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Ground state of a hydrogen molecule in superstrong magnetic fields
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We study the ground-state structural properties of a hydrogen molecule in superstrong magnetic fields
(B~10"? G) using quantum Monte Carlo (fixed-phase and variational) approaches. We determine that the
ground state (spin-triplet) belongs to the sector of total (z-component) angular momentum M =—1 (II),
meaning that paramagnetic contributions to the total energy cannot be neglected. This non-time-reversal in-
variant ground state has a strong interatomic interaction, suggesting that a hydrogen gas under the same
physical conditions has a tendency to form strong bonded molecules.

PACS number(s): 31.15.—p, 33.55.Be, 97.10.Ld

What is the ground-state symmetry of a hydrogen mol-
ecule in a superstrong external magnetic field? This question
and other related matters constitute the subject of this short
communication. Recently [1] there has been some discussion
on whether a hydrogen gas can become superfluid in the
presence of a strong external magnetic field. The crucial ar-
gument [2] behind such a claim is that, due to weak inter-
atomic interactions, the system behaves as a weakly interact-
ing Bose gas and as a consequence of macroscopic
exchanges it becomes superfluid. However, as has been
pointed out by Lai [1], the system is strongly interacting,
with a compelling tendency to forming a molecular phase
before Bose-Einstein condensation takes place. The gist of
the discrepancy lies in the assumption of different symme-
tries for the molecular ground states. We will show that the
argument supporting a superfluid phase [2] is flawed, since,
in agreement with Lai, the system is strongly bonded.

The properties and stability of matter under extreme con-
ditions are of general interest due to their wide range of
applications in different research areas, such as astrophysics,
atomic, and condensed matter physics. With the discovery of
pulsars and magnetized white dwarfs, the study of atomic [3]
and molecular systems in strong magnetic fields has taken on
a renewed importance. For many of these stars, the fields are
strong enough to warrant a nonperturbative treatment. In par-
ticular, the surface of some neutron stars exhibits superin-
tense field strengths (B~ 102 G), which dramatically influ-
ence the structural and optical properties of matter. From the
theoretical viewpoint, it is not clear whether a mean-field
theory like Hartree-Fock is in principle able to capture the
main physics of electron correlations, because of a nontrivial
balance between coupled Lorentz and Coulomb forces.
Moreover, most practical applications assume the adiabatic
approximation [4], which amounts to retaining only the cy-
lindrical symmetry imposed by the external field and which
becomes asymptotically correct as B—oc. Consequently, in
order to shed light on this issue one has to resort to many-
body methods that are better suited to deal with strongly
correlated fermions. Depending on the relative strength be-
tween Coulomb and Lorentz forces, we can characterize
three different regimes: the low (y= 107 3), the intermediate
(1073<vy=<1), and the superstrong (y>1) field regimes,
where y=ealB/2hc=B/B, (By=4.7X10° G). It is the su-
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perstrong regime that is relevant for neutron star physics and
is of interest to us in this paper.

To simplify matters we will assume the conventional
Born-Oppenheimer adiabatic separation of electronic and
nuclear motion, i.e., without including the effects of the non-
Abelian Mead-Berry connection in the slow variables in-
duced by the fast electronic motion [5]. Besides, we are not
concerned with enforcing the correct permutational symme-
try on the total wave function with respect to identical nuclei
exchanges, and consider only the electron dynamics, which
in turn depends parametrically on the nuclear space coordi-
nates R; (j=1, 2) (with internuclear separation R and axis
whose center coincides with the origin of the coordinate ref-
erence frame).

Let us start by writing the nonrelativistic Hamiltonian that
governs the dynamics of our two-fermion system in the Cou-
lomb potential of two nuclei with infinite mass and charge Z
and in the presence of an external electromagnetic potential
A= (A(D),0),
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where o’f , k=1,2,3 denote the Pauli spin matrices, r; rep-
resents the electron vector position, R;;=|r;—R;[, and
II,=p;+ (e/c)A(r;) is the kinetic momentum. The first term
in Eq. (1) is the Pauli kinetic energy and is the nonrelativistic
approximation to the Dirac operator. Hence, we are dealing
with spin-3 fermions of mass m and charge — e, coupled, in
principle, to both orbital and spin degrees of freedom (Zee-
man term). Notice that, for simplicity, we have not consid-
ered spin-orbit coupling.

To simplify our calculations and analysis of sym-
metries we choose the symmetric gauge for A[A,=B/
2(—y, x, 0)]. Then, in Hartree atomic units, the Hamil-
tonian reads
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where L,=/,+/,, and S,=s,+s,, are the z component
of the total angular momentum and spin of the system, re-
spectively, and lengths are in units of the Bohr radius a;.

Eigenstates of the above Hamiltonian can be written as a
product of a coordinate and a spin function (or a linear com-
bination of such products), ¥(.%,%) = ®(B) ® x(3), be-
cause [ .#,5%]=0 [ %= (r,,r;), 3=(s5,,5,)]. The eigenval-
ues of S%,5,, and parity IT (I1|.%8)=|—.%)) are good
quantum numbers. Since we will only consider the classi-
cally stable (minimum-energy) configuration, that is, the one
where magnetic field direction (z) and internuclear axis co-
incide, one can also classify the electronic states according to
the eigenvalues of L.

It is important to stress that, for a nonzero field, this
constant of motion appears as a consequence of the (symmet-
ric) gauge adopted. For an arbitrary gauge A we should
consider as symmetry the z component of the gauge-
covariant operator L=2,r;/\[II,— (e/c)A,]. The Cartesian
components of this operator satisfy the algebra of angular
momentum [L L, =it ew,)\Lx with Casimir operator
Lz([L L2] 0). Notice, however, that L,® =M implies
L <I> M(I) with &= exp[—iA]D, where the gauge func-
tion A satisfies A=A+ VA. That means that the states are
labeled with the same quantum numbers; it is only their
meaning that is gauge dependent.

For the superstrong range of field strength, the sector of
$=0 is irrelevant for the low-energy spectrum, and only the
completely spin-polarized one, S=1, will be analyzed. Then,
the configurational part of the wave function ®(.%) is anti-
symmetric. In the following we will determine, using sto-
chastic techniques, the sector of L, (or L,) to which the
ground state @ belongs.

The basic difficulty in solving the stationary Schrodinger
equation F4® =Ed for arbitrary magnetic field strength lies
in the different symmetries furnished by the Coulomb and
Lorentz forces, which prevent closed-form analytic solu-
tions. In order to study the spectrum of F we rely on pro-
jector methods that are based on the property that for large
imaginary times (7), the Euclidean evolution operator acting
on a parent state ®, (of a given symmetry) projects out the
state @y P o« lim,_, exp[—ﬂ%—ET)](I)T, which is the
lowest-energy state with a component in
@, ((®y|®;)#0), where E7 is a suitable trial energy that
shifts the zero of the energy spectrum. To generate the
stochastic process that yields the asymptotics, we need a
probability measure (real and positive definite function)
to sample points in configuration space. The difficulty
caused by Fermi antisymmetry and the fact that % is a
complex Hermitian operator arise from an instability in
the process that is reflected in the variance of the computed
expectation values. To overcome this problem we have re-
cently developed [6] a quantum Monte Carlo approach to
deal with physical systems whose many-particle wave
functions (or density matrices for finite temperatures) are
necessarily complex (e.g., fermions in an external mag-
netic field). We reformulate the nonrelativistic quantum me-
chanics in terms of the modulus |®| and phase ¢ of the
scalar N-particle state ®(%)=|®(.%8)|exp[ip(.72)], where
Z=(ry, ...,Ii,...,ry) denotes a point in configuration
space (a Cartesian manifold of dimension d N, where d is
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the spatial dimension). Then, the stationary Schrodinger
equation is equivalent to solving two real (coupled) differen-
tial equations for |®| and ¢, which in the present context
reads

N

HIO(A) = | Hugt 2 —
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where .4,=V ;¢ and J’AZM, w is the Hamiltonian of Eq. (2)

already projected onto the subspace with quantum numbers
M and My, ie., L,®=M®P and S, =M ;P. The essence
of the fixed-phase (FP) method consists in making a choice
for ¢ and solving exactly the bosonic problem for |®| [Eq.
(3)], using stochastic techniques (e.g., Green’s-function
Monte Carlo).

The question that naturally arises is how the phase func-
tions ¢ are chosen. There are some mathematical constraints
that the phases ought to satisfy. They should, for example,
conserve the symmetries of the Hamiltonian (unless some
are spontaneously broken) and particle statistics. It can be
easily proved that the method provides a variational upper
bound for the energy and, for a prescribed trial phase ¢, the
lowest energy consistent with this phase. A phase that satis-
fies Eq. (4) (continuity equation) will lead to the exact solu-
tion of this many-fermion problem. Once a trial phase has
been chosen, to solve the eigenvalue equation (3) within
each subspace (M,Mg), we transform the time-dependent
Schrodinger equation for [®| in Euclidean time 7 to a master
equation for the importance-sampled  distribution
P(#,7) = |On(2)| |P(2,7)| (N=2),

2
=2 Vol3ViP(#,7) = Fi(A) P(#,7)]

&P( 98,7T)

—(Ey(#)—Eq)P(%,7) , (5)

and use stochastic random walks in configuration space
[#8=(x,,r;)] to solve this equation. F;(.78) =V, In|® is
the drift velocity whose role is to guide the random walk
towards regions of phase space where the trial function is
®,|"'H|®;] is the local energy.

The phase @7 (M,Mg)=—i In[®;/|®4]] is chosen from
the trial function

_ Fia ZRl

WP FT

tNapptazy, b i
X[g+(r)g-(ry)—g+(ry)g-(r)] (6)

whose modulus is used as an importance function to guide
the random walk. In Eq. (6),

g+(p.¢p.2)=p"=l explim.p—F.(p,2)] . (7

with
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where a;.,b,pu, ks , 0+ ,Ii,v,— are variational parameters. The
full trial function, in addition to having the antisymmetric
product of one-body states g., also has a Jastrow factor
with electron-electron and electron-nuclear two-body corre-
lation functions that satisfy Kato cusp conditions at the col-
lision points. It is straightforward to prove that ®; is an
eigenstate of L, with eigenvalue M=m +m_ and, for
R=0, it is a state of parity (—1)" (or z-parity +1). At
sufficiently long times, the steady-state distribution
P( 2, 7—®)— | D (%) ld)M,Ms(.%H (up to a normaliza-
tion constant), where ® ;. M is the lowest-energy state, com-

patible with the phase ¢7(M,My), which has a component
in @ ;. In order to get this stationary distribution, £ must be
adjusted to be equal to the lowest subspace energy E,, Mg

given in turn by Ey y = lim,_,(E(I8)) p(r.r - As long as

&, satisfies the right symmetries, the functional form of its
modulus affects only the convergence and statistical fluctua-
tions of Ejpy .

We start our calculations at the variational Monte Carlo
(VMC) level in the variance minimization version [7].
To this end we vary the free parameters in @ in order to

minimize the fluctuations in the Jlocal energy
0= [d RO [EL(R)—Er)*[fd | D> This strategy

provides a balanced optimization of the wave function and
has a known lower bound (namely zero). Once the trial wave
function has been optimized we use the walkers generated
with a multiparticle Metropolis algorithm to compute the ex-
pectation value of the observables of interest, which for our
present purposes consists only of the total energy spectrum
Ey o =(P 7| #P)/( D] P7).

The results of this calculation (Z=1) are depicted in Fig.
1 for two different values of magnetic field strength. In this
figure we show the total energies as a function of the inter-
nuclear separation R for two different symmetry states,
namely (M,M)=(0,0) and (—1,—1). The energy of the
state (0,0) decreases monotonically as a function of increas-
ing R, reaching asymptotically the limit of two isolated H
atoms in the 1s state. Because of statistical uncertainty it is
not possible to determine whether a shallow minimum devel-
ops in this curve. On the other hand, the state (—1,—1),
which is the ground state in this superstrong regime, presents
a deep minimum at the equilibrium nuclear separation R, ,
with a limiting energy value that corresponds to having one
H atom in the 1ls and another in the 2p_, states. In the
R— o limit, our trial wave function yields the exact energies
[3] within the statistical error bar. However, for the largest
magnetic fields considered, some correlation energy is miss-
ing in E(_; _1)(). This small energy difference is restored
with our FP method, which in the above mentioned limit is
essentially exact because the nodal surface structure of the
many-fermion wave function is irrelevant.

To determine the bonding parameters we have fitted the
VMC data to the modified Morse potential of Hulburt and
Hirschfelder [8] and used this function (and not the Hellman-
Feynman theorem (®7|dz#®7) = 0) to compute them.
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FIG. 1. The VMC total energy of H, as a function of the in-
ternuclear separation R for the (0,0) and (—1,—1) states. The
symbols correspond to the Monte Carlo calculations while the dot-
ted lines are the result of a fit to a modified Morse potential. The
energies are defined with respect to their values in the infinite sepa-
ration limit, which are E ) (%°)=—11.925(4) and E_, _;)(®°)
=—10.234(11) in Hartree atomic units. These can be compared to
the exact [3] atomic values (after interpolation) —11.9206 and
—10.2603, respectively. For comparison, we also show the FP en-
ergy results (crosses) around the equilibrium configuration. The in-
set corresponds to a different magnetic field strength. In this case,
E(00)(°)=—5.7197(21) and E(_; _)(®) = —4.794(4), while the
exact atomic values are —5.7185 and —4.7984, respectively.

Table I displays these results. As a function of increasing
field strength, the molecule gets smaller and the dissociation
energy increases, which suggests that a low-density gas of H
atoms under such conditions has a tendency to form a strong
bonded molecular phase and not a superfluid one as has been
proposed [2,1].

In order to go beyond the VMC results we start our
FP computation assuming the phase ¢y, M within each

subspace. We begin at 7=0 with an ensemble of N.=200
configurations .%; (i=1, ..., N_) distributed according to
P(%)=|®4|?, then diffuse and drift each configuration as
R =R+ 17 F(#;)+n, where n is a normally distri-
buted random variable with a variance of 7, and branch
with the local energy. The total number of configurations
is then relaxed by propagation in imaginary time and stabi-
lized when it approximates the stationary distribution

TABLE 1. Interatomic equilibrium separation R, (in units of
ay), vibrational frequency w, (in units of 10* cm™!), and total

ground-state energy E(_; _, (in eV) for the H, molecule.

B (1012 G) Re w, _—E(Vi"f__l) _Effl,fl) '_E(—l,—l) [9]
0.1 0.51 2.37(1) 162.4(1) 163.03(5) 160.3
1.0 0.24 8.26(4) 369.9(3) 372.4(2) 368.6
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P(2,7—0)—|D(.78)| [@M,MS(.%}’)I. In Table I we present
the FP ground-state results at the equilibrium nuclear con-
figuration R,, and compare them to the Hartree-Fock calcu-
lations of Lai et al. [9]. We find about 2% lower energy. For
the subspace (0, 0), in the range of magnetic field strengths
considered, the FP approach does not correct the VMC en-
ergy values within the statistical uncertainty, reflecting the
high quality of the trial wave function used.

Finally, let us summarize our analysis of the ground-state
symmetry as a function of increasing magnetic field strength.
In the weak field regime (y<10"7), the ground state be-
longs to the subspace (0,0) 'S, while in the superstrong
regime (3X 103> +y>1) it belongs to (—1,—1) 3II,. This
non-time-reversal invariant state has a strong interatomic in-
teraction, suggesting that a hydrogen gas will form a strong
bonded molecular phase and not a Bose-Einstein condensate
as has been suggested in Ref. [2], whose conclusion was
based on the wrong symmetry state [namely (0, 0) 33,]. The
singlet-triplet transition takes place in the intermediate field
regime (7y~0.3), as indicated in Fig. 2. It seems instructive to
point out that a similar symmetry transition happens in a He
atom [10]. This is not surprising since a He atom is a H,
molecule with zero internuclear separation. Other triplet-
triplet ground-state transitions could take place for even
stronger field strengths (33X 10?), involving larger values
of |M|. Again, this could happen as a result of the competi-
tion between rotational and Coulomb energies: as the field
gets larger the system tends to shrink and, to minimize the
Coulomb interaction, it tends to raise the angular momen-
tum, increasing in this way the average distance between
electrons. Notice that, in this regime of magnetic fields, the
electrons become relativistic. M-symmetry phase transitions
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FIG. 2. Structural ground-state properties of H, as a function of
magnetic field strength. E(R,) is the total energy at the equilibrium
internuclear separation R, . Notice that R, increases at the singlet-
triplet transition. Because of the repulsive nature of the state (0,0)
33.,, the squares represent its energy value for R— 0. The lines are
just a guide to the eye.

have been predicted, in a different context, for quantum dot
He [11].
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