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Abstract

The authors recently evaluated the local field factor, G(g) of the electron gas by accurate fixed-node diffusion Monte
Carlo (DMC) simulations. Here, the G(g) obtained from a simple fit to the DMC results and from several approximations
available in the literature is used to derive the effective pair potential ¢() in simple metals within second-order perturbation
theory. Using a local electron-ion pseudopotential, it is found that ¢ is determined mostly by the behavior of Gl{q) at
g < ca. 2qg, where the DMC data are well reproduced by the local field within local density approximation, Gy pa(g) = A(g
/gz)* with A related to the compressibility of the uniform electron gas.

1. Introduction

The local field factor G(g) is a convenient mea-
sure of exchange and correlation effects beyond the
RPA in the problem of the linear screening of an
external charge by the electron gas [1,2], which
involves the dielectric function :

v.(q) xo(q) )
L+ 2(a0)G(9) xo(q)

Here, ».(q)=4me?/g* is the Coulomb coupling
and y,(g) the response function of non-interacting
electrons. Evidently, G(g)=0 vyields the RPA,
erpala) =1 — v(g) x,(g). Over the years many ap-
proximations have been developed for G(g), their
accuracy being indirectly tested [1,2] through the

e(q)=1-
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predictions of quantities such as correlation energy
and pair correlation functions. Only recently com-
puter simulations of the dielectric screening in the
electron gas have been performed, in two [3] and in
three dimeunsions [4,5], vielding very accurate infor-
mation on G(g). 4

The G{g) of a many-electron system is important
in crucial problems. It provides information on the
exchange-correlation functional E [n] of density
functional theory [6], which is widely applied in the
study of real materials [7]. Moreover, it is a basic
ingredient of the pseudopotential perturbation treat-
ment of simple metals [8,9], in that it directly deter-
mines the effective inter-ionic pair potential &{r)
[9]. Here we assess the dependence of &(r) on the
choice of the local field, taking as reference our
diffusion Monte Carlo (DMC) predictions, which
may be considered the most accurate to date. We
restrict this preliminary analysis to the very simple
empty core pseudopotential (ECP) of Ashcroft [10].
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2. Results
2.1. Local field factor of the electron gas

Calculating the static response of a quantum fluid
with numerical simulations is straightforward [3,5].
One perturbs the otherwise homogeneous many-body
system with a static external potential

V(1) =2, cos(gr), (2)
which induces a modulation of the density with
respect to its mean value 7, and a shift of the ground
state energy (per particle) {3]

E,=E,+ X(C]) v

G g g —
X b 3
(9.9, —9) i
4n, a

2
Al

’

(3)

with x{g) and x® the linear and cubic response
functions. DMC allows an accurate evaluation of E,
for given ¢ and v,. By performing simulations at
few coupling strengths », one can extract x(q) as
well as higher order response functions from the
calculated E,, by fitting in powers of v,. Clearly the
procedure must be repeated for each value of the
wavevector and of any other relevant parameter
characterizing the system, which makes it somewhat
demanding computationally.

G{g)-is immediately extracted from the computed
x(g) by combining Eq. (1) with the exact relation
1/e(q) = 1 + (g x(g), which yields

v(@)G(a)=x""(q) —xa'(a) +v.(q). (4)

In Fig. 1 we show our results [5] for a density close
to that of aluminum, »,= 2, where r; is defined by
ny=1/{4wrla}/3) and n, and ay are the number
density of the homogeneous electron gas and the
Bohr radius, respectively. It is evident that the DMC
results smoothly interpolate between the known small
and large ¢ behavior, which are also shown. Thus
they may be fitted to a simple formula [5], embody-
ing independent information on the uniform electron
gas. Most of the available approximations [1,2] wonld
give a G(g) saturating to a constant at large g,
which has been shown to be wrong [13] In Fig. 1,
we also show.the prediction of the only two interpo-
lation schemes [11,12] to. date that reproduce the
correct asymptotes of the local field. Note that the
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Fig. 1. Blectron gas G(g) at'r, =2, Symbols give DMC results [5]
and the dashed and dotted parabolas the small and large ¢
behavior. Curves A, B and C give an interpolation of the calcu-
lated points [5] and the predictions of [11] and [12].

small g behavior (given by the dashed parabola)
extended to all values of ¢ corresponds to the local
density approximation (LDA) prediction.

2.2. Effective pair potentials

Linear screening theory in its simplest formula-
tion leads [9] to the following expression for the
Fourier transform of the effective ion—ion interaction

in simple metals:
2
1+ 1 1 Vp( Q) qz
2 H
€(q) 4mZe

(5)

where Z is the valence of the metal ion and V,(g) a
local, energy independent electron—ion pseudopoten-
tial. Here we restrict ourselves to the simple Ashcroft
pseudopotential [10]

41 Ze*
Vp(Q) == qz

4mwZ2e?
#(q) = 7

cos(qr.), (6)

which is specified by one parameter, the core radius
r., but gives a fair description of a number of
properties of simple metals [9].

We consider in detail Na and Al at their freezing
densities, using the local field factor fitted to our
DMC results [3] as well as those due to (i) Singwi,
Sjolander, Tosi, and Land (SSTL) [14], (ii) Vashista
and Singwi (VS) [15], (iii) Ichimaru and Utsumi (TU)
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Fig. 2. Effective pair potential of Na at freezing, with r, =1.69
au, for several choices of G(g). Full and dashed curves (which
coincide): fit to DMC results and LDA; dash—dot and dash—dot—
dot curves: VS {15] and SSTL [14]; dotted curves {which coin-
cide): IU [16], FHER [11].

[16], (iv) Farid, Heine, Engel and Robertson (FHER)
[11], and (v) the one resulting [5] from the LDA. We
fixed the core radius r, to 1.69 au for Na and 1.12
au for Al, values which yield a satisfactory descrip-
tion of phonon dispersion in the crystalline phase of
these materials [17,18].

In Fig. 2 we show the effective pair potential in
liquid Na at freezing (r, = 4.05). With the exception
of the VS, the various local fields all yield a poten-
tial well of about 1.4 mH at »=7 au, though
moderate differences remain in the shape and loca-
tion of the well. The VS, instead, yields a deeper
well of about 2 mH. We note that the predictions of
DMC and LDA, on the one hand, and those of the
IU and FHER approximations, on the other, are
completely equivalent in this case.
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Fig. 3. Effective pair potential of Al at freezing, with r, =1.12 au,
for several choices of G{g). Notation as in Fig. (2).
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Fig. 4. Electron gas G{g) at the density of Al at freezing,

7y = 2.16. Notation as in Fig. {2). Upper and lower dotted curves
give the approximations of FHER [11] and IU [16], respectively.

In Fig. 3, we show the pair potentials for Al at
freezing (r, =2.16). Also in this case, there is a
substantial equivalence of the prediction of DMC
and LDA, on one hand, and of IU and FHER
approximations, on the other. However for the poly-
valent Al, there is much more spread in the results.
At distances r=5.3 au one finds a deep well from
SSTL, a shailower one from VS and a shoulder at
different height for DMC/LDA and IU/FHER. In
Fig. 4, we report the various local fields used for Al.
It is evident that local fields which are similar below
2gg, such as DMC/LDA and IU/FHER, yield
equivalent predictions for ¢(r), even though they
depart considerably from each other above 2 gy.

3. Conclusions

Through the use of DMC results for G(g) and
local pseudopotentials, we have established that an
accurate knowledge of the local field is especially
important for wavevectors below 24 in the con-
struction of effective pair potentials. Details of G(g)
at larger wavevectors, on the other hand, seem to be
unimportant. Thus the popular approximation of
Ichimaru and Utsumi [16] appears to be equivalent to
that of Farid et al. [11], though the latter is much
more precise at large g. At any rate, both yield pair
potentials at variance with the prediction from DMC.
We find that the predictions obtained from our fit [3]
to the DMC local field are almost equivalent to those
from the LDA local field [5], and thus either scheme
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should be preferred to the other approximations
available to date. It remains to be seen if similar
conclusions may be extended to the case of non-local
energy-dependent pseudopotentials, which are essen-

tial if one has to go beyond the simple sp-bonded .

metals.
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