Exchange-correlation energy for the three-dimensional homogeneous electron gas at arbitrary temperature

Ethan W. Brown
Department of Physics, University of Illinois at Urbana-Champaign, 1110 W. Green St., Urbana, Illinois 61801-3080, USA and Lawrence Livermore National Laboratory, 7000 East Ave, L-415, Livermore, California 94550, USA

Jonathan L. DuBois
Lawrence Livermore National Laboratory, 7000 East Ave, L-415, Livermore, California 94550, USA

Markus Holzmann
LPTMC, UMR 7600 of CNRS, Université Pierre et Marie Curie, 75005 Paris, France; Université Grenoble 1/CNRS, LPMMC, UMR 5493, Boîte Postale 166, 38042 Grenoble, France; and European Theoretical Spectroscopy Facility, Grenoble, France

David M. Ceperley
Department of Physics, University of Illinois at Urbana-Champaign, 1110 W. Green St., Urbana, Illinois 61801-3080, USA

I. INTRODUCTION

Density functional theory (DFT) is used ubiquitously in computational chemistry and condensed-matter physics.\(^1,2\) Recently there has been intense interest in extending the success of ground-state DFT to finite-temperature systems such as stellar, planetary interiors and other hot dense plasmas.\(^3-5\) However, such attempts have met both fundamental and technical barriers when electrons have significant correlations. Technical barriers arise as the number of particles becomes enormous and the quantum nature of the electronic wavefunction becomes important. In one approach, the exact Mermin-Wagner\(^6\) (MW) theorem\(^7\) forbids the formation of ordered phases at finite temperature below a critical inverse temperature \(\Theta \equiv T/T_F > 0.0625\) in a free kinetic energy density functional for both free kinetic energy density functionals for both 0\(^8\) and finite \(T\) and \(\Theta = T/T_F > 0.0625\). In doing so, we construct a Padé approximant which collapses to Debye-Hückel theory in the high-temperature, low-density limit. Likewise, the zero-temperature limit matches the numerical results of ground-state quantum Monte Carlo, as well as analytical results in the high-density limit.

We fit finite-temperature path integral Monte Carlo calculations of the exchange-correlation energy of the 3D finite-temperature homogeneous electron gas in the warm-dense regime \([r_s \equiv (3/4\pi n)^{1/3}a_0^{-1} < 40\) and \(\Theta \equiv T/T_F > 0.0625\)]. In doing so, we construct a Padé approximant which collapses to Debye-Hückel theory in the high-temperature, low-density limit. Likewise, the zero-temperature limit matches the numerical results of ground-state quantum Monte Carlo, as well as analytical results in the high-density limit.

\begin{equation}
U_{\text{DH}} \equiv U - U_0 = -\frac{2}{3} T^{3/2} + T^{-1/2},
\end{equation}

where \(U_0\) is the energy of an ideal gas (classically) or of a free Fermi gas (quantum mechanically). Classical simulations have numerically extended these results to larger values of \(\Gamma\).\(^8,9\)

The first-order quantum-mechanical correction to these results is given through the Wigner-Kirkwood expansion in powers of \(\hbar\), \(U_{Q} = -\frac{\hbar^2}{2} T^2 = -r_s^{-3} T^{-1}\). The next order correction as well as the first-order exchange correction have
also been calculated explicitly.\(^{20,21}\) Finally there has been some effort to calculate virial expansions of the excess energy at low density and finite temperature.\(^{22}\)

At zero temperature, a significant body of numerical and analytical work has defined the exchange-correlation energy at all densities. In the high-density limit (\(r_s \ll 1\)) the total energy can be expressed as \(E = a_1 r_s^{-2} + a_2 r_s^{-1} + a_3 \ln r_s + a_4 + a_5 r_s \ln r_s + a_6 r_s + O(r_s^{-3} \ln r_s)\). The first two coefficients can be determined through Hartree-Fock theory, with the first being the energy of a free Fermi gas and the second being the Fock exchange energy. Terms \(a_3\) and \(a_4\) were calculated by Gell-Mann and Brueckner\(^{23}\) using the random phase approximation (RPA). These results were extended by Carr and Maradudin\(^{24}\) to determine \(a_5\) and \(a_6\). In the low-density limit (\(r_s \gg 1\)), one expects a body-centered cubic configuration, i.e., the Wigner crystal.\(^{25}\) This suggests the form \(E = A_1 r_s^{-1} + A_2 r_s^{-3/2} + A_3 r_s^{-2} + A_4 r_s^{-3/2} + O(r_s^{-3})\) for the total energy. The first coefficient, the Madelung term, was first calculated by Fuchs.\(^{26}\) The next three terms, coming from the zero-point harmonic vibration and its associated anharmonic corrections, were determined by Carr et al.\(^{27}\)

High-precision quantum Monte Carlo (QMC) calculations have since spanned these two regimes,\(^{28,29}\) paving the way for accurate parametrizations which leverage the foregoing limiting forms.\(^{30–32}\) Such functionals have been integral to the development and expansion of the local density approximation (LDA) of zero-temperature DFT.\(^{33}\)

III. Prior Fits

Several attempts have been made at extending the success of ground-state DFT to finite temperature and this has resulted in the creation of a number of finite-temperature parametrizations of the exchange-correlation energy.\(^{34–37}\) A basic approach is the RPA, which is accurate in the low-density, high-temperature limit (where it reduces to DH) and the low-density, high-density limit, since these are both weakly interacting regimes. Its failure, however, is most apparent in its estimation of the equilibrium, radial distribution function \(g(r)\) which becomes unphysically negative for stronger coupling.\(^{37}\)

Extensions of the RPA into intermediate densities and temperatures have largely focused on constructing

FIG. 1. (Color online) Ratio of the exchange-correlation energy \(E_{xc}\) at temperature \(T\) to that at \(T = 0\) for the unpolarized \(\xi = 0\) 3D HEG with \(r_s = 1.0, 4.0,\) and \(10.0\) (respectively). Shown are the results from numerical calculations (RPIMC), the present parametrization (BDHC), and several previous parametrizations. The latter include Debye-Hückel (DH), Hansen (H), Tanaka and Ichimaru (TI), and Perrot and Dharma-wardana (PDW), all of which are discussed in the text.

FIG. 2. (Color online) Ratio of the exchange-correlation energy \(E_{xc}\) at temperature \(T\) to that at \(T = 0\) for the polarized \(\xi = 1\) 3D HEG with \(r_s = 1.0, 4.0,\) and \(10.0\) (respectively). Shown are the results from numerical calculations (RPIMC), the present parametrization (BDHC), and several previous parametrizations. The latter include Debye-Hückel (DH), Hansen (H), Tanaka and Ichimaru (TI), and Perrot and Dharma-wardana (PDW), all of which are discussed in the text.
local-field corrections (LFC) through interpolation since diagrammatic resummation techniques often become intractable in strongly coupled regimes. Singwi, et al.38 introduced one such strategy relying on two assumptions. First, they use the static polarization-potential approximation allowing one to write the LFC, \(G(k,\omega) \propto G(k,\omega = 0) \equiv G(k) \). Next they assume the two-particle distribution function is a function of the Fourier transformed momentum distribution, \(n(r) \), and the pair-correlation function, \(g(r) \), allowing a self-consistent solution for \(G(k) \). Tanaka and Ichimaru39 (TI) extended this method to finite temperatures and provided the parametrization of the 3D HEG correlation energy shown in Figs. 1 and 2. A similar method by Dandrea \textit{et al.} uses the Vashista-Singwi LFC (Ref. 34) to interpolate between the high- and low-temperature limits. Both methods appear to perform marginally better than the RPA at all temperatures, though both still fail to produce a positive-definite \(g(r) \) at values of \(r_s > 2 \).

A third, more recent approach introduced by Perrot and Dharma-wardana (PDW)36 relies on a classical mapping wherein the distribution functions of a classical system at temperature \(T_{cf} \), solved for through the hypernetted-chain equation, reproduce those for a quantum system at temperature \(T \). In a previous work, PDW showed such a temperature \(T_q \) existed for the classical system to reproduce the correlation energy of the quantum system at \(T = 0 \).39 To extend that work to finite-temperature quantum systems, they use the simple interpolation formula \(T_{cf} = \sqrt{T^2 + T_q^2} \). This interpolation is clearly valid in the low-\(T \) limit where Fermi-liquid theory gives the quadratic dependence40 of the energy on \(T \). Further in the high-\(T \) regime, \(T \) dominates over \(T_q \) as the system becomes increasingly classical.

\section{IV. PRESENT FIT}

For our fit to RPIMC data, we employ a similar fitting functional as was used by PDW. To this end we define

\[E_{xc}(r_s, T) = \frac{E_{xc}(r_s, 0) - P_1}{P_2}, \tag{1} \]

where \(E_{xc}(r_s, 0) \) is the ground-state exchange-correlation energy,

\[P_1 = (A_2u_1 + A_3u_2)T^2 + A_2u_2T^{5/2}, \tag{2} \]
\[P_2 = 1 + A_1T^2 + A_3T^{5/2} + A_2T^3, \tag{3} \]

\begin{table}[h]
\centering
\begin{tabular}{cccc}
\hline
\textit{k} & \textit{a}_1 & \textit{b}_1 & \textit{c}_1 & \textit{d}_1 \\
\hline
1 & 3.56364 & -2.18158 & 0.85073 & -0.28255 \\
2 & 4.97820 & -2.72627 & 0.62562 & -0.22889 \\
3 & 9.41995 & -3.78699 & -1.87662 & 0.39992 \\
1 & 4.38637 & 1.22928 & -0.789404 & 0.178368 \\
2 & 5.96304 & 0.249599 & -0.991637 & 0.220769 \\
3 & 5.43786 & -1.10198 & -0.716191 & 0.157061 \\
\hline
\end{tabular}
\caption{Fit parameters of the function in Eq. (6) for the polarized (\(\xi = 1 \)) gas. The top three rows correspond to \(r_s < 10 \), while the bottom three rows correspond to \(10 < r_s \).}
\end{table}

\begin{equation}
\begin{align*}
&u_1(r_s) \equiv \frac{3}{2r_s^3} , \\
&u_2(r_s) \equiv \frac{\sqrt{6}}{r_s^{7/2}},
\end{align*}
\end{equation}

and

\[A_k(r_s) \equiv \exp[a_k \ln r_s + b_k + c_k r_s + d_k r_s \ln r_s]. \tag{6} \]

Here \(u_1 \) and \(u_2 \) are chosen such that \(\lim_{T \to \infty} E_{xc}(r_s, T) = U_{DH} + U_Q + O(T^{-3/2}) \). The higher-order terms reflect the higher-order quantum corrections mentioned above. Likewise, note that \(\lim_{T \to 0} E_{xc}(r_s, T) = E_{xc}(r_s, 0) - O(T^3) \), reproducing both the ground-state exchange-correlation energy of Ceperley-Alder29 and the small-\(T \) quadratic behavior of Fermi-liquid theory.41 The Perdew-Zunger30 parametrization is used throughout for \(E_{xc}(r_s, 0) \). The exchange-correlation energy between this and other parametrizations is at least two orders of magnitude smaller than the difference between the lowest temperature simulated and the Perdew-Zunger result. Because of this, we expect the use of another \(0T \) functional to have negligible effect on the finite-\(T \) parametrization we present.

We determine the best parameters of Eq. (6) through a least-squares fitting of RPIMC data.42 The RPIMC data shows a qualitative change in behavior around \(r_s \approx 10 \) and so we divide the fitting regime into two parts, \(r_s < 10 \) and \(r_s > 10 \). At \(r_s = 10 \), we make sure both the functional and its derivative are continuous. This is accomplished by ensuring each factor \(A_k \) and its respective \(r_s \) derivative is continuous at \(r_s = 10 \), providing six constraints and leaving 18 free parameters.

For the unpolarized gas \(\xi = 0 \), we give the parameters in Table I. Using these values, the fitting function has a maximum relative error of 0.9%. For the polarized gas \(\xi = 0 \), we give the parameters in Table II. Using these values, the fitting function has a maximum relative error of 0.3%. Both of these maximum deviations occur at \(r_s = 1.0 \) where errors from RPIMC simulation were largest. All energies are in units of Rydbergs.

\section{V. DISCUSSION AND CONCLUSIONS}

In Figs. 1 and 2, we plot our fit, the RPIMC data, and all mentioned prior fits of the finite-temperature exchange-correlation energy. Clearly, the classical Debye-Hückel limit is obeyed by each fit. However, only our fit and PDW obey the correct zero-temperature behavior \([E_{xc}(\Theta) / E_{xc}(0) \to 1 \text{ as } \Theta \to 0] \). The Singwi-Tosi-Land-Sjölander (STLS) driven fit
of TI only agrees well with the RPIMC data at high density, i.e., where the RPA, the basis of STLS, is most applicable.

The PDW line in Figs. 1 and 2 clearly matches well with the RPIMC results in both temperature limits. It is not surprising, however, that in the intermediate temperature regime, where correlation effects are greatest, the quadratic interpolation of the temperature fails. A similar approach by Dutta and Dufty uses the same classical mapping as PDW, matching the $T = 0$ pair-correlation function instead of the correlation energy. While this gives accurate results near $T = 0$, the breakdown of Fermi-liquid behavior near the Fermi temperature causes the method to overestimate the exchange hole of the pair-correlation function. A direct comparison of E_{xc} is not yet available.

Finally we note that there has been some previous work on the low-density phases of 3D HEG both at $T = 0$ (Ref. 43) and $T > 0$. These include a predicted second-order transition to a partially polarized state around $r_s \simeq 50$, and a first-order transition into a Wigner crystal for $r_s > 100$. Since both these transitions are outside the range of the fit data, we do not expect to see these transitions with the above functional.

In summary, we have performed a least-squares fitting of recent RPIMC data to a functional form which reproduces both high- and low-temperature asymptotic limits exactly. This fit outperforms all previous attempts at parametrizing the exchange-correlation energy at arbitrary temperature. We are providing a simple script of the functional in the Supplemental Material as well as in Ref. 46. It is our hope that this parametrization will be useful as a basis for finite-temperature DFT functionals, and as a benchmark for orbital-free DFT studies.

Note added. Recently we have learned that another group has performed a QMC study of the zero-temperature, spin-polarized 3D HEG. Nevertheless, as noted previously, our choice of the Perdew-Zunger ground state exchange-correlation parameterization should have little effect on the finite-temperature functional fit we provide.

ACKNOWLEDGMENTS

The authors would like to thank Jeremy McMinis and Miguel Morales for useful discussions. This work was supported by Grant No. DE-FG52-09NA29456. In addition, the work of E.B. and J.D. was performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344 with support from LDRD 10-ERD-058 and the Lawrence Scholar program. Computational resources included LC machines at Lawrence Livermore National Laboratory through the institutional computation Grand Challenge program.

*brown122@illinois.edu

17P. Debye and E. Hückel, Phys. Z. 24, 185 (1923).
In fitting the data to this functional, it was noticed that the leading-order, temperature-dependent finite-size correction for the very high temperature points at small r_s was not adequate. Instead, a more useful correction for these points extends from the classical regime. Again we may write the potential energy as $V = \frac{1}{2} \sum_k \frac{4\pi^2 k^2}{\Omega_1} S(k)$, where the structure factor is given by $S(k) = \frac{k^2}{m\omega_p(k)} \left[\frac{1}{\exp(\omega_p/kT) - 1} + \frac{1}{2} \right]$. Here $\omega_p^2(k) \equiv \frac{4\pi^2 n_e^2}{m} \left(1 + \frac{k^2}{k_s^2} \right)$ with $k_s^2 \equiv \frac{4\pi e^2}{\partial\mu/\partial n} T$, though since we are mostly concerned with the small k limit, we take $\omega_p(k) \approx \omega_p = \frac{4\pi^2 n_e^2}{m}$. The finite-size correction then just reads as $\Delta V = V_\infty - V_N$. This correction is dominated by the long-wavelength ($k \to 0$) contribution. For $T \ll 1$ we recover the correction used in Ref. 29. For $r_s \gg T^{-2/3}$, however, we arrive upon $\Delta V = T/(2N)$ and thus $\Delta E = T/(4N)$. Through the virial theorem we then find $\Delta K = -T/(4N)$. This new correction was applied only to the points $r_s = 1.0$, $\Theta = 4.0, 8.0$ and $r_s = 2.0$, $\Theta = 8.0$ for both the unpolarized and polarized systems.

46http://github.com/3dheg/BDHC