Is Quantum Mechanics the Whole Truth?*

A.J. Leggett

University of Illinois at Urbana-Champaign

1. Why bother?
2. What are we looking for?
3. What have we seen so far?
4. Where do we go from here?
*J. Phys. Cond. Mat. 14, R415 (2002)
Reps. Prog. Phys. 71, 022001 (2008)

MEASURE:

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{A} \rightarrow \mathrm{~B} \rightarrow \mathrm{E}} \\
& \mathrm{P}_{\mathrm{A} \rightarrow \mathrm{C} \rightarrow \mathrm{E}} \\
& \mathrm{P}_{\mathrm{A} \rightarrow \mathrm{E}}^{\mathrm{tot}}
\end{aligned}
$$

(shut off channel C)
(shut off channel B)
(both channels open)

EXPTL. FACT: $\quad \mathrm{P}_{\mathrm{A} \rightarrow \mathrm{E}}^{\text {tot }} \neq \mathrm{P}_{\mathrm{A} \rightarrow \mathrm{B} \rightarrow \mathrm{E}}+\mathrm{P}_{\mathrm{A} \rightarrow \mathrm{C} \rightarrow \mathrm{E}}$

QM ACCOUNT: $\quad \mathrm{P}_{\mathrm{A} \rightarrow \mathrm{E}}^{\text {tot }}=\left|\sum_{\text {paths }} \mathrm{A}_{\mathrm{A} \rightarrow \mathrm{E}}^{(\text {path })}\right|^{2}$

$$
=\mathrm{P}_{\mathrm{A} \rightarrow \mathrm{~B} \rightarrow \mathrm{E}}+\mathrm{P}_{\mathrm{A} \rightarrow \mathrm{C} \rightarrow \mathrm{E}}+2 \mathrm{Re}\left(\mathrm{~A}_{\mathrm{A} \rightarrow \mathrm{~B} \rightarrow \mathrm{E}} \square \mathrm{~A}_{\mathrm{A} \rightarrow \mathrm{C} \rightarrow \mathrm{E}}^{*}\right)
$$

\Rightarrow amplitude must be nonzero for each of two paths, not just for ensemble but for each member of it And yet....

At microlevel:

Directly observed phenomenon of interference

\Rightarrow simultaneous "existence" of amplitudes for two alternative paths for each individual member of ensemble
\Rightarrow neither outcome "definitely realized"
Now, extrapolate formalism to macrolevel (Schrödinger):

Is each cat of ensemble either in state L or in state D ?

POSSIBLE HYPOTHESES:

A. QM is the complete truth about the world, at both the microscopic (μ) and macroscopic (M) levels.

Then:
Do QM amplitudes correspond to anything "out there"?

Interpretation
μ Level
no
M level
Statistical
Relative-state ("many-worlds") $\}$
yes yes

Orthodox ("decoherence") $\}$
yes
no

DOES THE VANISHING OF THE EVIDENCE PERMIT RE-INTERPRETATION OF THE MEANING OF THE QM FORMALISM?
B. QM is not the complete truth about the world: at M level other (non-QM) principles enter.
\Rightarrow superpositions of macroscopically distinct states do not (necessarily) exist (Ex: GRWP)

> ("MACROREALISM")

Do "EPR-Bell" Expts. Already Exclude Macrorealism?

Experimental results (consistent with predictions of QM and) inconsistent with any theory embodying conjunction of

1. Induction
2. Locality
3. Microscopic realism or macroscopic counterfactual definiteness (MCFD)
$\triangle \mathrm{MCFD} \neq$ macrorealism!
nevertheless: \exists no "local" instruction set . . .

When does "realization" take place?

EPR-Bell Expts: The "Third-Party" Problem

Prima facie, for eg 0^{+}transition, QM description after both detectors have had chance to fire is

$$
\begin{gathered}
\Psi_{Q M}=2^{-1 / 2}\left\{\cos \Theta_{a b}\left(\left|Y_{1}\right\rangle\left|Y_{2}\right\rangle+\left|N_{1}\right\rangle\left|N_{2}\right\rangle\right)\right. \\
+\sin \Theta_{a b}\left(\left|Y_{1}\right\rangle\left|N_{2}\right\rangle+\left|N_{1}\right\rangle\left|Y_{2}\right\rangle\right\} \\
(|\mathrm{Y}\rangle=\text { "fired", }|\mathrm{N}\rangle=\text { "not fired") }
\end{gathered}
$$

But in fact:

$$
\Psi_{Q M} \sim 2^{-1 / 2}\left\{\cos \Theta_{a b}|Y\rangle|Y\rangle\left|E_{1}\right\rangle\left|E_{2}\right\rangle+\ldots .\right\} ?!
$$

Q: Is it possible to discriminate experimentally between hypotheses (A) and (B) (at a given level of "macroscopicness")?

A: Yes, if and only if we can observe Quantum Interference of Macroscopically Distinct States (QIMDS).

What is appropriate measure of "macroscopicness" ("Schrödinger's cattiness") of a quantum superposition?
\uparrow : Definition should not make nonexistence of QIMDS a tautology!
(My) proposed measures:
(1) Difference in expectation value of one or more extensive physical quantities in 2 branches, in "atomic" units. (" Λ ")
(2) Degree of "disconnectivity" (\cong entanglement): how many "elementary" objects behave (appreciably) differently in 2 branches? ("D")
 NOT strongly entangled with their environments!
$(1)+(2) \Rightarrow$ concept of macroscopic variable.

PROGRAM:

Stage 1: Circumstantial tests of applicability of QM to macrovariables.
Stage 2: Observation (or not!) of QIMDS given QM'1 interpretation of raw data.
Stage 3: EITHER (a) exclude hypothesis B (macrorealism) independently of interpretation of raw data,

OR (b) exclude hypothesis A (universal validity of QM).

Objections:
(1) Macrovariable $\Rightarrow \mathrm{S} \gg \hbar \Rightarrow$ predictions of QM indistinguishable from those of CM .

Solution: Find macrovariable whose motion is controlled by microenergy.
(2) Decoherence \Rightarrow stage 2 impossible in practice. Solution: Find system with very small dissipation.
(3) Hamiltonian of macrosystem unknown in detail \Rightarrow can never make QM'l predictions with sufficient confidence to draw conclusion (3b).

Stage 1. Circumstantial tests of applicability of QM to macroscopic variables.
(mostly Josephson junctions and SQUIDS)
e.g.
\uparrow energy

"level quantization/ resonant tunnelling"

Tests conjunction of (a) applicability of QM to macrovariables
(b) treatment of dissipation
A. Molecular Diffraction (Vienna, 2000)

Note: (a) beam does not have to be monochromated (b) $\mathrm{T}_{\text {oven }} \sim 900 \mathrm{~K} \Rightarrow$ many vibrational modes excited B. Magnetic Biomolecules (1BM, 1989)

Evidence for QIMDS: resonance absorption of rf field, noise If correct, $\mathrm{D} \sim \mathrm{N}$ (total no. of spins per molecule)
Note: ensemble of systems, only total magnetization measured
C. Quantum-Optical Systems (Aarhus, 2001)
$<\delta \mathrm{J}_{\mathrm{xl}} \delta \mathrm{J}_{\mathrm{y} 1}>\square\left|\mathrm{J}_{\mathrm{zl}}\right|(\neq 0)$
$<\delta \mathrm{J}_{\mathrm{x} 2} \delta \mathrm{~J}_{\mathrm{y} 2}>\square\left|\mathrm{J}_{\mathrm{z} 2}\right|(\neq 0)$
but, $<\delta \mathrm{J}_{\text {xtot }} \delta \mathrm{J}_{\mathrm{ytot}} \gg \square\left|\mathrm{J}_{\text {ztot }}\right|=0$!
"macroscopic" EPR-type correlations
Note: $\mathrm{D} \sim \mathrm{N}^{1 / 2} \operatorname{not} \sim \mathrm{~N}$.

$\sim 10^{12}{ }^{87} \mathrm{Cs}$ atoms

$$
\mathrm{J}_{\mathrm{z} 1}=-\mathrm{J}_{\mathrm{z} 2}
$$

The Search for QIMDS

1.Molecular diffraction*

Note: (a.) Beam does not have to be monochromated

$$
f(v)=A v^{3} \exp -\left(v-v_{o}\right)^{2} / v_{m}^{2} \quad\left(v_{o} \sim 18 v_{m}\right)
$$

(b.) "Which-way" effects?

Oven is at $900-1000 \mathrm{~K}$
 absorb/emit several radiation quanta on passage through apparatus!

Why doesn't this destroy interference?

[^0]
The Search for QIMDS (cont.)

2. Magnetic biomolecules*

($\sim 5000 \mathrm{Fe}^{3+}$ spins, mostly
$\alpha|\hat{\boldsymbol{\eta}}\rangle+\beta|\boldsymbol{\eta}\rangle$?
AF but slight ferrimagnetic tendency)
$\left(\mathrm{M} \sim 200 \mu_{\mathrm{B}}\right)$
AF : $\Delta \sim \hbar \omega_{o} \exp -N \sqrt{K / J} \sim$ (isotropic) exchange en. no. of spins uniaxial anisotropy

Raw data: $\chi(\omega)$ and noise spectrum above $\sim 200 \mathrm{mK}$, featureless below $\sim 300 \mathrm{mK}$, sharp peak at $\sim 1 \mathrm{MHz}\left(\omega_{\text {res }}\right)$

$$
\begin{aligned}
& \omega_{\text {res }}^{2} \cong \omega_{0}^{2}+M^{2} H^{2} \\
& \text { ln } \omega_{o} \sim a-b N \leftarrow \text { no. of spins, exptly. }
\end{aligned}
$$

adjustable
Nb : data is on physical ensemble, i.e., only total magnetization measured.

The Search for QIMDS (cont.)

3. Quantum-optical systems*

for each sample separately, and also for total

$$
\begin{aligned}
& {\left[J_{x}, J_{y}\right]=i J_{z} } \\
\Rightarrow & \left\langle\delta J_{x 1} \delta J_{y 1}\right\rangle \geq\left|J_{z 1}\right| \\
& \left\langle\delta J_{x 2} \delta J_{y 2}\right\rangle \geq\left|J_{z 2}\right| \\
& \left\langle\delta J_{x t o t} \delta J_{y t o t}\right\rangle \geq\left|J_{z t o t}\right|
\end{aligned}
$$

so, if set up a situation s.t. $J_{z 1}=-J_{z 2}$
must have $\left\langle\delta J_{x 1} \delta_{y 1}\right\rangle>0$

$$
\left\langle\delta J_{x 2} \delta_{y 2}\right\rangle>0
$$

but may have $\left\langle\delta J_{x t o t} \delta J_{y t o t}\right\rangle=0$
(anal. of EPR)

Interpretation of idealized expt. of this type:
$(\mathrm{QM}$ theory $\Rightarrow) \quad\left\langle\delta J_{x 1} \delta J_{y 1}\right\rangle \geq\left|J_{z 1}\right| \sim N$
$\Rightarrow\left|\delta J_{x 1}\right| \gtrsim N^{1 / 2}$
But,
$(\operatorname{expt} \Rightarrow)\left\langle\delta J_{x t o t} \delta J_{y t o t}\right\rangle \cong 0$
$\Rightarrow\left|\delta J_{\text {xtot }}\right| \sim 0$
$\Rightarrow \delta J_{x 1}$ exactly anticorrelated with $\delta J_{x 2}$
\Rightarrow state is either superposition or mixture of $\mid \mathrm{n},-\mathrm{n}>$
but mixture will not give (\#)
\Rightarrow State must be of form

$$
\sum_{n} c_{n} \mid n_{1}-n>
$$

with appreciable weight for $n \leq N^{1 / 2}$. \Rightarrow high disconnectivity Note:
(a) QM used essentially in argument $(\Rightarrow$ stage 2 not stage 3)
(b) $\mathrm{D} \sim \mathrm{N}^{1 / 2} \operatorname{not} \sim \mathrm{~N}$.
(prob. generic to this kind of expt.)

The Search for QIMDS (cont.)

4. Superconducting devices

(P : not all devices which are of interest for quantum computing are of interest for QIMDS)

Advantages:
— classical dynamics of macrovariable v . well understood

- intrinsic dissipation (can be made) v. low
— well developed technology
- (non-) scaling of S (action) with D.
— possibility of stage-III expts.

London
penetration
depth
"Macroscopic variable" is trapped flux Φ [or circulating current I]

The Search for QIMDS (cont.)

D. Josephson circuits

Evidence: (a) spectroscopic: (SUNY, Delft 2000)

$$
\Psi=2^{-1 / 2}(|U\rangle+|U\rangle)
$$

(b) real-time oscillations (like NH_{3})
between \cup and \circlearrowright
(Saclay 2002, Delft 2003) $\quad\left(Q_{\varphi} \sim 50-350\right)$

From I. Chiorescu, Y. Nakamura, C.J.P. Harmans, and J.E. Mooij, Science, 299, 1869 (2003)
"EXTENSIVE
DIFFERENCE"

1

$$
\sim 10^{9}
$$

interferometer

$$
1
$$

QED cavity
~ 10 $\lesssim 10$

Cooper-pair box
$\sim 10^{5}$
~ 1100
~ 1100

Ferritin $\sim 5000(?) \sim 5000$
Ferritin $\sim 5000(?) \sim 5000$
Aarhus quantumoptics expt.

$$
\begin{gathered}
\sim 10^{6} \\
\left(\propto \mathrm{~N}^{1 / 2}\right)
\end{gathered}
$$

$\sim 10^{9}-10^{10}$
$(\propto \mathrm{N})$
$\left(10^{4}-10^{10}\right)$

SUNY SQUID expt.

Smallest visible dust particle
$\left(10^{3}-10^{14}\right)$
$\sim 10^{14}$
$\sim 10^{34}$
$\sim 10^{25}$

Where do we go from here?

1. Larger values of Λ and/or D ?
(Diffraction of virus?)
2. Alternative Dfs. of "Measures" of Interest

- More sophisticated forms of entanglement?
- Biological functionality (e.g. superpose states of rhodopsin?)
- Other (e.g. GR)
*3. Exclude Macrorealism

Suppose: Whenever
observed, $\mathrm{Q}= \pm 1$.

$\mathrm{Q}=+1$

$\mathrm{Q}=-1$

Df. of "MACROREALISTIC" Theory:
"COMMON
SENSE"? $\left\{\begin{array}{rr}\text { I. } & \begin{array}{r}\mathrm{Q}(\mathrm{t})= \pm 1 \text { at (almost) all } \mathrm{t}, \\ \text { whether or not observed. }\end{array} \\ \text { II. } & \text { Noninvasive measurability }\end{array}\right.$
III. Induction

Can test with existing SQUID Qubits!

1 ILLINOIS

Phase 2: Superposition

- Methods
- Two conditions
- Superposition condition: N photons at $|\mathrm{L}\rangle+|\mathrm{R}\rangle$ state
- Mixed condition: N photons each at |L> or $|\mathrm{R}\rangle$ with equal probability
- Observer judges whether a light was present on Left and on Right separately

```
\(|L\rangle+|R\rangle\)
```


Superposition condition

Mixed condition

- Data analysis
- If the detection rates at L and/or R in the superposition condition is statistically different from that of the mixed condition, then QM is violated

Df:

$$
\begin{aligned}
& K \equiv K\left(t_{1} t_{2} t_{3} t_{4}\right) \equiv\left\langle Q\left(t_{1}\right) Q\left(t_{2}\right)\right\rangle_{\exp }+\left\langle Q\left(t_{2}\right) Q\left(t_{3}\right)\right\rangle_{\exp } \\
&+\left\langle Q\left(t_{3}\right) Q\left(t_{4}\right)\right\rangle_{\exp }-\left\langle Q\left(t_{1}\right) Q\left(t_{4}\right)\right\rangle_{\exp }
\end{aligned}
$$

Take $t_{2}-t_{1}=t_{3}-t_{2}=t_{4}-t_{3}=\pi / 4 \Delta \leftarrow$ tunnelling frequency
Then,
(a) Any macrorealistic theory: $\mathrm{K} \leq 2$
(b) Quantum mechanics, ideal: $\mathrm{K}=2.8$
(c) Quantum mechanics, with all $\mathrm{K}>2($ but $<2.8)$ the real-life complications:

Thus: to extent analysis of (c) within quantum mechanics is reliable, can force nature to choose between macrorealism and quantum mechanics!

Possible outcomes:
(1) Too much noise $\Rightarrow \mathrm{K}_{\mathrm{QM}}<2$
(2) $\mathrm{K}>2 \Rightarrow$ macrorealism refuted
(3) $\mathrm{K}<2: ?$!

[^0]: *Arndt et al., Nature 401, 680 (1999)

