thermal, zero point or classical nuclear effects into
PIMC. Certainly until the fermion sign problem is solved there is always a
question mark hanging over the field: is the method a fundamental advance or
is it merely a candidate for the most accurate approximate scheme currently
known.

There are of course many opportunities and challenges for improvement of
the basic methodology aside from the “sign problem.” From a practical point
of view, more research is needed to determine better pseudopotentials since
it appears they will determine the quality of results for systems with atoms
heavier than Be. What we have not discussed in depth is how important it
is to compute a variety of physical relevant quantities. QMC has, for too
long, been focussed on calculating the ground state energy. Path integrals
are in this respect better than DMC because the trial function is eliminated
and one can compute estimators directly. For that reason, they have given
more insight into qualitative features such as the long range order and linear
response properties. But PIMC has yet to be applied to chemically relevant
systems involving many correlated electrons. Although there has been some
method development, large standardized packages are not yet in existence
for QMC, and as the consequence applications have been much more lim-
ited. There has been some development in the theory of how to compute
spectra, forces, optimized wave functions, and geometries, but calculations
of these are not yet routine. With the coming of more powerful computers
and algorithms. that day is not far off.
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Fig.1. The error in the nonrelativistic total energy [mH] for the first row
atoms of atomic charge Z. The upper line is from coupled cluster calcu-
lations [28]. The dashed lined with symbols and error bars denote VMC
calculations [31] with a single Slater determinant and the correlation factor
with 17 variational parameters. The dotted line with symbols are results of

fixed-node DMC calculations with a single Slater determinant. The circles
are CI calculations [85, 84].

Fig.2. The QMC efficiency as a function of atomic charge. The efficiency is
defined as 1/(C PUtimeo?) . The filled squares are for GFMC calculations
of the dimers (LiH, BeH ... FH) and the triangles are for GFMC calculations
of the homonuclear diatomics (L, By, .. Oz) both on the CRAY YMP [22].
It is seen that the efficiency of GFMC calculations scale as Z~2-5. The circles
are DMC calculations of Hammond [37]. The efficiency of those results scale
as 77>,

Fig.3. The binding energy of silicon clusters from HF, LDA and DMC meth-
ods compared with experiment (from Ref.[56]).

Fig.4. The (negative) valence correlation energy for silicon clusters as a
function of the number of atoms in the cluster. The dashed line connects
the values which belong to the lowest energy structures. The filled square
and circle correspond to the icosahedron and dodecahedron structures, re-
spectively. The cross corresponds to the estimated correlation of the silicon
crystal in diamond structure.
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