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I. Light waves and photons

Classical light wave (k into screen)

X I E = (Re) const. X exp 1(kz — ot)
y E = (Re) const. y exp 1(kz — ot)
s - s E
Ei= L f7oA
Principle of (classical) superposition: ~ [Elcos® !
E,=|Elsin 6

E=(Re) (Ey X +E;y)expi(kz—ot) also solution

note: E,, E;, may be complex. e.g.

E = const. (Re) {(i +t1y)expi(kz - c:_rt)JL C
(= const. X cos (kz-ot) — ¥ sin (kz - ot) )

carries finite angular momentum.

BIREFRINGENT CRYSTAL f,“'E'“;g?-"'iGﬂ
(“polarizer™):

E| COS 9 \1‘eﬂection

axis

Transmitted amplitude = E, =

2

. ? 2
Transmitted energy « E_ = [E[" cos™ 6

(imitial energy o |E|%)
. ~ . )
—> fraction of energy transmitted = cos~ 6
(“Malus’s law™)
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QM: Photons

QM amplitude [y> <= classical field amplitude E:

in particular, if y,>. |y,> allowed. so 1s superposition

o= + By,
e.g 1f
> = %> T e
single photon polarized single photon
along x-axis polarized along y-axis
then

vone 1%

describes single photon with (linear) polarization
at angle 6 in xy-plane

and
v iy C O

describes photon with R(L) circular polarization
(angular momentum +h)

Single photon incident on birefringent
crystal (polarizer): } i

Probability of transmission = cos™ 0
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Single photon incident on

birefringent crystal (“polarizer”): T\ 2_‘
0"

Probability of transmission = cos2q

(quantum version of Malus’ law)

Digression: Can a classical probabilistic theory explain this?

/ nominal polarization

YES! o random distribution of
“hidden” (“true™)
polarization variable

“true” polarization

é

If ~closer to T , transmitted: if closerto ——, reflected.
If transmitted, distribution of “hidden” variable 1s adjusted:

& P

With suitable choice of random distribution, can
|

reproduce P+(0) = cos? 6 f(x)=cos2(6—1y)
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2. 2-PHOTON STATES FROM CASCADE DECAY OF ATOM

“1” | 0+ “2”
\J | \J
L£NANANANANNANANANANN
—Z v
NANANAANMNANANNN_S,
e 4
ATOM

What is polarization state of photons?

(note: [x>+1i| > corr. photon angular momentum =+ )

General principle of QM; if process can happen either of two ways,
and we don’t (can’t) know which, must add amplitudes!

Here, we know that total angular momentum of 2 photons is

zero, but we don’t know whether photon 1 carried off + # and 2 -#

(intermediate atomic state has m = 1) or vice versa (int. state
m = -1). Hence must write (crucial!
\W> =[x + iy>| |x-iy>, + (phase factor).
[x-iy>1 [x+Hy>;
Actually (parity =) phase factor =+ 1, so

' 1
> = e+ Iy (o)
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POLARIZATION STATE OF 2 PHOTONS EMITTED BACK
TO BACK IN ATOMIC 07 — 17 — 07 TRANSITION (recap):

1
111]_:{_ = \I_I-; {K_:'.:]_ |?|'.:::'j — }rj'_:l |}r:;;.3}

So, if photon 1 15 measured to have polarization x(v) so inevitably will photon 2!

But, state 1s rotationally mvanant: = :
X

i g

) §

1

IP:T = _2 {l}{l };’_:3'2 1+ }."ZZ:-l }r::'-z}

so if 1 measured to have polarization x (v) so does 2!

(NOT true for "mixture” of [x=; x> and [v=1|y=2)

Now:
‘What if photon 1 1s incident on polarizer with “transmission”
axis a.and photon 2 on one with a differently oriented

transmission axis b?
Since choice of axes for 'V, arbitrary. choose x = a.

Then:
Prob. of transmission of 1 = 14,

But 1f | transmitted, then polarization of 2 1s a. so probability of

C - : . : . ) 7
transmission of polarizer set in direction b = cos™ 8,

(Malus’s law) =
P(both transmitted) = Zcos™ O,



detector detector
1 — 2 N
U 1
1 v t
transmission atomic transmission
axis a source axis b

Prob. (both detected) = % cos’® 0, = % (1 + cos 20,p) +—

“Isotropic mixture”

; | 1
Prob. (neither detected) = 7 cos” O, = (1+3 cos 20,,)

Prob. (1 detected, 2 not) i . &
=5 sin 0.
Prob. (2 detected, 1 not)

THESE ARE THE PREDICTIONS OF STANDARD QUANTUM
MECHANICS. CAN THEY BE EXPLAINED BY A CLASSICAL
PROBABILISTIC THEORY?

Df: If for a given pair, with polarizer 1 set at 4, photon 1 is detected,

df. A=+1: ifrejected, A=-1. Similarly with polarizer 2 set at b , if

photon 2 detected, df. B =+ 1: if rejected, then B =— 1. Then above is
equivalent to the statement that for the average over the ensemble of pairs,

9 oy ) B ,
<AB> = cos” 0,, — sin” 0,, = cos 20, [“Mixture”: % cos 20,,]

as special cases, for 0,, =0 <AB>=+1, and for 0,, = 1/2. <AB>=-1.
(EPR). These two special cases can be accounted for by a classical

probabilistic model. But...
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EXPERIMENTS ON CORRELATED PHOTONS

/@
.
.
’
.

: N
N

N

LY

PHOTON 1 PHOTON 2

| ; |
ATOMIC

SWITCH SOURCE SWITCH

()= D etc.)

X_transm. axis = a

DEFINITION: If photon 1 is switched into counter “/

If counter “A” clicks, A =+ 1 (DF.)
If counter “A” does not click, A=—-1 (DF.)
NOTE:

[f photon 1 switched into counter “B”, then A is NOT DEFINED.

Experiment can measure

<AC>, on one set of pairs (1> “A”,2 >« c”)
<AD>, on another set of pairs (1 - “A”, 2 — “D”)
etc.
Of special interest is
Ky = <AC> g + <AD>, + <BC>y, — <BD>,,

for which Q.M. makes clear predictions.
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POSTULATES OF “OBJECTIVE LOCAL” THEORY:

(1) Local causality
(2) Induction
(3) Microscopic realism OR macroscopic

“counter-factual definiteness”

BELL’S THEOREM

1. (3) — For each photon 1, EITHERA=4+10R A =—1,
independently of whether or not A is actually measured.

2. (1) — Value of A for any particular photon 1 unaffected by
whether C or D measured on corresponding photon 2. : etc.

3. .". For each pair, quantities AC, AD, BC, BD exist, with A, B,
C,D,=+1 and Athe same in (AC, AD) (etc.)

4. Simple algebra then — for each pair, AC + AD+ BC—
BD <2

5. Hence for a single ensemble,
<AC>ens + <AD>cns + <BC>ens = <BD>ens = 2

6. (2) > <AC>,, = <AC>,, hence the measurable quantity

KexpE TACE 5 ¢ <BCP g+ <BC>xp — <BD>y,

satisfies

Obj. Local

Kep <2, Theory
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OBJECTIVE LOCAL THEORY: K¢, < 2.

QM: If polarizer settings area , b, ¢ . d

then e.g. for a 0" transition predict

<AC=> = cos(20, . ), etc.

b a
d

QM predicts (1deal case)

Ko = 202

—=Exptl. Predictions of QM incompatable with those of any

— for

theory embodying

" Local causality

< Induction

_ Macroscopic counter-factual definiteness

1. “It1s a fact that either A would have clicked or A wo

have clicked”

!\J

“Either 1t 1s a fact that A would have clicked, or 1t 1s .

that A would not have clicked”
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IDEA OF “ENTANGLEMENT"’:
System composed of 2 (separated) subsystems 1 and 2:
Y =Y¥(1,2) [general]
(a) ¥Y(1,2) = ¥(1)$(2) product, nonentangled
“Properties” of 1 described by (1)

“Properties” of 2 described by ¢(2)

Complete information on system obtainable by
making measurements on subsystems separately.

(b) Y(1,2) #y(1) ¢(2) entangled
e.g. (2 photons)

W(L,2) = 5 (b > + ly>1 y>)
(“EPR pair”) = (Tl Tz + >, >),)

Subsystems 1 and 2 do not “possess” individual
properties (Bell’s theorem).

Complete information on system obtainable only
by correlated measurements on 1 and 2

INFORMATION “STORAGE” IS NONLOCAL!
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1. Quantum “Teleportation™

(e.g. of state of photon)

( Dl\ld ) sy g BOb)
‘4

® ®)
o
@
(“*Alice™) _—
\C)
(“Clare”)

Rules of the game: Alice is to transmit to Bob an
arbitrary state [y > of a photon, without direct physical
contact (but A (or D) may communicate with B e.g. by

a classical phone line). (Alice may not even know

what state she has sent).
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R Dawd )\WMMAMMMMM/( Bob)

(‘ Ahce ") \ /

(‘ Clare ")

Solution: C emits “EPR pair.” D then measures
combined state of R and G photons. If D finds
EPR pair, then angular momentum conservation
—> state received by B = that sent by A (and D
phones B to tell him so). If D finds a different
state, can “rotate” into EPR pair. Then B must
perform inverse of this rotation (and D so instructs
him).
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2. Quantum Cryptography:
™

® P
Key distribution problem: Alice must be able (a) to
communicate the “key” (a string of 1°s and 0’s) to Bob,

and moreover know if Eve is listening in. Classically, no
100% secure way of ensuring this is known.

Solution: )}@

)
v 9
® ®-
S emits a string of EPR pairs. A measures in basis , Or In basis

, iIn a random way: B measures similarly, also at random. At the
end, A and B inform one another by phone which basis they have used
for each measurement, discard those for which they used different
bases, and compare notes on a subset of the rest. If they always agree,
they can be sure of no eavesdropping, and so use the rest for the key.

If Eve tries to “listen in” on the quantum channel...
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3.  Quantum Computation:

EX: particles of spin %-.

A single particle of spin %2 1n a pure state 1s parametrized
by 2 independent variables, e.g. corresponding to the angles
(6, ©) made by its spin with the z- and x-axes.

A collection of N particles of spin % 1n a product state 1s
parametrized similarly by 2 independent variables for each,
1.e. 2N 1n total.

But the same collection of N particles 1n a generic

. ~ . . . N .
entangled state requires for its parametrization 2™ variables!

eg. (N=3

P(1,2.3)=a) [T, Ty T >+ a) T\ Tods >+ ag T LT >
ot ag Npdads >

— MASSIVELY PARALLEL COMPUTATION!
(Shor, 1994: factorization of N-digit no. takes time which for
classical computer 1s exponential in N, but for quantum

computer 1s power-law).



DEUTSCH’S ALGORITHM (SIMPLIFIED VERSION)™ #16

Xx=0OR 1

- S ——————— X
I

y=0OR 1

CLASSICAL
“BLACK BOX”

Since x = {0,1}, only 4 possible mappings f: x — x
Question: Does f(0) = f(1)?
Classically, need to input x = 0 (y can be 0 or 1) and measure

output of lower bit, then same with x = 1. (2 measurements)

IX o> ]‘)] X' > "’() F O

y>=a' |[0>+p"]1

QUANTUM
“BLACK BOX”

Input: |[x>= 272 (|0>+ |1>)
j 0,1 >—10,1 + f{0)> etc.
ly >=2"(0> - |1>

*after Nielsen + Chuang, Q. Comp. + Q. Inf,, § 1.4.3
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|

ly>= \/5 (10> —11>)

If f(0) = f(1), then |x"> =%(\o> +1>) = |+>
If f(0) # f(1), then |x"> = {i (0> —|1>) = - >

By appropriate unitary transformation, convert

| +>—|0>

=> 1>

Then measure x: (1 measurement!)
If x =0, then f(0) = f(1)
If x =1, then f(0) # f(1)

INB: Deutsch’s algorithm itself does not exploit entanglement,

but almost all more sophisticated algorithms do]



(SIMPLEST) DESIGN FOR A QUANTUM COMPUTER:

couple together N 2-state systems
(“QUBITS”) in such a way that we
can reliably perform “1-qubit” operations
(non-entangling) and “2-qubit” operations (entangling)

e.g. Heisenberg interaction Jo, - 6, induces

T, == 2717 (T, +i,Ty)

non-entangled entangled

Principal requirements for qubit:

2 states only
easy initialization and readout
scalable

* decoherence-free

“Figure of merit” for (lack of) decoherence:

Qo=0,T,
char. freq. of “dephasing” time
2-state system

Current “designs” require Q, = 10*
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O-Smm




No. of particles
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PHYSICS OF SUPERCONDUCTIVITY

- n 1 I W A bosons
“Spin ofelementaryzzh | 3 5
: s A e  ICTMIDAS
particles a2 2 2
At low temperatures: < “Bose condensate”
T+ 2+ Fermi
§ energy
C !
L

[
N o

“Fermi sea” kT

Electrons in metals: spin 2 = fermions

But a compound object consisting of an even no.

of fermions has spin 0, 1, 2 ... = boson.
(Ex: 2p + 2n + 2e = *He atom)

— can undergo Bose condensation
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Pairing of electrons:

) @ (® . * B s OF
@ © O g id >

“di-electronic molecules” Cooper Pairs

In simplest (“BCS”) theory, Cooper pairs, once formed, must automatically
undergo Bose condensation!

— must all do exactly the same thing at the same time (also in
nonequilibrium situation)




SUPERCONDUCTING RING IN EXTERNAL MAGNETIC FLUX:

Quantization condition for
“particle” of charge 2e (Cooper

pair):

integer
I

; h
K=¢v.dl = 7 (0 - D/D,)

T “flux quantum
h/2e

E x K2

o (N—D/D,)?) “circulation”
0]

A.  ®=0: groundstate unique (n = 0)
= all pairs at rest.

B.  ®=1/2 @, groundstate doubly degenerate (E x(n-1/2)?)

(n=0orn=1)

Either all pairs rotate clockwise

Or all pairs rotate anticlockwise

Note: state with 50%\ and 50% /

strongly forbidden by energy considerations

29
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Josephson “qubit”

Bulk superconducting
ring

Josephson
junction

~ 1uA

Evidence: (a) spectroscopic:

(SUNY. Delft 2000) ///\\

(b) real-time oscillations (like NHj3)

between O and O

(Saclay 2002, Delft 2003)  (Q, ~ 50-100)



