BELL'S THEOREM, ENTANGLEMENT, TELEPORTATION, QUANTUM CRYPTOGRAPHY, QUANTUM COMPUTING AND ALL THAT

A. J. Leggett
University of Illinois at Urbana-Champaign

Support: NSF E1A-01-21568

1. Elementary considerations on classical EM radiation and photons.
2. Bell's theorem
3. The general notion of entanglement
4. Some applications
5. Superconducting qubits - recent advances

Classical light wave (k into screen)

$$
\begin{aligned}
& \underset{\sim}{E}=(\mathrm{Re}) \text { const. } \underset{\sim}{\hat{\mathrm{x}}} \exp i(\mathrm{kz}-\omega \mathrm{t}) \\
& \underset{\sim}{\mathrm{E}}=(\mathrm{Re}) \text { const. } \underset{\sim}{\hat{y}} \exp i(\mathrm{kz}-\omega \mathrm{t})
\end{aligned}
$$

Principle of (classical) superposition:

$\underset{\sim}{E}=(R e)\left(E_{x} \underset{\sim}{\hat{x}}+\mathrm{E}_{\mathrm{y}} \underset{\sim}{\hat{y}}\right) \exp \mathrm{i}(\mathrm{kz}-\omega \mathrm{t}) \quad$ also solution note: $\mathrm{E}_{\mathrm{x}}, \mathrm{E}_{\mathrm{y}}$ may be complex, e.g.

$$
\begin{aligned}
\underset{\sim}{\mathrm{E}}= & \text { const. }(\mathrm{Re})\{ \\
& \{(\equiv \text { const. } \underset{\sim}{\hat{\mathrm{x}}} \operatorname{\sim }+\mathrm{i} \cos (\mathrm{kz}-\omega \mathrm{t})-\underset{\sim}{\hat{y}}) \exp \mathrm{i}(\mathrm{kz}-\omega \mathrm{t})\} \\
& \sin (\mathrm{kz}-\omega \mathrm{t}))
\end{aligned}
$$

carries finite angular momentum.
BIREFRINGENT CRYSTAL ("polarizer"):

Transmitted amplitude $=\mathrm{E}_{\mathrm{x}}=|\mathrm{E}| \cos \theta$ axis Transmitted energy $\propto E_{x}^{2}=|E|^{2} \cos ^{2} \theta$
(initial energy $\propto|E|^{2}$)
\Rightarrow fraction of energy transmitted $=\cos ^{2} \theta$
("Malus's law")

QM: Photons
QM amplitude $\mid \psi>\Leftrightarrow \Rightarrow$ classical field amplitude $\underset{\sim}{\mathrm{E}}$: in particular, if $\left|\psi_{1}\right\rangle,\left|\psi_{2}\right\rangle$ allowed, so is superposition

$$
\alpha\left|\psi_{1}>+\beta\right| \psi_{2}>
$$

e.g. if

$$
\left.\left|\psi_{1}\right\rangle \equiv \underset{\sim}{\hat{\mathrm{x}}}\right\rangle \uparrow
$$

single photon polarized along x -axis

$$
\left|\psi_{1}\right\rangle \equiv|\underset{\sim}{\hat{y}}\rangle \longrightarrow
$$

single photon
polarized along y-axis
then

$$
|\psi>=\cos \theta| \underset{\sim}{\hat{\mathrm{x}}}>+\sin \theta \mid \underset{\sim}{\hat{\mathrm{y}}}>\quad \theta \underline{\swarrow}
$$

describes single photon with (linear) polarization at angle θ in xy-plane
and

$$
\left.\left.\left|\psi>=\frac{1}{\sqrt{2}}(\underset{\sim}{\hat{\mid}}\rangle \pm i\right| \underset{\sim}{\mid \hat{y}}\right\rangle\right)
$$

describes photon with $\mathrm{R}(\mathrm{L})$ circular polarization
(angular momentum $\pm \hbar$)
Single photon incident on birefringent crystal (polarizer):

Probability of transmission $=\cos ^{2} \theta$

Single photon incident on
birefringent crystal ("polarizer"):
Probability of transmission $=\cos 2 q$

(quantum version of Malus' law)
Digression: Can a classical probabilistic theory explain this?

"true" polarization

If \nearrow closer to \uparrow, transmitted: if closer to \longrightarrow, reflected. If transmitted, distribution of "hidden" variable is adjusted:

With suitable choice of random distribution, can
reproduce $\mathrm{P}_{\mathrm{T}}(\theta)=\cos ^{2} \theta$

$$
f(\chi)=\cos 2(\theta-\chi)
$$

2. 2-PHOTON STATES FROM CASCADE DECAY OF ATOM

ATOM

What is polarization state of photons?
(note: $|\mathrm{x}> \pm \mathrm{i}| \hat{\mathrm{y}}>$ corr. photon angular momentum $\pm \hbar$)
General principle of QM; if process can happen either of two ways, and we don't (can't) know which, must add amplitudes!

Here, we know that total angular momentum of 2 photons is zero, but we don't know whether photon 1 carried off $+\hbar$ and $2-\hbar$ (intermediate atomic state has $\mathrm{m}=1$) or vice versa (int. state $\mathrm{m}=-1)$. Hence must write

$$
\begin{array}{r}
\left|\psi>=\left|\mathrm{x}+\mathrm{iy}>_{1}\right| \mathrm{x} \text {-iy>}>_{2}+\right.\text { (phase factor). } \\
\left|x-\mathrm{i} y \gg_{1}\right| \mathrm{x}+\mathrm{iy}>_{2}
\end{array}
$$

Actually (parity \Rightarrow) phase factor $=+1$, so

$$
\left.\left.|\psi\rangle=\left|x>_{1}\right| x\right\rangle_{2}+\left|y>_{1}\right| y\right\rangle_{2} \quad\left(x \frac{1}{\sqrt{2}}\right)
$$

POLARIZATION STATE OF 2 PHOTONS EMITTED BACK TO BACK IN ATOMIC $0^{+} \rightarrow 1^{-} \rightarrow 0^{+}$TRANSITION (recap):

$$
\Psi_{2 \gamma}=\frac{1}{\sqrt{2}}(|\mathrm{x}>1| \mathrm{x}>2+|\mathrm{y}>1| \mathrm{y}>2)
$$

So, if photon 1 is measured to have polarization $x(y)$ so inevitably will photon 2 !

$$
\Psi_{2 \gamma}=\frac{1}{\sqrt{2}}\left(\left|x^{\prime}>_{1}\right| x>_{2}+\left|y^{\prime}>_{1}\right| y^{\prime}>_{2}\right)
$$

so if 1 measured to have polarization $x^{\prime}\left(y^{\prime}\right)$ so does 2 !
(NOT true for "mixture" of $\left|x>_{1}\right| x>_{2}$ and $\left.\left|y \gg_{1}\right| y \gg_{2}\right)$

Now:
What if photon 1 is incident on polarizer with "transmission" axis and photon 2 on one with a differently oriented transmission axis ${ }_{\sim}^{b}$?

Since choice of axes for $\Psi_{2 \gamma}$ arbitrary, choose $\underset{\sim}{\hat{x}}=\underset{\sim}{a}$.
Then:
Prob. of transmission of $1=1 / 2$.
But if 1 transmitted, then polarization of 2 is â, so probability of transmission of polarizer set in direction $\underset{\sim}{\hat{b}}=\cos ^{2} \theta_{a b}$
(Malus's law) \Rightarrow

$$
\mathrm{P}(\text { both transmitted })=\frac{1}{2} \cos ^{2} \theta_{\mathrm{ab}}
$$

Prob. (both detected $)=\frac{1}{2} \cos ^{2} \theta_{a b}=\frac{1}{4}\left(1+\cos 2 \theta_{a b}\right)$
Prob. $($ neither detected $)=\frac{1}{2} \cos ^{2} \theta_{\mathrm{ab}}$
"Isotropic mixture"

Prob. (1 detected, 2 not)
Prob. (2 detected, 1 not $)\} \quad=\frac{1}{2} \sin ^{2} \theta_{\mathrm{ab}}$

THESE ARE THE PREDICTIONS OF STANDARD QUANTUM MECHANICS. CAN THEY BE EXPLAINED BY A CLASSICAL PROBABILISTIC THEORY?

Df: If for a given pair, with polarizer 1 set at $\underset{\sim}{\text { â, photon }} 1$ is detected,
df. $A \equiv+1$: if rejected, $A \equiv-1$. Similarly with polarizer 2 set at $\underset{\sim}{b}$, if photon 2 detected, df. $B \equiv+1$: if rejected, then $B \equiv-1$. Then above is equivalent to the statement that for the average over the ensemble of pairs,

$$
<\mathrm{AB}>=\cos ^{2} \theta_{\mathrm{ab}}-\sin ^{2} \theta_{\mathrm{ab}}=\cos 2 \theta_{\mathrm{ab}} \quad\left[\text { "Mixture": } \frac{1}{2} \cos 2 \theta_{\mathrm{ab}}\right]
$$

as special cases, for $\theta_{\mathrm{ab}}=0<\mathrm{AB}>=+1$, and for $\theta_{\mathrm{ab}}=\pi / 2 .<\mathrm{AB}>=-1$.
(EPR). These two special cases can be accounted for by a classical probabilistic model. But...

EXPERIMENTS ON CORRELATED PHOTONS

$(A) \equiv \square \underset{\text { transm. }}{\square}$, axis $=\underset{\sim}{\text { a }}$
DEFINITION: If photon 1 is switched into counter " k
If counter " A " clicks, $A=+1$
(DF.)
If counter " A " does not click, $A=-1$ (DF.)
NOTE:
If photon 1 switched into counter " B ", then A is NOT DEFINED.
Experiment can measure
$<A C>_{\exp }$ on one set of pairs $(1 \rightarrow$ "A", $2 \rightarrow$ "C")
$<A D>_{\exp }$ on another set of pairs $(1 \rightarrow$ "A", $2 \rightarrow$ "D") etc.

Of special interest is

$$
\mathrm{K}_{\exp } \equiv\langle\mathrm{AC}\rangle_{\exp }+\langle\mathrm{AD}\rangle_{\exp }+\langle\mathrm{BC}\rangle_{\exp }-\langle\mathrm{BD}\rangle_{\exp }
$$

for which Q.M. makes clear predictions.

POSTULATES OF "OBJECTIVE LOCAL" THEORY:

(1) Local causality
(2) Induction
(3) Microscopic realism OR macroscopic
"counter-factual definiteness"

BELL'S THEOREM

1. (3) \rightarrow For each photon 1 , EITHER $\mathrm{A}=+1$ OR $\mathrm{A}=-1$, independently of whether or not A is actually measured.
2. (1) \rightarrow Value of A for any particular photon 1 unaffected by whether C or D measured on corresponding photon 2. : etc.
3. \therefore For each pair, quantities $\mathrm{AC}, \mathrm{AD}, \mathrm{BC}, \mathrm{BD}$ exist, with A, B, $\mathrm{C}, \mathrm{D},= \pm 1$ and A the same in (AC, AD) (etc.)
4. Simple algebra then \rightarrow for each pair, $\mathrm{AC}+\mathrm{AD}+\mathrm{BC}-$ $\mathrm{BD} \leq 2$
5. Hence for a single ensemble,

$$
\langle\mathrm{AC}\rangle_{\text {ens }}+\langle\mathrm{AD}\rangle_{\text {ens }}+\langle\mathrm{BC}\rangle_{\text {ens }}-\langle\mathrm{BD}\rangle_{\text {ens }} \leq 2
$$

6. (2) $\rightarrow\langle A C\rangle_{\text {exp }}=\langle A C\rangle_{\text {ens, }}$, hence the measurable quantity

$$
\mathrm{K}_{\text {exp }} \equiv\langle\mathrm{AC}\rangle_{\text {exp }}+\langle\mathrm{BC}\rangle_{\text {exp }}+\langle\mathrm{BC}\rangle_{\text {exp }}-\langle\mathrm{BD}\rangle_{\text {exp }}
$$

satisfies

$$
\mathrm{K}_{\exp } \leq 2, \begin{aligned}
& \text { Obj. Local } \\
& \text { Theory }
\end{aligned}
$$

OBJECTIVE LOCAL THEORY: $\underline{K}_{\exp } \leq 2$.
QM: If polarizer settings are $\underset{\sim}{\mathrm{a}}, \underset{\sim}{\mathrm{b}}, \underset{\sim}{\mathrm{c}}, \underset{\sim}{\mathrm{d}}$
then e.g. for a 0^{+}transition predict

$$
<\mathrm{AC}>=\cos \left(2 \theta_{\underline{a} \cdot \underline{c}}\right) \text {, etc. }
$$

\Rightarrow for

QM predicts (ideal case)

$$
K_{\exp }=2 \sqrt{2}
$$

\Rightarrow Exptl. Predictions of QM incompatable with those of any theory embodying
$\left\{\begin{array}{l}\text { Local causality } \\ \text { Induction } \\ \text { Macroscopic counter-factual definiteness }\end{array}\right.$

1. "It is a fact that either A would have clicked or A wo have clicked"
2. "Either it is a fact that A would have clicked, or it is : that A would not have clicked"

IDEA OF "ENTANGLEMENT":

System composed of 2 (separated) subsystems 1 and 2:

$$
\Psi=\Psi(1,2) \quad[\text { general }]
$$

(a) $\Psi(1,2)=\chi(1) \phi(2)$ product, nonentangled
"Properties" of 1 described by $\chi(1)$
"Properties" of 2 described by $\phi(2)$
Complete information on system obtainable by making measurements on subsystems separately.
(b) $\Psi(1,2) \neq \chi(1) \phi(2)$ entangled
e.g. (2 photons)

$$
\begin{aligned}
& \Psi(1,2)=\frac{1}{\sqrt{2}}\left(|x\rangle_{1}|x\rangle_{2}+|y\rangle_{1}|y\rangle_{2}\right) \\
& \quad\left(" E P R \text { pair") } \equiv\left(\uparrow_{1} \uparrow_{2}+\rightarrow_{1} \rightarrow_{2}\right)\right.
\end{aligned}
$$

Subsystems 1 and 2 do not "possess" individual properties (Bell's theorem).

Complete information on system obtainable only by correlated measurements on 1 and 2

1. Quantum "Teleportation"
(e.g. of state of photon)

(A)
("Alice")

Rules of the game: Alice is to transmit to Bob an arbitrary state $\mid \psi>$ of a photon, without direct physical contact (but A (or D) may communicate with B e.g. by a classical phone line). (Alice may not even know what state she has sent).

Solution: C emits "EPR pair." D then measures combined state of R and G photons. If D finds EPR pair, then angular momentum conservation \Rightarrow state received by $\mathrm{B}=$ that sent by A (and D phones B to tell him so). If D finds a different state, can "rotate" into EPR pair. Then B must perform inverse of this rotation (and D so instructs him).

2. Quantum Cryptography:

Key distribution problem: Alice must be able (a) to communicate the "key" (a string of 1's and 0's) to Bob, and moreover know if Eve is listening in. Classically, no 100% secure way of ensuring this is known.

Solution:

S emits a string of EPR pairs. A measures in basis , or in basis , in a random way: B measures similarly, also at random. At the end, A and B inform one another by phone which basis they have used for each measurement, discard those for which they used different bases, and compare notes on a subset of the rest. If they always agree, they can be sure of no eavesdropping, and so use the rest for the key.

If Eve tries to "listen in" on the quantum channel...
3. Quantum Computation:

EX: particles of spin $1 / 2$.
A single particle of spin $1 / 2$ in a pure state is parametrized by 2 independent variables, e.g. corresponding to the angles (θ, φ) made by its spin with the z - and x -axes.

A collection of N particles of $\operatorname{spin} 1 / 2$ in a product state is parametrized similarly by 2 independent variables for each, i.e. 2 N in total.

But the same collection of N particles in a generic entangled state requires for its parametrization 2^{N} variables!

$$
\text { e.g. }(N=3)
$$

$$
\begin{gathered}
\Psi(1,2,3)=a_{1}\left|\uparrow_{1} \uparrow_{2} \uparrow_{3}>+a_{2}\right| \uparrow_{1} \uparrow_{2} \downarrow_{3}>+a_{3} \mid \uparrow_{1} \downarrow_{2} \uparrow_{3}> \\
\ldots+a_{8} \mid \downarrow_{1} \downarrow_{2} \downarrow_{3}>
\end{gathered}
$$

\Rightarrow MASSIVELY PARALLEL COMPUTATION!

(Shor, 1994: factorization of N -digit no. takes time which for classical computer is exponential in N , but for quantum computer is power-law).

DEUTSCH'S ALGORITHM (SIMPLIFIED VERSION)* ${ }^{\# 16}$

Since $x=\{0,1\}$, only 4 possible mappings $f: x \rightarrow x$
Question: Does $f(0)=f(1)$?
Classically, need to input $x=0$ (y can be 0 or 1) and measure output of lower bit, then same with $\mathrm{x}=1$. (2 measurements)

Input: $\quad \mid x>=2^{-1 / 2}(|0>+| 1>)$

$$
|0,1>\rightarrow| 0,1+\mathrm{f}(0)>\text { etc. }
$$

$$
\mid y>=2^{-1 / 2}(|0>-| 1>
$$

*after Nielsen + Chuang, Q. Comp. + Q. Inf., § 1.4.3

$$
\left\lvert\, \mathrm{x}>=\frac{1}{\sqrt{2}}\left(\left|0>+|1 \gg| \mathrm{x}^{\prime}>=?\right.\right.\right.
$$

If $\mathrm{f}(0)=\mathrm{f}(1)$, then $\left|\mathrm{x}^{\prime}>=\frac{1}{\sqrt{2}}(|0>+| 1>) \equiv\right|+>$
If $f(0) \neq \mathrm{f}(1)$, then $\left|\mathrm{x}^{\prime}>=\frac{1}{\sqrt{2}}(|0>-| 1>) \equiv\right|->$
By appropriate unitary transformation, convert

$$
\begin{aligned}
& |+>\rightarrow| 0> \\
& |->\rightarrow| 1>
\end{aligned}
$$

Then measure x : (1 measurement!)

$$
\begin{aligned}
& \text { If } \mathrm{x}=0 \text {, then } \mathrm{f}(0)=\mathrm{f}(1) \\
& \text { If } \mathrm{x}=1 \text {, then } \mathrm{f}(0) \neq \mathrm{f}(1)
\end{aligned}
$$

[NB: Deutsch's algorithm itself does not exploit entanglement, but almost all more sophisticated algorithms do]

(SIMPLEST) DESIGN FOR A QUANTUM COMPUTER:

couple together N 2 -state systems
("QUBITS") in such a way that we can reliably perform "1-qubit" operations
(non-entangling) and "2-qubit" operations (entangling)
e.g. Heisenberg interaction $J \sigma_{1} \cdot \sigma_{2}$ induces

$$
\underset{\text { non-entangled }}{\uparrow_{1} \downarrow_{2} \Longrightarrow} \underset{\substack{-1 / 2}}{\substack{\uparrow_{1} \\ \downarrow_{2} \\ \text { entangled }}}
$$

Principal requirements for qubit:

> 2 states only
> easy initialization and readout scalable
> * decoherence-free
"Figure of merit" for (lack of) decoherence:

$$
\mathrm{Q}_{\varphi} \equiv \omega_{o} \mathrm{~T}_{\varphi} .
$$

char. freq. of
"dephasing" time
2-state system
Current "designs" require $\mathrm{Q}_{\varphi} \gtrsim 10^{4}$
$\longleftrightarrow 0.5 \mathrm{~mm} \longrightarrow$

PHYSICS OF SUPERCONDUCTIVITY

$$
\begin{gathered}
\text { "Spin" of elementary }=\frac{\mathrm{n}}{2} \hbar \\
\text { particles }
\end{gathered}
$$

$\begin{array}{lr}0,1,2 \ldots & \text { bosons } \\ \frac{1}{2}, \frac{3}{2}, \frac{5}{2} \ldots & \text { fermions }\end{array}$
 No. of particles

 kT

Electrons in metals: spin $1 / 2 \Rightarrow$ fermions
But a compound object consisting of an even no.
of fermions has spin $0,1,2 \ldots \Rightarrow$ boson.
(Ex: $2 \mathrm{p}+2 \mathrm{n}+2 \mathrm{e}={ }^{4} \mathrm{He}$ atom)
\Rightarrow can undergo Bose condensation

Pairing of electrons:

"di-electronic molecules"
Cooper Pairs

In simplest ("BCS") theory, Cooper pairs, once formed, must automatically undergo Bose condensation!
\Rightarrow must all do exactly the same thing at the same time (also in nonequilibrium situation)

SUPERCONDUCTING RING IN EXTERNAL MAGNETIC FLUX:

> Quantization condition for "particle" of charge 2 e (Cooper pair):
$\mathrm{K} \equiv \oint \mathbf{v} \cdot \mathbf{d} \mathbf{l}=\frac{\mathrm{h}}{2 \mathrm{~m}}\left(\mathrm{n}-\Phi / \Phi_{\mathrm{o}}\right)$
$\mathrm{E} \propto \mathrm{K}^{2}$

$$
\propto\left(\mathrm{n}-\Phi / \Phi_{\mathrm{o}}\right)^{2)} \quad \text { "circulation" }
$$

"flux quantum" h/2e
A. $\quad \Phi=0$: groundstate unique $(\mathrm{n}=0)$
\Rightarrow all pairs at rest.
B. $\Phi=1 / 2 \Phi_{0}$: groundstate doubly degenerate $\quad\left(\mathrm{E} \propto(\mathrm{n}-1 / 2)^{2}\right)$

$$
(\mathrm{n}=0 \text { or } \mathrm{n}=1)
$$

Either all pairs rotate clockwise
Or all pairs rotate anticlockwise

Note: state with 50% and 50%

> strongly forbidden by energy considerations

Josephson "qubit"

Evidence: (a) spectroscopic: (SUNY, Delft 2000)

$$
\Psi=2^{-1 / 2}(|U\rangle+|U\rangle)
$$

(b) real-time oscillations (like NH_{3})
between \cup and \cup
(Saclay 2002, Delft 2003) $\quad\left(\mathrm{Q}_{\varphi} \sim 50-100\right)$

