THE LOCAL FIELD OF THE ELECTRON GAS
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We review recent diffusion Monte Carlo (DMC) results for the static response of
the electron gas in 3 dimensions. A detailed discussion focussing on the extraction
of the local field factor G(q) from the calculated response is given, with emphasis
on size effects and on alternative definitions of G(q) present in the literature.

1 Introduction

The local field factor G(q) is a convenient measure of exchange and correlation
effects beyond RPA in the problem of the linear screening of an external charge
by the electron gas!:?, which involves the dielectric function

€(q) =1 —ve(q)xo(q)/[1 + v(¢)G(g)x0(q)]- (1)

Above, v.(q) = 4me?/q? is the Coulomb coupling and

xo(q) = ——~— /OC dppn°(p)In (2)

q+2p‘
q—2p

is the Lindhard function, with the non-interacting momentum distribution,
n%(q) = 1,q < qp and n%q) = 0,q > qp . Evidently, G(q) = 0 yields the
RPA, egpa(q) = 1 — v(q)xo(q). Over the years many approximations have
been developed for G(g), their accuracy being indirectly tested!:? through the
predictions of quantities like correlation energy and pair correlation functions.
It has been only recently that computer simulations of the dielectric screening
in the electron gas have been performed, in two? and in three dimensions*?,
yielding very accurate information on the local field factor G(g).
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The local field factor of a many-electron system is of importance in various
problems. Thus it provides information on the exchange-correlation functional
Eyz[n] of density functional theory ®, which is widely applied to the study
of real materials . Moreover, it is a basic ingredient of the pseudopotential
perturbation treatment of simple metals, in that it directly determines the ef-
fective inter-ionic pair potential ¢(r)®. Application of our accurate DMC local
field to calculate ¢(r) in test cases like Na and Al has appeared elsewhere °.
Here we shall focus on the extraction of the local field G(g), in the bulk limit,
from the calculated DMC static response x(gq, N) at finite particle number N.
Moreover we shall investigate the consequences of an alternative definition!? of
the local field, which replaces xo(¢) in Eq. 1 with a modified reference function
x1(q), obtained using, in Eq. 2, the interacting momentum distribution n(q)
instead of n%(q). We shall denote this modified or Niklasson local field with

Gi(q).

2 Local field from DMC

Calculating the static response of a quantum fluid with numerical simulations
is in fact straightforward 3. One perturbs the otherwise homogeneous many-
body system with a static external potential

Ueat(T) = 2ugcos(q - 1), (3)

which induces a modulation of the density, with respect to its mean value
no = N/V, and a shift of the ground state energy (per particle)?

x(a:N) , X(S)(Q:Q:_Q§N)U4

EL(N):E()(N)‘F o Uq+ 4ng q+"'; (4)

with y and x(® the linear and cubic response functions. DMC allows an
accurate evaluation of F, for given q and vq. By performing simulations
at few coupling strengths v4 one can extract x(g) as well as higher order
response functions from the calculated F,, by fitting in powers of vq. Clearly
the procedure must be repeated for each value of the wavevector and of any
other relevant parameter characterizing the system, which makes it somewhat
demanding computationally.

The local field factor G(gq) of the electron gas is immediately extracted
from the computed x by combing Eq. (1) with the exact relation 1/e(q) =
14+ v.(q)x(q), which yields

ve(q)G(a@: N) = x " Ha; N) — x5 H(a: V) + ve(q). (5)
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Figure 1: (a) Lindhard function at different values of N. Squares, stars and circles refer to
N = 38,54,68, respectively. The curve gives the bulk limit N = oc. (b) Local field G(gq) at
re = 5. Squares, stars and circles are our DMC results for N = 38, 54,68, respectively. The
two dotted parabolas give the small and large ¢ behaviour® and the dashed curves A,B,C
give three approximations'6:1%:17 The full curve is a fit to the calculated points®.

Evidently, simulations yield estimates at finite N, which one wants to extrap-
olate to the bulk limit, N = oc. The size effects, which are known to be fairly
large for the total energy of electrons'*''? especially at small r,, are also pro-
nounced for the static response. In fact in the present case the extrapolation
is not straightforward, as we argue below.

3 Number extrapolation

Simulations are performed with a finite number of particles N, in a box that
we chose cubic and is periodically repeated in space (Ewald summation) to
mitigate size effects. Thus the wavevector q is restricted to reciprocal lattice
vectors of the simulation box. We find that the sets of allowed wavevectors are
generally different for different N, as may be appreciated from Fig. la, where
we show the dependence of xg(q; N) on N and on the orientation of q. This
rules out the possibility of a systematic extrapolation in N for fixed q.

The size dependence of xg(q; N) is quite substantial for the typical N that
can be used in practice and in fact it does not display any sign of saturation
even at N = 1000, which is already prohibitively large. However, one may
argue that a similar number dependence should be present in the full response
x(q; N), so that when this is combined with xo(q; N) as in Eq. 5, most of the
dependence cancels out. In fact, G(q; N) describes short range correlations
(beyond RPA) and one would expect it to be a smooth function of N.

This is indeed the case as it can be seen from Fig. 1b, where the local field
for a density corresponding to r; = 5 is given. Here, as it is customary, ng =
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Table 1: Parameters of the fit of Eq. 7 to the DMC 12 momentum distribution, with the
wavevector in units of g. For each r¢, three of the five fit parameters where eliminated by
imposing: (i) the normalization of n(g); (ii)the kinetic energy, as obtained from an accurate
fit 18 to the known equation of state of the electron gas!?; (ii1) the exact large g behaviour 2°

n(q) & as/q®, with ay = h4w§g(0)/326}r, and g(0) from DMC simulations'?.

Ts ai as as aq as

0.8 | 1.0001 -0.0194 0.0049 0.0104 0.9651
1.0 ] 1.0017 -0.0283 0.0067 0.0165 1.0494
2.0 1 0.9933 -0.0677 0.0154 0.1119 1.3988
3.0 1 0.9838 -0.0959 0.0203 0.1372 1.2539
5.0 | 0.9658 -0.1591 0.0142 0.2437 1.2019
8.0 | 0.9018 -0.1698 0.0079 0.3270 1.1122
10.0 | 0.9007 -0.2198 0.0059 0.2970 0.9967

1/(47r3a%,/3) and ap is the Bohr radius. It is evident that, within error bars,
G(q; N) has little number dependence left, if any, in contrast to what happens
with the response function. Thus we assume G(q) = G(¢; N = o<) ~ G(q; N).

4 Niklasson local field

As we have mentioned above, one may define a modified reference function
x1(¢), using in Eq. 2 the interacting momentum distribution n(q) instead of
n°(q), and a modified local field G;(q), by replacing xo(g) with xs(g) in Eq.
1. It follows that

ve(q)Gr(g) = vo(q)G(g) — [x7'(a) — x5 *(a)]- (6)

We have utilized recent DMC results for the momentum distribution '?, which
we have fitted with a simple formula previously suggested by Farid et al'3,

n(q) = [ao + a1¢’10(gr — q) + [a3/q® + ase= " 10(g — qr). (7)

to obtain the Niklasson function xr(q) at relevant values of r,, from Eq. 2.
Using the results for xr(q) given in Fig. 2a it is a simple matter to obtain

G1(q), which we show in Fig. 2b. It is evident that Niklasson definition yields

indeed a local field with a pronounced peak at about 2¢p. as it was predicted
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Figure 2: (a) Lindhard and Niklasson response functions: the full curve gives x¢(g) while

the dashed, dash-dotted, and dotted curve give x(gq) for r. = 2,5,10, respectively. (b)

Niklasson local field at 7. = 5. Circles and curve give the predictions obtained using Eq. 6
and respectively the DMC points and the fit shown Fig. 1.

in Hartree-Fock theory ', though much lower and broader. The difference
between Gp(g) and G(g) is fairly large. In particular it increases with ¢, in
spite of the fact that the deviations of xr(q) from xo(g) become smaller with
increasing g, as it is clear from Fig. 2a. We also note that the asymptotic large
q value'° of Niklasson local field, Gy(oc) = (2/3)[1 — ¢(0)], with g(r) the pair
correlation function, appears to have not been attained yet at ¢ ~ 5¢p, as at
the r; =5 ¢(0) = 0 and Gy(oc) ~ 0.66. This is at variance with the behaviour

of G(q), which appears to reach its large ¢ behaviour much sooner 5.

5 Conclusions

Above we have discussed in some detail the extraction of the local field factor
G(g) in the bulk limit from the DMC static response at finite N. We have
argued that, in spite of the impossibility of a systematic extrapolation in which
one fixes q and varies IV, a meaningful extrapolation is still feasible.

We have also analyzed our DMC results in terms of the modified local
field defined by Niklasson. Apart from the big differences at large ¢, first
pointed out by Holas!®, we note that G(q) and G(q) have an overall different
shape, with G1(g¢) indeed possessing a pronounced peak at ¢ ~ 2qp. We should
emphasize however that this is a property of Gy(¢q) which is not shared by the
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more commonly used local field G(g).
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