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Abstract. We review the calculation of the static response of quantum
fluids at 7' = 0 by diffusion Monte Carlo (DMC) simulations. In the first
lecture we focus on the definition of response functions, routes to their
computation, and practical details of the calculations. In the second lecture
we survey specific results for the linear response of a number of simple
fluids—*He, the 3D electron gas, and the 2D electron gas—and we provide
case by case some motivation as to why such a quantity should be of interest,
commenting also on what we can learn from the results of simulations.

1. Zero temperature static response of a homogeneous fluid and
ground state simulations

The concept of response[1, 2] naturally arises when the effect of a perturba-
tion on a system is described in terms of deviations of the various properties
(of the system) from their unperturbed values. In general one applies to the
system a dynamical field, which couples to a specific observable and yet may
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cause changes in all the properties of the system|[3]. Here, we shall concen-
trate on static perturbations. We shall mention results pertaining to the
general dynamical case when stating the fluctuation-dissipation (FD) the-
orem[4, 1, 2], which relates the static response to equilibrium fluctuations.

1.1. DENSITY-DENSITY STATIC RESPONSE

Let us consider a system of N interacting particles in a volume V, with
Hamiltonian Hj, at zero temperature. ¥, is the ground state of such a
system, with an energy Ey and a one-body density py(r). We apply to
the system a static external potential v(r) which couples to the one-body
density operator p(r) = "N, 6(r — r;) and ask what are the energy and
density changes caused by such potential. We also mention, in passing, that
a standard thermodynamic limit is implied (N — oo, V' — oo, with N/V =
p0), both with and without external potential; moreover homogeneity and
isotropy are assumed for the unperturbed system, implying po(r) = po.

In the presence of the external potential, the Hamiltonian of the system
becomes

H, = Hy+ / drp(r)v(r). (1)

It is evident that the Hamiltonian H is a functional of v(r) and therefore
so are the ground state energy F, = FEy[v] and the ground state density
pu(r) = po(r, [v]). One can define the density-density response functions as
the coefficients entering the functional expansion of p,(r) in terms of v(r),

dp(r) = pyu(r) —po =
201
Icgl H/drl o 'drkx(k)(rl —r,- T} — r)’u(rl) .- -’U(I'k). (2)

Here, x)(r; —r, - -, rp—r) is the densitydensity response function of order
k, possessing all the obvious symmetries which follow from the assumed
homogeneity and isotropy[1]. To obtain a similar expansion for the ground
state energy first we note that the functional derivative of E, with respect
to v(r) is the density,

s = o), )

as it follows at once from first-order perturbation theory. Next we consider
the identity

B~ Bolo] = [ a [ drpote, Nu])ote), (4)
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which can be easily demonstrated considering the ground state energy
Ey[Av] as function of A and exploiting Eq. (3). Using the explicit expres-
sion of po(r, [\'v]) given in Eq. (2) in Eq. (4) and setting A = 1, one readily
obtains

s 1
EU - E() = po/drv(r) +k§1 m/drdrl ---drkx
XE ey =1, 1 —r)o(r)o(ry) - v(ry). ()
In terms of the Fourier components vq of the external potential,

v(x) = 3 veeaplia -1, (6)
q

the density and energy changes become

o0

1 .
op(r) =35 > xlan e aw)vg -+ vaeeaplilan + -+ qr) - xl, (7)
k=1 """ 4di,,9k
and
E E
0y = 60—50:WU—FOZUO+
1 & 1 )
Po (k+1)' Z X (qla"'aqk)quql"'vqk, (8)
PO k=1 " atai+-+ap=0

where we have introduced the energy change per particle € and the Fourier
transforms of the response functions with respect to their spatial arguments
X(k)(qla T 7qk:)'

Egs. (7) and (8) give a series expansion of two particular ground state
averages in powers of the set of coupling strengths {vq}, with the coef-
ficients of the expansions being density—density response functions. Thus
they provide practical routes to the estimate of static response, through
the fitting of the calculated energy (or density) change to a function of the
coupling strengths {vq}. Before discussing this point in detail we should
mention an alternative route to the computation of the static response,
which exploits the famous fluctuation—dissipation theorem(4, 1, 2] and only
considers the unperturbed system, though dynamical properties need to be
calculated.

1.2. STATIC RESPONSE AND EQUILIBRIUM FLUCTUATIONS

Above, we have considered the effect of a static perturbation on a given
homogeneous system. A more general problem is the one in which one takes
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a dynamical perturbation, which is adiabaticly switched on [1]. Restricting
to the linear response and working in reciprocal space, it is fairly easy to
show that the generalization of Eq. (7) reads

po(q,w) = x(g,w)v(qw)+---, 9)

with p,(q,w) the Fourier transform of dp(r,¢) and x(¢,w) a complex func-
tion, x(q,w) = x'(¢,w) + ix"(g,w), which by virtue of causality satisfies
Kramers—Kronig relations. These imply, in particular, a relation between
the static response and the imaginary part of the dynamical response ac-
cording to

x(@) = xa,0) = 2 [ ax8e) (10

The fluctuation dissipation theorem relates[1, 2] x”(g,w), which de-
scribes the dissipation of energy in the system under the action of the
perturbation, to the dynamical structure factor S(g,w), which describes
the equilibrium density fluctuations in the unperturbed system:

X'(q,w) = ~521S(q,0) = S(g,~w)) = ~ {1 - ™IS (g,w). (1)

From Egs. (10) and (11) and at 7' = 0 one immediately gets

©  S(q,w)

Po
- 12
x(q) i Jo dw o (12)

which expresses the static response in terms of S(g,w). Finally, the dynam-
ical structure factor

S(q,w) = /_ O:o dw F(q, t)e™! (13)

is just the Fourier transform of the intermediate scattering function

F(g,1) = - (pla, 0p(~a, 0)), (14)

measuring time correlations between wavelike density fluctuations, in the
unperturbed system. In cases in which the equilibrium average of Eq. (14)
can be actually computed[5], one can readily obtain the static response
exploiting Egs. (12) and (13). This is the case for Bosons, say “*He, both a
finite[6] and at zero[7, 8] temperature, but it is still not feasible for Fermions.
We therefore turn below to the discussion of ground state calculations for
a ( statically) perturbed fluid.
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1.3. STATIC RESPONSE FROM GROUND-STATE CALCULATIONS FOR A
PERTURBED FLUID

Above we have seen that calculations for a perturbed fluid contain infor-
mation on response functions. Here we show how such information can be
used to actually estimate response functions. It is evident that practical cal-
culations are performed with small but finite external fields, implying the
presence in Egs. (7) and (8) of terms beyond the leading ones, involving in
turn non-linear response functions. Such terms cannot be simply neglected
and thus even restricting to the one-body density change one is faced with
the fitting of a function depending on several variables (the set {vq})—the
fitting parameters being response functions.
Things simplify a lot if one considers a monochromatic external field

v(r) = 2vqcos(q - r) (15)

Apart from having a single variable vq ( q # 0) rather than a set, one also
finds that in this case the energy change only contains even powers of the
potential strength vg

x(@) 5, x®(q,9,—q) 4
ey = vg + Vg + 0. 16
po 4po 4 (16)

Above we have dropped the superscript from the first-order (linear) re-
sponse function. Similarly one finds that the density change with wavevec-
tor q is given by

p(q;T) = 2pqcos(q - 1), (17)
with
(3) _
pa = x(q)vg + F— L —L (q’2q’ cl v+ (18)

containing only odd powers of vq. It is clear that if one knows the energy
(or density) change induced by a weak external potential, at few coupling
strengths vq, Eq. (16) ( or Eq. (18) ) provides a straightforward, systematic
route to the estimation of lower order response functions, by means of a
suitable fit in powers of the potential strength vq. The problem of calcu-
lating response functions is thus changed into that of accurately evaluating
properties of the many-body system in the presence of the perturbation
of Eq. (15). This can be done by resorting to the Quantum Monte Carlo
(QMC) method in its implementations for continuum systems[9, 10, 11].
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1.4. DIFFUSION MONTE CARLO AND TRIAL WAVEFUNCTION

Of the various simulation techniques which go under the name of QMC,
one in particular has been extensively used to estimate the density—density
linear response in quantum fluids[12, 13, 14, 15, 16, 17, 18, 19]: the Diffu-
sion Monte Carlo (DMC) method[10, 20, 11]. As this technique is reviewed
elsewhere[21] in this book, to avoid unnecessary duplication here we shall
skip all the details of the method ad concentrate on its application.

We just mention—also to fix the notation—that in DMC one propagates
in imaginary time the N-particle wavefunction ®(R,7), starting from a
suitable initial condition®(R,7 = 0). Usually one takes ®(R,7 = 0) =
U(R), with ¥(R) a trial wavefunction which already provides an accurate
description of the system under consideration. Here, R = (ry,r9,...,ry)
is the set of coordinates of the many—body system. The imaginary time
evolution projects out the lowest energy component of W(R), as is seen by
expanding the initial condition in exact eigenstates of the hamiltonian,

®(R,0) Z cn ¥ (19)
yielding
ch (En=Br)7g (R) — coe”Po~FI)TH(R), 7 — oco. (20)

In practice, for reasons of efficiency one propagates the mixed distribution
f(R,7) = ®(R, 7)¥(R), which for large times goes into f(R) o Uo(R)¥(R).
Working with f(R, ) also allows to conveniently apply the wavefunction
antisymmetry when dealing with Fermions, by assuming that the nodes
of ¥y(R) coincide with those of ¥(R)—an approximation that is know as
fixed—node[10]. In the following, for Fermions we shall always restrict to
such an approximation. Evidently the capability of sampling ¥o(R)¥(R)
allows the estimate of ground state properties.

We should mention at this point that as far as the estimate of linear
response is concerned Egs. (16) and (18) are equivalent—if one is able to
sample energy and density changes with comparable accuracy. In principle
one might prefer the density route, on the ground that for small exter-
nal fields the density change should be larger. In fact, density and energy
changes scale respectively linearly and quadratically with vq, to leading
order. In practice the situation may be reversed. In DMC energy estimates
are exact for the given nodes and within statistical errors, whereas other
averages such as the one-body density involve a systematic error[22] which
scales with (¥ — Wy)2—if obtained as extrapolated estimates[21, 9]. Though
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we did perform few calculations using extrapolated estimates of Eq. (18)—
as a test of internal consistency of our simulations, we generally evaluated
X(q) using the energy route of Eq. (16)[23].

The choice of the trial wavefunction ¥(R) is an important step in all
DMC simulations, in that U(R) determines the efficiency of the propagation
process. For Fermions the choice of ¥(R) is in fact crucial as it fixes (ap-
proximates) the nodes of the sought ground state and thus determines the
accuracy of the ground state energy, and more in general of all the ground
state averages. We shall illustrate this point in detail below. Before doing
so, we have to discuss the explicit form of the trial wavefunctions that we
have used in our DMC simulations for Bosons[12] and for Fermions[12, 16].

1.4.1. Trial wavefunction for Bosons
A simple choice for ¥, to study the uniform superfluid phase of *He, is to
take as in earlier simulations|[24] on this system a Jastrow trial function

w0 = g0 = H exp[—u(rij)], (21)
1<j

with u(r) a pair pseudopotential of the McMillan form. By sticking to the
energy route, we have no need[12] in DMC to go to more sophisticated

wavefunctions[25], which are instead crucial for variational Monte Carlo
(VMCQ) simulations.
Similarly, for the perturbed fluid a reasonable choice is

T (a) = 0" H erplacos(q - r;i)l, (22)

)

with « a variational parameter which is fixed minimizing the expectation
value

E(a;0q) = (U”(a)| Hg| V" (a)) (23)
of the perturbed Hamiltonian

fIq = Hy + Z 2vgcos(q - 1;). (24)
Note that, to leading order in «, ¥”(«) yields a density

p(r) = po + 2a(vg)¥(po)cos(q - r), (25)

which is precisely of the form given in Eq. (17). In fact if one uses only
energy estimates, strictly there is no need to struggle and optimize the
trial function W, as converged DMC estimates of the ground state energy
of a Bosonic system are independent of W, provided this is symmetric.
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1.4.2. Trial wavefunction for Fermions

For Fermions one usually factorizes the trial function in two pieces: a sym-
metric term roughly accounting for correlations and an antisymmetric term
which, as far as DMC is concerned, fixes the nodes of the wavefunction. In
the literature on electrons in 3[26, 27, 28] and in 2[29] dimensions the sim-
plest trial function for the uniform fluid phase is

¥’ = DD, J°. (26)

The correlation term JO = [];_; ezp[—u(ry)] is taken again of the Jastrow
type, as for Bosons (see, Eq. (21)), with u(r) an RPA pseudopotential[26].
The antisymmetric term fixing the nodes, on the other hand, is a product
of plane-wave Slater determinants, D, denoting the determinant for the
N, particles with spin projection o. Note that the wavefunction written
in Eq. (26) in general is not fully antisymmetric, as it gives just one spin
component of the full trial function. However, exploiting particle identity it
is easily shown that averages on the U° of Eq. (26) coincide with averages
on the full trial function[30]. The same applies to DMC averages obtained
starting from such trial function.

For the perturbed fluid an obvious generalization of Eq. (26) is to take

U¥(a) = DYDYJ°, (27)

where D? is a Slater determinant of one-—particle orbitals in an external
field

v(r) =2acos(q-r), (28)

with an effective strength «. Note that as the one—particle orbitals (Math-
ieu functions) entering DY depend on « so does the nodal surface of U”(«).
Evidently, the effective field strength is determined minimizing the expec-
tation value of of Hq on ¥¥, which gives back Eq. (23). Thus, o = a(vq)
and the nodal surface of U? finally depends on vq.

The choice of Eq. (27) is sort of obvious in the sense that one takes for
the modulated system the exact nodes of independent particles, as modified
by the presence of a monochromatic potential (Eq. (28)). Such potential,
however, though being of the same periodicity as the the external potential
of Eq. (15), has a different optimal strength. Note that, due to the mini-
mization alluded above, a depends in general also on the pseudopotential
u(r) appearing in the Jastrow term—which we keep identical to the one
used in the uniform liquid and therefore independent of both q and vq. For
the Fermi liquid a trial function of the form given in Eq. (22), with ¥° from
Eq. (26) is of no particular interest, as it would have the same nodes as ¥y,
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whereas the choice made above gives an explicit parameterization of the
nodal surface of U¥ in term of a.

We should mention here that in our response calculations we made no
attempt to use more sophisticated nodes, as those explored in detail for the
uniform electron gas[29, 28]. A partial justification of this makes appeal to
the fact that changing the nodes in both the uniform and modulated Fermi
fluid is likely to give a small effect in the response, if this is calculated
from the energy difference between the two phase, because of cancellation.
In other words, what matters is the precision with which one calculates
the energy differences and not the precision of the energy of the individual
phases. We shall explicitly illustrate this point later on, with regard to the
time step error present in DMC.

1.5. OPTIMIZATION OF THE TRIAL WAVEFUNCTION

Both for Bosons and Fermions the optimization of the trial wavefunction
involves the minimization of the expectation value of the energy on the trial
wavefunction

E(a;vq) = Eipt(a) +/drp(r; a)v(r)
Eint(a) + 2p(q; @) vg. (29)

Above, the internal energy FE;,; is given by

Einy(a) = (¥°()|Ho|T"(a)), (30)
and, clearly,
p(r;a) = (T () |p(r)[T*(a)). (31)

The minimization of E(a;vq) with respect to vq involves solving the ex-
tremum condition
dEmt(Ol)
da

dp(q; @)
da

+ 204 =0. (32)

The above equation can be solved either for «, finding the optimal
effective potential corresponding to a given vq, or for v4 to find the external
field for which a given « is optimal. While the two routes are in principle
equivalent and choosing one or the other corresponds to determine the
function a(vq) or its inverse vq(c), in practice the second route is much
more convenient as it has an explicit solution

v = _dEZl;(a)/ <2dp(d(2a)) ’ (33)
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Figure 1. Dispersion of the DMC energy versus the effective field strength «, providing a
partial parameterization of the wavefunction nodal surface. The circles (with error bars)
give the computed DMC fixed—node energies, whereas the cross gives the VMC energy at
the optimal effective strength. The line is a fit to the DMC points. The data shown are
for the unpolarized electron gas in 2 dimensions at r, = 2, placed in a monochromatic
external field of strength vq with ¢ = 1.997; N = 42. The density parameter 7, is defined
by 7r2a3 = 1/po, with ao the Bohr radius, and gr = v/2/7sao is the Fermi wavevector.

in terms of derivatives of the internal energy and the one body density with
respect to a. In fact, using the re-weighting technique[31, 30], dE;n:(a)/da
and dp(q; @)/da can be efficiently computed for a given a from a single
set of configurations sampled from the probability density |¥¥(c)|?. This
bypasses the problem of statistical noise that would otherwise affect the
finite difference evaluation of derivatives, if one used different sets of con-
figurations for slightly different values of «.

We have noted above that in total energy calculations the optimization
of the trial wavefunction is not that important for Bosons. Accordingly,
below we shall restrict our discussion on the optimization of UV to Fermions,
for which the optimizion of nodes has proven crucial in obtaining accurate
results[16]
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1.5.1. Optimization of the nodal structure for the nonuniform Fermion
fluid

As we have mentioned above, the optimization of the trial functionW? pro-
ceeds by determining the external field strength vq which corresponds to
a fixed small value of the variational parameter a* by computing Eq. (33)
via a MC sampling. This procedure determines, within our simple param-
eterization, the VMC optimal optimal nodes, which we then use in our
DMC simulations in the fixed-node approximation. A priori it is not ob-
vious how good are these nodes for the DMC simulations. This, however,
can be checked very simply by performing DMC simulations with deopti-
mized wavefunctions, i.e., with o # ax, for the given vq. In the few cases
we have checked it turns out that the the VMC optimal nodes are in fact
nearly optimal also for DMC, as it is clearly illustrated in Fig. 1, for the 2
dimensional electron gas.

For the particular case examined in Fig. 1 the optimal effective field
strength « is about 26% smaller than the external strength vg . One may
ask whether the ratio vq/a has any regularity, namely whether it depends
appreciably on g and whether it depends on the perturbation that one is
considering. The answer to this question is given in Fig. 2 where vg/a is
shown as a function of ¢, again for for the 2 dimensional electron gas at
various densities. First of all we find that vq/a may substantially devi-
ate from 1, reaching values as large as 4 and as small as 0.2. Second, at
small wavevectors effective and external fields sensibly deviate from the
each other, but they tend to become equal for large wavevectors. This does
not come as a surprise, as one would expect the effect of the interparticle
interactions to become minor at large wavevectors. Third, at small wavevec-
tors the effect of interparticle interactions is different on charge and spin
perturbations, bringing about effective fields which are respectively weaker
and stronger that the externally applied field. If one assumes that the ef-
fective field a roughly coincides with the Kohn—Sham effective potential
v%3[32] of density functional formalism[33, 32, 34], this behavior can be
easily understood by linearizing v with respect to the external field[35].
We remind the reader that v5%(r) is that particular external one-body
potential which produces in a system of non—interacting particles the same
one-body density p(r) of the interacting system placed in the actual exter-
nal potential.

1.6. TYPICAL OUTPUT OF A LINEAR RESPONSE CALCULATION

Evidently, wavefunction optimization is an important but preliminary part
of response function calculations, in the scheme outlined above. The central
part of the calculation, remains the DMC estimate of ground state averages
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Figure 2. Deviation of the optimal effective field strength o from the the external field
strength vq, as function of the wavevector gq. Results for the 2 dimensional electron gas
at various densities and N = 42 are shown for two different perturbations, coupling one
to the charge density and the other to the spin density.

as a function of a (weak) external coupling. Once such dispersion curves
have been obtained, a simple fitting procedure allows one to estimate the
sought response functions. Here we give two detailed examples of the results
of DMC calculations of the spin response for the 2 dimensional unpolarized
electron gas at s = 5 (see the caption to Fig. 1 for the definition of r;). We
should caution the reader that there are minor changes in the definition of
spin response, compared with the definition of charge response given above,
and they are reviewed in in Sec. 2.2.4.

In Fig. 3 we show the energy dispersion as function of the external
field strength hq, together with its fitting function which reproduces the
calculated DMC points with very good accuracy. Note that a quartic term
is present in the fit and, though the error on the coefficient of such term
is sizeable, still the term cannot be neglected. We caution the reader that
the data shown are for a finite number of particles and in order to obtain
results in the thermodynamic limit a size correction has to be applied to the
numbers shown in the figure. This important point will be briefly touched
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Figure 3. Calculated DMC energy (circles, with error bars) for a 2 dimensional unpo-
larized electron gas at rs = 5 and ¢ = 1.9gr, as function of the applied magnetic field
strength Hq. Here hq = (uBg/2)Hq [see Sec. 2.2.4 for the notation] and N = 42. The
line is a quartic fit o + ﬂh?1 + ’yh4q to the calculated points, with a = —0.299764(19)Ry,

B = —22.45(59)Ry ', v = 12789(2136)Ry >, and a reduced x? = 0.20.

later below.

In Fig. 4 we give the dispersion of the magnetization as function of
the applied external magnetic field. Again, the DMC estimates are well
reproduced by the fit, which in fact from the uncertainties on the param-
eters looks slightly more accurate than the one for the energy. However,
one should regard the parameters obtained from the energy route as more
reliable—since the values of mq are extrapolated estimates and thus af-
fected by an error which cannot be quantified systematically. Such extrap-
olation error justifies also the difference between the energy and magneti-
zation estimates of 3 (essentially the linear spin response), which are well
beyond the combined error bars[36]. Whereas the error on the energy esti-
mate of 3 is reasonably small, the one on the estimate of y—which is a cubic
response function—allows one to establish only the order of magnitude of
such a quantity.
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Figure 4. Calculated magnetization (circle, with error bars) for the same system as
in Fig. 3. Here the magnetization density mgq is measured in units of ppg/2 and the
reduced magnetic field is defined as hq = (uBg/2)Hgq. The line is a cubic fit Bhq + 2’yh2
to the calculated points, with 3 = 20.13(18)Ry ', v = —7146(401)Ry %, and a reduced
x- =0.07.

1.7. CORRECTING FOR SYSTEMATIC ERRORS: TIME STEP AND
NUMBER EXTRAPOLATIONS.

DMC simulations require the sampling of the imaginary time propagator
G(R,7)[9, 10, 21], which is not know in closed form. The short time ap-
proximations which are used to construct G(R,A)[9, 10, 21] involve a
systematic error that vanishes with A7 and should be extrapolated out.
Similarly, actual simulations are performed for a finite number of parti-
cles and this introduces an additional bias that should be eliminated—if
one wants to make prediction for an infinite system. Here, we briefly touch
these to points, specializing to the calculation of response.

1.7.1. Time step error

We have already mentioned above that, to obtain acceptable accuracy
for energy differences, one may often need to push calculations less than for
the individual energies. This is precisely the case for time step extrapola-



STATIC RESPONSE OF HOMOGENEOUS QUANTUM FLUIDS 15

_0.8 T T T T T T T T T
= I ]
m - —
E |
s 04 Ti { ___________ { ____________ } _________ ]
Je I |
. l
N L _
o i §
& -05F } —
A L I P N
b - Ta % |
> I |
% - —

_0.6 1 1 1 | 1 1 1 | 1 1 1

0.0 0.2 0.4 0.6
v, (mRy)

Figure 5. Fit of the calculated DMC ground state energy per particle, for two different
time steps AT = 71, 72. For clarity the non constant part of the the fitting function
a+ Bv3+yvg and the common constant & = —303mRy have been subtracted from e(vq).
Shown is the case of the 2 dimensional unpolarized electron gas at rs = 5, ¢ = 4.7¢r and
N = 18. For 1 = 0.150Ry ! we get £ = —0.3026(5)Ry 'and a reduced x? = 0.1; for
T2 = 71/2 we get B2 = —0.3024(5)Ry ™" and x> = 1.5. The dashed and dotted line give
a1 and a2, respectively.

tion. In principle, the elimination of the time step error involves performing
simulations with different (small) values of A7 to then extrapolate each
ground state estimate to A7 = 0. In practice, in our investigation on the
response, we have performed simulations with a couple of suitably small
time steps in selected cases and checked that the estimated response would
be the same for the two different values of A7. In Fig. 5 we illustrate this
procedure for a density response calculation of the 2 dimensional electron
gas, showing the DMC energy dispersion for two different values of A7. It
is evident that halving the time step does not change the estimate of the
the linear density—density response function, though the individual ener-
gies are rigidly shifted by a tenth of mRy, beyond the combined error bars.
Thus one can consider the response calculation converged with respect to
the systematic time step error even though the individual energies are not.
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Figure 6. Number dependence of the density—density response of a non-interacting
unpolarized Fermion system in 2 dimensions. The Stern function [37] is shown for N = 18
(squares), N = 42, (stars), N = 58 (circles), and in the thermodynamic limit (solid line)

1.7.2. Size effects and number extrapolation

Size effects enter actual simulations directly through the finite number of
particles NV and indirectly through the boundary conditions. Thus with the
commonly used periodic boundary conditions only ¢’s which are reciprocal
lattice vectors of the simulation box are allowed. If studying a q independent
quantity, like the ground state energy, the manner to correct for the finite
value of N is simple. One studies () as function of 1/N and extrapolates
to 1/N = 0 using more or less educated guesses[26] for the functional form
of the fit. Unfortunately, when turning to functions of q and for Fermi
liquids—to which we restrict the following discussion—one is faced with
the fact that for given average density the sets of allowed wavevectors are
generally different for different N, as illustrated in Fig. 6. Thus a systematic
extrapolation as for the energy is out of question.

Some insight may be gained by looking at the behavior of a system
of non-interacting particle. Thus in Fig. 6 we show the response function
xo(q; V) of a 2 dimensional unpolarized non—interacting Fermi liquid, for
three different finite values of N and in the thermodynamic limit. Note
that the chosen values of N are representative of those actually used in
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simulation of the 2 dimensional electron gas, corresponding to closed shell
configurations in the space of reciprocal lattice vectors. The size dependence
of xo(q; N) is quite substantial, as is clearly appreciated from the figure,
and in fact one can show that it does not display any sign of saturation
even at N of few hundreds, which is already prohibitively large. A similar
situation is found when turning to charged Fermi liquids[12, 16]. Thus, for
these systems, one is in the very unpleasant situation of having a sizeable, in
fact dramatic, N dependence and yet no simple unbiased recipe to perform
a 1/N extrapolation.

Guided by the observation that both interacting and non—interacting re-
sponses have similar size dependence, one can try to exploit the exact knowl-
edge of xo(q; N). (Remember that in extrapolating the ground state energy
to 1/N = 0 one exploits what is known on the non-interacting ground state
energy|[26].) A simple guess could be to assume that x(q; N)—xo(q; N) has
negligible dependence on N. A variant, which has been actually used[15], is
to assume that this holds for x(q; N) — xrpa(q; N), with xgrpa(q; N) the
Random Phase Approximation (RPA) response function[38]. In fact, one
can come up yet with another recipe[16] working with the inverse of the
response and focusing on the quantity

1 1 1 1
vel@)Glai ) = X(@GN)  xrea(@N)  x(@N)  xo(aN) o) (34)

with v.(g) the Coulomb coupling (v.(q) = 4me?/q?, and 27e?/q, respectively
in 3 and in 2 dimensions). The ansatz in this case is

G(q) = G(q;0) = G(q; N), (35)

which states that finite size errors on the so called local field factor[39] of the
electron gas are negligible, in accord with the notion that G(q) describes
exchange and correlation effects, which should be short ranged (see, e.g.,
Secs. 2.2.1 and 2.2.4). To date this last scheme for number extrapolation has
proven to be the best[16], as we shall briefly illustrate in the next section.

2. Zero temperature static response of selected quantum fluids

The computational scheme that we have exposed above in some detail has
been applied, in the last few years, to calculate of the linear density—density
static response of model quantum liquids, such as * He[12], the 2 and 3
dimensional electron gas[12, 15, 16], the charged Bose fluid[13]. Recently,
we have also computed the linear spin response[40] of the unpolarized 2
dimensional electron gas and we are now estimating the same quantity for
the 3 dimensional electron gas. Below we shall briefly illustrate some of
these applications. In all cases, before summarizing the DMC results, we
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shall give the non—interacting response and mention some of the simplest
theoretical approximations.

2.1. SUPERFLUID “HE

Helium remains fluid down to zero temperature, under vapor pressure, dis-
playing striking quantum effects such as superfluidity, in both its natural
isotopes—the Bose “He and the Fermi 3He. For this reason it is one of the
most studied quantum liquids[38] and *He, which becomes superfluid be-
low 2.17K, is the only quantum fluid for which the static density—density
response function has been experimentally obtained[41]. In fact, the dynam-
ical structure factor S(q,w) was measured over a large range of frequencies
at a temperature of 1.1K and x(q) was calculated from Eq. (12).

The existence of experimental data makes the study of *He a natural
test case. Moreover, being *He a Bose fluid, the DMC method provides
an essentially exact calculation scheme, once a choice is made[12] for the
interparticle interaction[42]. Before comparing our zero temperature results
for x(g) with the experimental evidence, we shall remind the reader of a
few simple facts. The linear density—density response of a non—interacting
Bose system is

4mpo
— 2

xo(q) = (36)

Also, one of the simplest approximations to x(g) in this context is the
so—called Feynman approximation|[43]

4mpo
_ 2
xr(q) =—5(q) R (37)
which relates x(q) to the square of the static structure factor
0 dw
Sta) = [ 5oSa.w). (38)
—oo 2T

It may be noted that, in the Feynman approximation, the monotonous
X0(¢) is modulated by the square of S(g)—which displays a peak and some
oscillations in a strongly correlated fluid, such as *He, as it can be checked
elsewhere[7] in this book.

In Fig. 7 we compare the DMC result for x(g) with the experimental
estimate of the same quantity and with the Feynman approximation. It is
evident that the DMC points compare favorably with experiments, whereas
the Feynman approximation performs rather poorly—especially in the peak
region. In particular the Feynman approximation underestimates the struc-
ture found in the true response, for which it is an exact upper bound[43]
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Figure 7. Density—density static response function x(g) of superfluid *He at zero tem-
perature and density po = 0.02186A47%. The triangles (with error bars) give the DMC
result, obtained with N = 64, while the full curve is the experimental evidence [41],
at small but finite temperature, T = 1.1K. Typical error bars are also shown for the
experiment. The dashed curve gives the Feynman approximation (see text).

(xr(q) > x(g)). The non—interacting response has not been shown, since
it does not bear any relation with the behavior found in the interacting
system, apart from the large g region, where the effect of interactions be-
comes negligible. We mention here that for a neutral Bose system, such as
“He, the size effects on the calculated response are essentially negligible, as
we checked in a few test cases, performing simulations both with 64 and
125 particles. Our results should be compared with those recently obtained
with the reptation QMCI7].

2.2. THE ELECTRON GAS

The electron gas[39, 44]—a model system of electrons moving in a uniform
neutralizing charge background—is one the of the simplest yet most studied
many—body models. It is not only a toy for theorists, its properties being
more or less directly related to those of physical systems, both in 2[39, 45,
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44] and 3 dimensions[39, 46]. Let us briefly recall here few notions about
the density (or dielectric) response in the electron gas, before discussing
our DMC results on the linear response.

2.2.1. Non—interacting and approzimate response; the local field

For conciseness here we collect some results for both the 2 and 3 dimensional
electron gas. We denote the Fourier transform of the pair interaction €2 /r
by ve(g), with

— 7T€2
velq) = % (39)

and d the spatial dimension, d = 2, 3.
It is straightforward to calculate the response of the non-interacting
electron gas. One obtains in 2d the Stern function[37]

xolg) = —g— [1—9<q—qu) 1—(”%)] (40)

9 21h?

and in 3d the Lindhard function[39]

2
1+Q_F<1_(L))1n‘q+2‘””. (41)
q 2qF q—2qr
The Stern function, is shown in Fig. 6. Above, g = 1,2 is the degeneracy
factor, respectively for the polarized and unpolarized Fermi system.
For the interacting case, the simple mean field argument that the re-
sponse to the Hartree field (which is the sum of the external and the charge

polarization fields) is approximately given by xo(q), yields at once[39] the
famous RPA approximation[38, 39],

_QM
2n2h?

xo(q) =

Xo(9)
xrpalq) = — < ——. (42)
1 —ve(q)xo(q)
Evidently the above argument is missing exchange and correlation effects
and these can be conveniently measured by the difference between the full
and RPA inverse responses,

1 1 1

1
vl = S T Y@ x@  xol@) T (43)

defining a local field factor (or function) G(g)[38, 39]. In terms of G(q) the
exact response takes a generalized RPA form

_ XO(CI)
XD = Tl - (@ 4
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Figure 8. Density—density static response function x(q) of the 2d electron gas at rs = 1.
The squares give the DMC prediction with error bars. The non-interacting (ideal) and
RPA responses are respectively given by the full and the short-dashed curve, whereas the
exact[14] small g behavior is shown by the long-dashed curve. The exact large ¢ behavior
is not distinguishable from the ideal response for ¢ > 4qr.

with the bare coupling v.(g) replaced by an effective coupling v.(q)[1—G(q)].
This is reminiscent of the Clausius—Mossotti treatment of local fields in
a dielectric[46]. The local field factor, which describes the exchange and
correlation effects in the response, offers also a convenient way to specify
approximate schemes beyond RPA, two of the most common being the
Hubbard[38, 39] and the STLS[39] approximations. We refer the interested
reader to Ref. [39] for a comprehensive compilation of approximations as of
1981. Moreover the local field function is related to the density functional
theory (DFT)[33, 32], via the relations[47]

fxc(Q) = _UC(Q)G(Q)a (45)

and

2
h*“—f”=[i%§%€sk’ (46)
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Figure 9. Density—density static response function x(g) of the 2d electron gas at rs = 5.
The squares give the DMC prediction with error bars. The non-interacting (ideal) and
RPA responses are respectively given by the full and the short-dashed curve, whereas the
exact[14] small and large g behavior is shown by the long-dashed curves.

with Eg.[p] the exchange—correlation functional and f;. the exchange-
correlation factor. Note that the above equation imposes a constraint on
approximate DFT schemes. We shall come back on this point soon. Using
Eq. (46) it is easy to show[47] that

dpze
dpo’

fzelq) — q—0, (47)

with us. the exchange—correlation chemical potential of the electron gas.
Evidently, the equation above fixes the small ¢ behavior of G(q). With
different techniques it is also possible to determine the leading behavior of
G(q) at large q[48, 14, 16].

2.2.2. Density-density response of the 2d electron gas

As we mentioned above, all our DMC simulations for Fermions have been
performed within the fixed-node approximation. We have calculated the
static linear response of the 2d electron gas at three values of the density
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Figure 10. Local field function G(q) of the 2d electron gas. The various symbols (with
error bars) give the DMC results at various couplings, as shown. The exact small and
large ¢ leading behavior is shown by the short-dashes, long-dashes, and full curve, in
order of increasing r.

parameter r; = 1,2, 5, typical of experimental situations. We remind the
reader that the parameter rs, which is defined in the caption to Fig. 1, also
gives a measure of the coupling strength in the system, as the ratio of the
typical potential to kinetic energy. Thus, small r; means high density and
small coupling, and vice versa for large r;.

In Fig. 8 we show the density—density response of the 2d electron gas
at rs = 1. Already at this small coupling effects beyond RPA are large, as
shown by the sizeable difference between the mean field and DMC predic-
tions. Such discrepancies increase with the coupling, as is clear from Fig.
9, where we show results for the system with the largest coupling that we
have studied to date, r;, = 5. In fact, to isolate the effects beyond RPA
one should look at G(gq). Thus in Fig. 10 we collect all our local field data.
Evidently the local field is appreciable at all couplings and does not change
too much in going from r; = 1 to rs = 5. G(q) appears to follow its exact
small g behavior at least up to g, if not further. On the other hand, our
data do not extend to wavevector large enough for the large g behavior
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Figure 11. Local field function G(g) of the 3d electron gas at r; = 2. DMC results
obtained without size extrapolation are given by the triangles, squares, and diamonds,
respectively at N = 38, 54,66. The circles give the same results after applying the size
correction of Egs. (34) and (35). The exact small and large g leading behavior is shown
by the short-dashes and long-dashes. Finally, the full curve gives a simple fit[16] to the
DMC data. All DMC points are with error bars.

to set it. In this respect, we should emphasize that RPA and full response
share the same leading 1/¢? term at large ¢, with their difference being of
order 1/¢*, both in 3 and 2d. Thus at large wavevectors it becomes more
and more difficult to extract the local field from the computed response.

2.2.3. Density-density response of the 3d electron gas

In 3 dimensions we have computed the linear response of the electron
gas[16] at three different densities pg, corresponding to rs = 2,5, 10, with
4radrd/3 = 1/py. Some of the observations that we made above for the
2d case remain valid, with obvious differences. Thus, the small and large ¢
behavior of G(g) are quadratic in 3d rather than linear— as implied by Eq.
(47) for the small ¢ behavior. Though in terms of x(g) (not shown here)
the effects of correlation and exchange appear smaller than in 2d—at the
same coupling, the local field function shows comparable structure.
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Figure 12. Local field function G(q) of the 3d electron gas at rs = 5. The DMC results are
given by the circles (with error bars), whereas exact small and large g leading behavior is
shown by the short-dashes and long-dashes. The gray curves give various approximations:
the STLS[39] (short dash), Geldart and Taylor[49], and Farid et al[50].

In Fig. 11 we display our results for G(q) at r; = 2. We illustrate the
importance of size corrections, showing our DMC results both with the
correction of Egs. (34) and (35), and without any correction (i.e., assuming
x(q; N) =~ x(g)). We believe that any comment is superfluous. At this
moderate coupling, within the error bars that we have the DMC local field
appears to monotonously interpolate between small and large ¢ behavior.
The situation somewhat changes when going to larger coupling. At r; =5,
where we have data at larger values of ¢ (see Fig. 12), the local field develops
a minimum around 4¢r. The presence of a minimum in G(g) at intermediate
q is in fact a general feature of Coulomb systems at strong coupling. It is
found in the electron gas[51] both in 2 and 3d, and also in the charged Bose
fluid[17, 51]. In Fig. 12 we also show the results of few approximations.
The older ones, STLS[39] and Geldart and Taylor[49], erroneously go to a
constant at large ¢, with the the second one however which behaves better
in the region up to 2¢r. The approximation of Farid et al[50], on the other
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hand, though in principle constructed to have the right behavior[48] at
large ¢, clearly fails to recover the correct constant term present in the
exact asymptotic limit[48, 16].

2.2.4. Spin response

In the formal treatment of response in Secs. 1.1 and 1.3 we focused on
an external field coupling to the one-body density and accordingly we got
density—density response functions. If one applies to a system of electrons a
magnetic field h(r), instead, which couples to the local spin density operator
m(r) = pr(r) — py(r), po(r) = XN §(r — riy), one obtains spin response
functions. The perturbed Hamiltonian in this case is

H,=H, - / drin(r)h(r), (48)

which is obtained from Eq. (1) by simply replacing (p, v) with (7, —h).
All the magnetic response formalism is obtained from the other equations
of Secs. 1.1 and 1.3 by performing the complementary replacement (p, v)
— (m, h)—note the absence of the minus sign in this second substitution,
in accord with the conventional definition of magnetic response[l]. Here,
we are using reduced units so that h = —(upg/2)H has the dimensions
of an energy, and consequently the magnetic response functions have the
same dimensions as the density response functions. In the following we shall
denote the linear spin response function with xs(g). Also we shall use spin
density and magnetization as synonyms.

For the non-interacting electron gas, with the present definition we
have xs(q) = —xo0(g)- It is well known[39] that for the spin response there
is no equivalent of the RPA mean field treatment and to go beyond the
ideal results (xs(q) = —xo(g)) one has to take into account short-range
exchange and correlation effects. Paralleling the density case, one may set

x0(q)
T 0@ @@ (49)

with G_(gq) a new local field function. In fact, in general one defines a
symmetric function G4 (q) = G(q) and an antisymmetric function G_(q),
in terms of spin—spin components[39]

Gelg) = 5 [G11(@) £ Gr(a)]. (50)

If one has access to x;s(q) the spin local field G_(g) is immediately obtained
as v.(¢)G—(q) = —x5 *(9) — xo ' (9)-

We conclude these brief considerations on magnetic response observing
that, similarly to the charge case, the knowledge of of G_(q) puts con-
straints on the dependence of the exchange—correlation functional[33, 32]

xs(q) =
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Figure 13. Spin local field function G_(q) of the 2d electron gas. The various symbols
(with error bars) give the DMC results at various couplings, as shown. The exact small
and large ¢ leading behavior is shown by the short-dashes, long-dashes, and full curve,
in order of decreasing rs.

on the magnetization density m(r). In particular, for an unpolarized sys-
tem, if f_(¢) = —v.(¢)G—-(g) one finds

N 52EZC[P7 m] ]
f—(‘r r |) - lém(r)ém(r/) , mioa (51)
which yields
1 | d?ese

Here, €4, is the exchange—correlation energy per particle of the normal
homogeneous fluid, and { = (py — py)/(ps + py) is the spin polarization.

2.2.5. Spin—spin response of the 2d electron gas
We have performed accurate simulations of the spin response in the 2 di-
mensional unpolarized electron gas[40] at the same couplings for which we
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calculated the density response. All the details of the calculations are sim-
ilar to those for the density case, apart from the fact that the perturbation
of Eq. (48) corresponds to opposite one-body potentials acting on opposite
spins, and therefore one has different Mathieu orbitals in the two determi-
nants of the trial wavefunction of Eq. (27).

In Fig. 13 we summarize our DMC results for the spin by giving the
antisymmetric (spin) local field for the cases that we have studied. It is
clear that the spin local field is considerably smaller than the charge one
and tends to further decrease at larger coupling. This latter fact is easily
understood when one realizes that, at strong coupling, electrons stay well
apart in average (the correlation hole becomes more and more pronounced)
and differences due to the spin (exchange effects) tend to become smaller.

We have seen above (Eq. (52)) that the small ¢ behavior of G_(q) is
determined by the spin polarization dependence of the exchange—correlation
energy. To date this is not know accurately, as there have been no QMC
simulations of the 2d electron gas as function of (. To estimate £4;.((), we
extended to 2 dimensions an interpolation ansatz made long ago by Vosko
et al[52], for the 3d electron gas. The ansatz assumes that €;.(¢) — €4.(0)
has the same dependence on ( as in Hartree-Fock, which yields at once

1+ + (1 -0 -2

Ezc(C) = EmC(O) + [(5930(1) - EIC(O)] 23/2 _ 9

(53)

Thus, knowing the energies of the unpolarized and of the fully polarized
electron gas[53, 54] it is an easy matter to estimate the rhs of Eq. (52).
From Fig. 13, one would conclude that the ansatz above is fully compatible
with our results for spin response. In fact, blowing up the small ¢ scale
or equivalently looking at xs(g), one finds that this is certainly the case
at r; = 1,2, but less obviously so at 7, = 5. We close observing that the
exact large ¢ behavior of G_(g) can be obtained (included the constant
term) from the known behavior[48, 14, 16] of G(g) using the relation
Gi(q) —G_(¢g) — 1 —2¢(0), g —> o0, both in 2 and 3 dimensions.
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