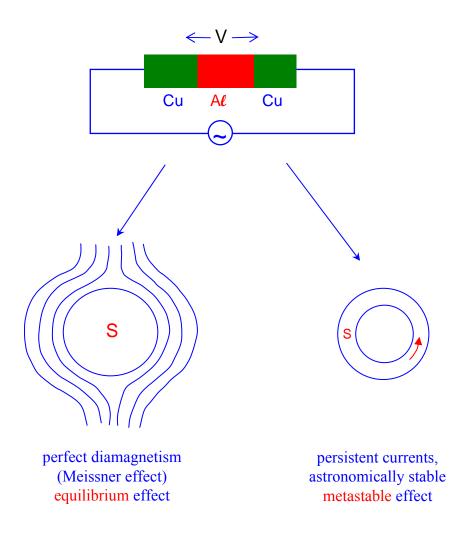
CUPRATE SUPERCONDUCTIVITY:


THE CURRENT STATE OF PLAY

A. J. Leggett Department of Physics University of Illinois at Urbana-Champaign

- 1. Brief overview of cuprate structure and properties
- 2. What do we know for sure about HTS in the cuprates?
- 3. Some existing "models"
- 4. Are we asking the right questions?

WHAT IS SUPERCONDUCTIVITY?

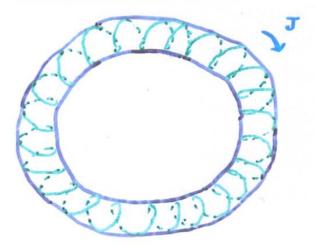
Basic expt: (Onnes 1911)

No a priori guarantee these two phenomena always go together! (but in fact seem to, in all "superconductors" known to date).

<u>PHENOMENOLOGY OF SUPERCONDUCTIVITY</u> (London, Landau, Ginzburg, 1938–50)

Superconducting state characterized by "macroscopic wave function" Ψ (r) \leftarrow complex, Schr.-like

 Ψ (r) $\equiv |\Psi$ (r) | exp i φ (r) \leftarrow must be single-valued mod. 2 π


vector potential

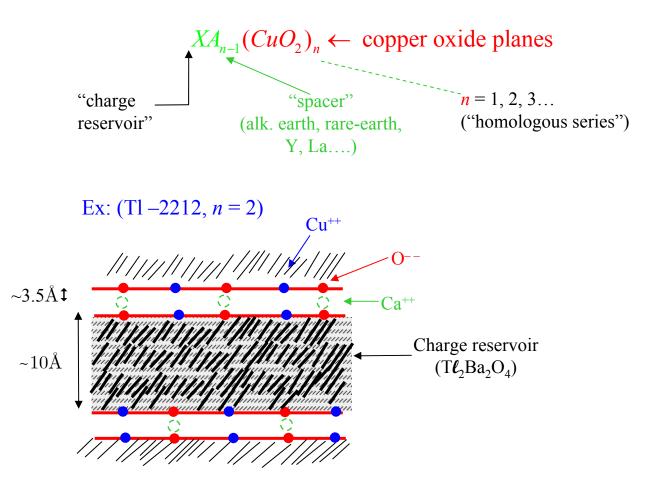
electric current $\rightarrow J(\mathbf{r}) \propto |\Psi(\mathbf{r})|^2 (\nabla \phi(\mathbf{r}) - e^* \underline{A}(\mathbf{r}))$ (BCS: e*=2e)

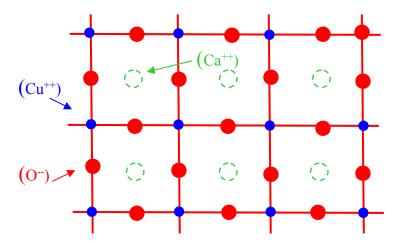
MEISSNER EFFECT: exact analog of atomic diamagnetism

$$(\int \nabla \varphi \cdot dl = 0 \Rightarrow J = -\frac{ne^2}{\underline{m}} A_{\equiv \lambda_L^{-2}}$$

$$\Rightarrow \nabla^2 \underline{\mathcal{B}} = \lambda_L^{-2} \underline{\mathcal{B}} \Rightarrow B = B_0 \exp(-z/\lambda_L) \text{ in atom, sup}^r.$$

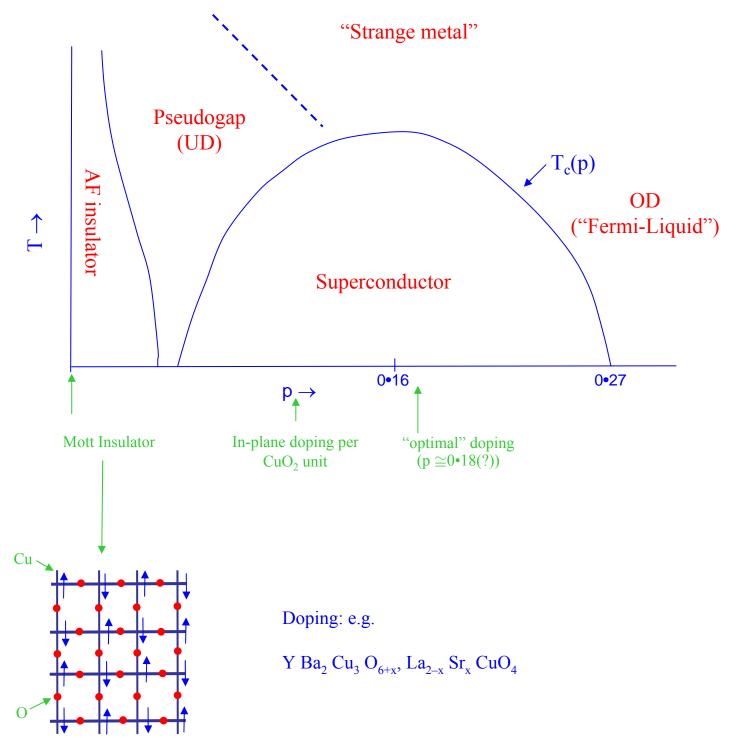
But qualitative difference: $R_{at} \ll \lambda_L \ll R_{sup}!$


PERSISTENT CURRENTS


$n \equiv \int \nabla \varphi \cdot dl / 2\pi$

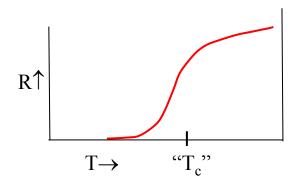
conserved unless $|\Psi(r)| \rightarrow O$ across some X-section (highly unfavorable energetically) $\Rightarrow J \sim n = \text{conserved}$

STRUCTURE OF A TYPICAL CUPRATE


CuO₂ plane as viewed from above:

Note:

Each CuO_2 plane has valency—2e per formula unit, hence homologous series require spacer with +2e (i.e., typically alkaline earth (Ca⁺⁺, Sr⁺⁺...)


"CANONICAL" PHASE DIAGRAM OF CUPRATES AS FUNCTION OF T AND DOPING (COMPOSITE):

For any given compound, can find mapping from \mathbf{x} (chemical stoichiometry) to \mathbf{p} (no. of holes per CuO₂ unit in plane) which makes phase diagram <u>and</u> properties "per plane" <u>approx</u>. "universal," \uparrow : but difficult to check directly.

SOME BASIC FACTS ABOUT CUPRATES

- Until 2008, unique in showing (reproducible) sup^y at T> 50 K. (>200 different materials). (2008: FeAs compounds, T~55K).
- 2. However, ∃ some cuprates which can never be made superconducting (multilayers spaced by Sr or Ba).
- 3. Both N– and S– state props. highly anisotropic (e.g., in Bi 2212, $\rho_c/\rho_{ab} \sim 10^5$)
- 4. Many N-state props. very anomalous (e.g., $\rho_{ab} \sim T$, $\theta_H \sim a + bT^2$). (S: rather "normal"!)
- Most N- (and S-) state props. approximately consistent with hypothesis that at given doping, properties of CuO₂ phase are universal. (4: transport properties prob. sensitive to near-plane disorder, e.g. La_{2-x}Sr_xCuO₄.)
- 6. When S state occurs, v. sensitive to doping and pressure, (e.g., Hg-1201: $T_c = 95 - 120 \text{ K}$) Atm. 20 GPa
- 7. For Ca-spaced homologous series, T_c always rises with layer multiplicity *n* up to n = 3, thereafter falls slightly. (?)
- 8. Macroscopic EM props of S state show large fluctuations, esp. in high magnetic fields (extreme type-II)

WHAT DO WE KNOW FOR SURE ABOUT SUPERCONDUCTIVITY IN THE CUPRATES?

 Flux quantization and Josephson experiments ⇒ ODLRO in 2particle correlation function, i.e., superconductivity due to formation of Cooper pairs,

i.e.:
basic "topology" of many-body wave function is

$$\Psi \sim \mathcal{A} \{ \varphi(r_1 r_2 \sigma_1 \sigma_2) \varphi(r_3 r_4 \sigma_3 \sigma_4) \dots \varphi(r_{N-1} r_N \sigma_{N-1} \sigma_N) \}$$

antisymmetric
Same "molecular" wave function
for all pairs (quasi-BEC!)

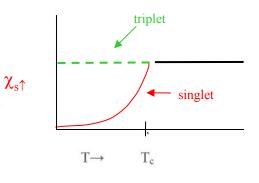
For most purposes, more convenient to work in terms of related quantity

$$F(\mathbf{r}_{1}\mathbf{r}_{2}\sigma_{1}\sigma_{2}) \equiv \left\langle \psi_{\sigma_{1}}^{+}(\underline{r}_{1})\psi_{\sigma_{2}}^{+}(\underline{r}_{2})\right\rangle$$

"pair wave function" (anomalous average)

Note: "Macroscopic wave function" of Ginzburg and Landau, $\Psi(\underline{R})$, is just $F(\mathbf{r}_1\mathbf{r}_2\sigma_1\sigma_2)$ for $\sigma_1 = -\sigma_2 = +1$, $\underline{r}_1 = \underline{r}_2 = \underline{R}$, i.e. wave function of COM of Cooper pairs.

WHAT DO WE KNOW FOR SURE? (CONT.)


2. "Universality" of HTS in cuprates with very different chemical compositions, etc. ⇒

Main actors in superconductivity are electrons in CuO₂ planes.

3. NMR ($\chi_s, T_1 \dots$)

⇒spin wave function of

Cooper pairs singlet not triplet, i.e.

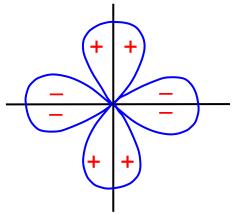
$$\varphi(\mathbf{r}_{1}\mathbf{r}_{2}\sigma_{1}\sigma_{2}) \sim \frac{1}{\sqrt{2}} \uparrow \downarrow - \downarrow \uparrow) \bullet \varphi(\underline{r}_{1}, \underline{r}_{2})$$

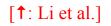
- Absence of substantial FIR absorption above gap edge ⇒ pairs formed from time-reversed states (but cf. J. Tahir-Kheli)
- 5. Order-of-magnitude estimates from (a) T_c and (b) $H_c \Rightarrow$ (in-plane) "radius" of Cooper pairs ~ a few lattice spacings.

(thus,
$$\xi_0 / a \sim 3-10$$
 :contrast $\sim 10^4$ for A ℓ

pair radius inter-cond. electron spacing \Rightarrow fluctuations much more important than in e.g. Al

CS 8


CS 8


WHAT DO WE KNOW FOR SURE? (cont.)

6. Josephson (phase-sensitive) experiments \Rightarrow at least in YBCO, T ℓ -2201, NCCO....

symmetry of pair wave function is $d_{x^2-y^2}$

i.e. odd under $\pi/2$ rotⁿ in ab-plane, even under reflⁿ in a- or b-axis (in bulk: near (110) surface, d + is?)

- 7. c-axis resistivity \Rightarrow hopping time between unit cells along c-axis » $\hbar/k_{\rm B}T\Rightarrow$ pairs in different multilayers effectively independent (but cf. Anderson Interlayer Tunneling theory)
- 8. Absence of substantial isotope effect (in higher -T_c cuprates) + "folk-theorems" on T_c ⇒ phonons do not play major role in cuprate superconductivity. (A: Newns and Tsuei)

NOTE: AT LEAST 95% OF LITERATURE MAKES ALL OF ABOVE ASSUMPTIONS AND A LOT MORE e.g. 2d Hubbard, t-J, gauge field ... all special cases of generic Hamiltonians based on these features.

HOW WILL WE KNOW WHEN WE HAVE A "SATISFACTORY" THEORY OF HTS IN THE CUPRATES?

Thesis:

We should (at least) be able to:

- (A) give a blueprint for building a robust room-temperature superconductor,
- **OR** (B) assert with confidence that we will never be able to build a (cuprate-related) RT superconductor
- **OR** (C) say exactly why we cannot do either (A) or (B)

In the meantime, a few more specific questions:

- (1) Are the cuprates unique in showing HTS?
- (2) If so, what is special about them?(e.g. band structure, 2-dimensionality, AF ...)
- (3) Should we think of HTS as a consequence of the anomalous N-state properties, or vice versa?
- (4) Is there a second phase transition associated with the T* line? If so, what is the nature of the LT ("pseudogap") phase?
- (5) If yes to (4), is this relevant to HTS or a completely unconnected phenomenon?
- (6) Why does T_c depend systematically on *n* in homologous series?

SOME REPRESENTATIVE CLASSES OF "MODELS" OF COOPER PAIRING IN THE CUPRATES (conservative \implies exotic):

- 1. Phonon-induced attraction ("BCS mechanism") problems: N-state $\rho_{ab}(T) \propto T$ down to T~10 K (Bi-2201 T_c) no isotope effect in higher $-T_c$ HTS folk-theorems on T_c (but \uparrow : FeAs compounds)
- 2. Attraction induced by exchange of some other boson:
 - spin fluctuations
 - excitons
 - fluctuations of "stripes"
 - more exotic objects
- 3. Theories starting from single-band Hubbard model:*

- a. Attempts at direct solution, computational or analytic
- b. Theories based on postulate of "exotic ordering" in groundstate (e.g. spin-charge separation)
- Problems: to date, no direct evidence for exotic order

— T* line appears to be unrelated to T_c

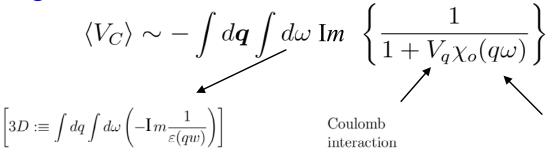
(and, "Nature has no duty")

*See e.g. P.A. Lee, Reps. Prog. Phys. 71, 012501 (2008)

<u>ENERGY CONSIDERATIONS IN THE CUPRATES</u> (neglect phonons, inter-cell tunnelling)

 $\hat{H} = \hat{T}_{(\parallel)} + \hat{U} + \hat{V}_c \checkmark$

in-plane $e^- KE$

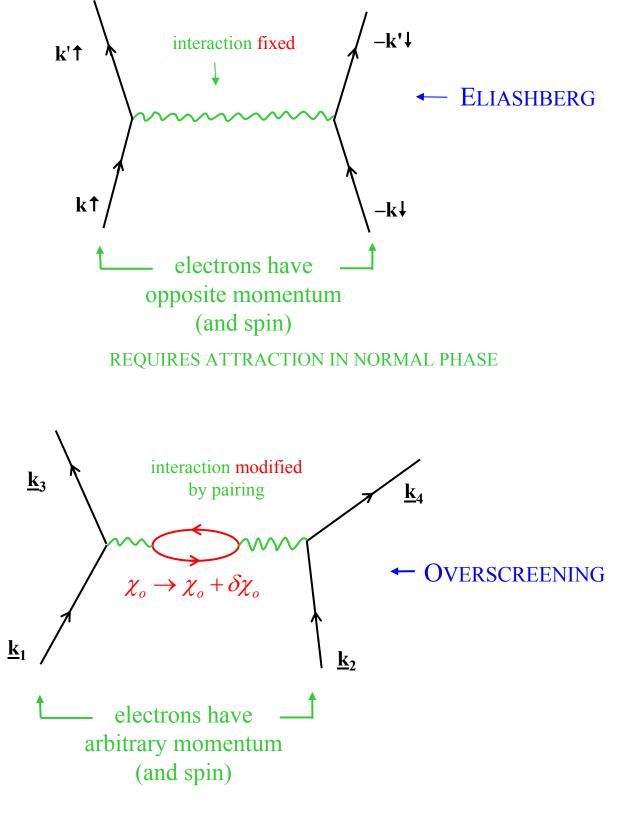

potential ex. of cond.ⁿ e⁻'s in field of static lattice inter-conduction $-e^-$ Coulomb energy (intraplane & interplane)

AND THAT'S ALL

(**DO NOT** add spin fluct^{ns}, excitons, anyons....)

At least one of $\langle T \rangle$, $\langle U \rangle$, $\langle V_c \rangle$ must be decreased by formation of Cooper pairs. Default option: $\langle V_c \rangle$

Rigorous sum rule:


bare density response function

WHERE IN THE SPACE OF (q, ω) IS THE COULOMB ENERGY SAVED (OR NOT)? THIS QUESTION CAN BE ANSWERED BY EXPERIMENT! (EELS, OPTICS, X-RAYS)

(repulsive)

HOW CAN PAIRING SAVE COULOMB ENERGY?

ELIASHBERG vs. OVERSCREENING

NO ATTRACTION REQUIRED IN NORMAL PHASE

$$\left\langle V_{c}\right\rangle_{S} - \left\langle V_{c}\right\rangle_{N} \sim + \int d^{2}q \int d\omega V_{q} Im \left\{ \frac{\delta \chi(q,\omega)}{\left(1 + V_{q}\chi_{o}(q\omega)\right)^{2}} \right\}$$

* WHERE in the space of q and ω is the Coulomb energy saved (or not)?

* WHY does T_c depend on *n*?

In <u>Ca-spaced</u> homologous series, T_c rises with *n* at least up to n=3 (noncontroversial). This rise <u>may</u> be fitted by the formula (for "not too large" *n*)

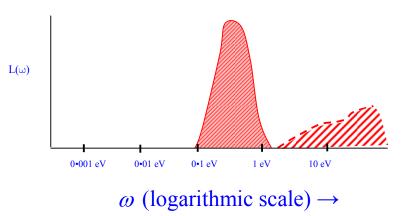
$$T_c^{(n)} - T_c^{(1)} \sim \operatorname{const}\left(1 - \frac{1}{n}\right)$$
 (controversial)

Possible explanations:

- A. ("boring"): Superconductivity is a single-plane phenomenon, but multi-layering affects properties of individual planes (doping, band structure, screening by off-plane ions...)
- B. ("interesting"): Inter-plane effects essential
 - 1. Anderson inter-layer tunnelling model
 - 2. Kosterlitz-Thouless
 - 3. Inter-plane Coulomb interactions

WE KNOW THEY'RE THERE!

 $V_{\text{int}}(\vec{q}) \sim q^{-1} \exp{-qd} \leftarrow \text{intra-multilayer spacing} (\sim 3 \cdot 5 \text{\AA})$


If (3) is right, then even in single-plane materials dominant region of q is $q < d^{-1}!!$

Where in ω is energy saved? (REMEMBER WILLIE SUTTON....)

N STATE

MIR OPTICAL + EELS SPECTRA OF THE CUPRATES

<u>A. OPTICS</u>. Plot in terms of loss function $L(\omega) \equiv -Im \varepsilon^{-1}(\omega)$:

B. EELS

Confirms $q \rightarrow 0$ shape of the loss function, and verifies that (roughly) same shape persists for finite q. (at least up to ~0.3 Å⁻¹)

SO THAT'S WHERE THE MONEY IS!

Digression:

This strong peaking of the loss function in the MIR appears to be a necessary condition for HTS. Is it also a sufficient condition? No! Counter examples:

(a) BKBO (not layered)
(b)
$$\begin{cases} La_{4-x}Ba_{1+x}Cu_5O_{13} \\ La_{2-x}Sr_{1+x}Cu_2O_6 \end{cases}$$
 layered (2D) materials!

TO TEST MIR SCENARIO:

IDEALLY, WOULD LIKE TO MEASURE

CHANGES IN LOSS FUNCTION

$$\leftarrow -Im\frac{1}{\varepsilon_{\parallel}(q\omega)}$$

ACROSS SUPERCONDUCTING TRANSITION, FOR 100 meV < ω < 2eV, and all q < d⁻¹ ($\approx 0 \cdot 3 \text{ Å}^{-1}$)

NB: for $q > d^{-1}$, no simple relation between quantity $-\text{Im} (1 + V_q \chi_0 (q\omega))$ and loss function.

POSSIBLE PROBES:

- 1) TRANSMISSION EELS
- 2) INELASTIC X-RAY SC'G
- 3) OPTICS (ELLIPSOMETRY)

"long'l", arb. q, ω

"transverse", arb. ω but q<< 0 \cdot 3 Å⁻¹

EXISTING ELLIPSEMETRIC EXPTS. (v.d. MAREL, RÜBHAUSEN) INDICATE THAT IN LIMIT $q \rightarrow 0$, MIR LOSS FUNCTION INCREASES!

 $\uparrow: (1) \text{ TRANSVERSE}$

(2)
$$q_{opt} \ll \xi_O^{-1} \ll d^{-1}$$

 \uparrow
Cooper pair radius

HENCE, ESSENTIAL TO DO EELS/X-RAY EXPERIMENTS. (P. Abbamonte)

THE "MIDINFRARED" SCENARIO FOR CUPRATE SUPERCONDUCTIVITY:

Superconductivity is driven by a saving in Coulomb energy resulting from the increased screening due to formation of Cooper pairs. This saving takes place predominantly at long wavelengths and midinfrared frequencies.

PROS:

- 1. No specific "model" of low-energy behavior required
- 2. Natural explanation of
 - a. why all known HTS systems are strongly 2D
 - b. why all known HTS systems show strong and wide MIR peak
 - c. trends of T_c with layering structure in Ca-spaced cuprates
 - d. absence of superconductivity in bilayer Ba/Sr-spaced cuprates.
 - e. "huge" (~ $100 \times BCS$) effects of superconductivity on optical properties in 1–3 eV range.
- 3. Unambiguously falsifiable in EELS experiments.

<u>CONS</u> (as of Jan '09):

- 1. No explicit gap equation constructed: KE cost too great?
- 2. No explanation of origin of MIR spectrum
- 3. Connection (if any) to low-energy phenomenologies unclear.
- 4. *optical expts.

CONSEQUENCES IF TRUE:

All 2D Hubbard, t-J models etc. unviable Crucial property of normal state is MIR spectrum (most other properties are "incidental"

May suggest HTS candidates other than cuprates

....