# Spontaneous Symmetry Breaking: Its Successes, Its Limitations, and Its Pitfalls

## Professor Tony Leggett, UIUC



## Broken Symmetry

Hamiltonian (Lagrangian) of system is invariant under various symmetry operations.

## Examples:

 (1) <u>Nonrelativistic CM system</u>, e.g. gas of atoms of spin <sup>1</sup>/<sub>2</sub>: (zero magnetic field)

$$\hat{H} = -\frac{1}{2M} \sum_{i} \nabla_i^2 + \frac{1}{2} \sum_{i \neq j} V(|\boldsymbol{r}_i - \boldsymbol{r}_j|)$$



also (trivially) invariant under <u>global</u> "gauge transformation,  $\Psi(r_1r_2...r_N: \sigma_1\sigma_2...\sigma_N) \rightarrow \exp i\varphi \cdot \Psi(r_1..r_N: \sigma_1..\sigma_N)$ 

(2) **QED Lagrangian (density):** 

$$\mathcal{L}(x) = -\frac{1}{4} \left( \frac{\partial A_{\mu}}{\partial x_{\nu}} - \frac{\partial A_{\nu}}{\partial x_{\mu}} \right)^2 - mc^2 \bar{\Psi} \Psi - \hbar c \left( \bar{\Psi} \gamma_{\mu} (\partial_{\mu} - ieA_{\mu}) \Psi \right)$$

## invariant under:

Poincaré group (= Lorentz + space-time transl<sup>n),</sup> C, P, T,

local gauge transfn

$$\left(\Psi(x) \to e^{ie\theta(x)}\Psi(x), A_{\mu}(x) \to A_{\mu}(x) + \partial_{\mu}\theta(x)\right)$$

1

H (or  $\mathcal{L}$ ) is (exactly or approximately) invariant under all the operations of some symmetry group G. The thermodynamic equilibrium state is invariant only under the operations of some subgroup K  $\in$  G. ( $\uparrow$ : K may be simply the identity!)

In principle, two cases:

(a)  $\exists$  some small perturbation which is not invariant under (all operations of) G.

Examples:

CM: earth's magnetic field, lab bench. . . .

Particle theory: Coulomb interaction (in context of isotopic spin symmetry)

This is the (conceptually) "easy" case. In this case,  $\exists$  same operation  $\hat{R} \in G$  (but  $\notin K$ ) s. t.

 $\hat{R}|0\rangle \neq |0\rangle \leftarrow$  physically realized thermodynamic eq<sup>n</sup> state

so in general 
$$\exists \hat{\Omega}(x), \quad \int \hat{\Omega}(x) dx = \Omega, \quad \text{s.t.} \quad [\hat{\Omega}, \hat{R}] \neq 0$$
  
"order parameter"

but nevertheless

 $\langle 0|\hat{\Omega}|0\rangle \neq 0.$ 

(b) ∃ no small (physical) perturbationExample (particle physics): Higgs mechanism.

This is the "difficult" case. For this, best df. is

 $\lim_{|\underline{r}| \to \infty} \langle 0 | \hat{\Omega}(\underline{r}) \hat{\Omega}(0) | 0 \rangle \neq 0$ 

A SIMPLE EXAMPLE: HEISENBERG MAGNET

N quantum-mechanical spins on lattice:

$$\hat{H} = -J \sum_{i,m=n.n.}^{N} \hat{S}_{i} \cdot \hat{S}_{j} - \mu S_{Z} \mathcal{H} \leftarrow \text{ext } \ell \text{ field } \parallel \hat{z}.$$
magnetic moment
invariant under 0(3)
[also  $\mathcal{I}(\underline{a})$ ]

Assume:  $\mu \mathcal{H} / k_B T \ll 1$ .

(a) <u>J=0 ("ideal paramagnet")</u> spins independent, single-spin Zeeman energy competes with  $k_BT$ : e.g. for S=1/2.

$$P\uparrow/P\downarrow\sim\exp(\mu\mathcal{H}/kT)$$
  
$$\Rightarrow\langle S_{Z}\rangle=\frac{1}{2}N\tanh\left(\mu\mathcal{H}/kT\right)\approx\frac{1}{2}N.\frac{\mu\mathcal{H}}{kT}(=o(\mathcal{H}))$$

(b) J > 0 ("Heisenberg ferromagnet")

Entropy considerations favor "disorder"  $(\langle S_z \rangle \rightarrow 0)$ .

Interaction term: invariant under  $0(3) \Rightarrow$  favors spins lying ||, but does not specify common direction.

But, if (common) direction makes angle  $\theta$  with z-axis, then

$$E_z \sim -N \,\mu \mathcal{H} \cos \theta$$
  
$$\Rightarrow \left\langle S_z \right\rangle \sim \frac{1}{2} N \,\mu \tanh(N \,\mu \mathcal{H} \,/ \,kT)$$

Provided  $N \mu \mathcal{H} / k_B T >> 1$ ,

$$\langle S_z \rangle \sim \frac{1}{2} N \mu$$
, = independent of  $\mathcal{H}$ 

In this example,  $\hat{R} = (e.g.) \operatorname{rot}^{n}$  around x-axis,  $\hat{\Omega}(\underline{r}) = S_z(\underline{r}).$  Note  $[S_z, H] = 0$  HEISENBERG MAGNET (cont.)

Recap: 
$$\hat{H} = -J \sum_{\substack{i,m=n.n.\\ \mathbf{v}}}^{N} \hat{S}_{i} \cdot \hat{S}_{j} (-\mu S_{Z} \mathcal{H})$$

inv<sup>t</sup> under  $0(3), \mathfrak{I}_a, P, T$ 

 (c) <u>J<0 ("Heinsenberg antiferromagnet")</u> Interaction now favors nearest-neighbor spins lying <u>antiparallel</u> ("Néel state"):

| 1            | $\downarrow$ | $\uparrow$   | $\downarrow$ | ↑            | $\downarrow$ |  |
|--------------|--------------|--------------|--------------|--------------|--------------|--|
| $\downarrow$ | ↑            | $\downarrow$ | $\uparrow$   | $\downarrow$ | ↑            |  |
| ↑            | $\downarrow$ | $\uparrow$   | $\downarrow$ | $\uparrow$   | $\downarrow$ |  |

Uniform field  $\mathcal{H}$  now does <u>not</u> "break" symmetry. What does?

- (1) Generally, crystal-field effects break 0(3) symmetry (Heisenberg  $\rightarrow$  Ising), but leave symmetry under T intact.
- (2) V. weak inhomogeneous magnetic fields break residual T-invariance.

In this case,  $\langle S_z \rangle = 0$ . What is order parameter?

Ans: "Staggered" magnetization,  $N \equiv \sum_{i} (-1)^{P_i} \langle S_i \rangle$  $P_i \equiv$  "parity" of atomic site *i* 

Note:

- (a) in this case,  $\left[\hat{N}, \hat{H}\right] \neq 0$
- (b) N is not invariant under *T* or  $\mathfrak{T}_{\ell}$  alone, but <u>is</u> invariant under their combination.



 $\frac{\text{LANDAU-LIFSHITZ THEORY OF PHASE TRANS}^{NS}}{(2^{nd} \text{ or } 1^{st} \text{ order!})}$ 

Hamiltonian has some symmetry which is broken by formation of nonzero order parameter  $\eta(x) \equiv \langle \Omega(x) \rangle$ . At high enough *T*, expect entropy considerations to favor  $\eta = 0$ : at low T, interaction energy may favor finite  $\eta$ . Expand free energy FE-TS in powers of  $\eta$ : schematically.

 $F(T:\eta) = a_0(T) + a_1(T)0(\eta) + a_2(T)0(\eta^2) + a_3(T)0(\eta^3) + ...(+gradient terms)$ 

 $a_1(T) \neq 0 \Longrightarrow$  no phase transition

 $a_1(T) \neq 0 \Rightarrow$  phase transition of 1<sup>st</sup> order (e.g. Xtal)

Fortunately,  $F(T;\eta)$  must respect symmetry of  $\hat{H}$ ! In particular, if  $\hat{H}$  invariant under  $\hat{\Omega}(x) \rightarrow -\hat{\Omega}(x)$ , then all odd terms vanish.  $\Rightarrow$  (poss. of) 2<sup>nd</sup> order phase transition.

Illustration: Heisenberg spins confined to plane: OP is complex scalar.

$$\eta(\underline{r}) \equiv \langle S_x(\underline{r}) + iS_y(\underline{r}) \rangle$$
  
in this case, invariance requires  
$$F\{T:\eta(\underline{r})\} = \int dr \, \mathcal{F}(T:\eta(r))$$
  
$$\mathcal{F}(T:\eta(r)) = \mathcal{F}_0 \, (T) + \infty \, (T) |\eta(r)|^2 + \frac{1}{2} \beta(T) |\eta(r)|^4 + \dots + \gamma(T) |\nabla \eta(r)|^2 + \dots + \gamma(T) |\nabla \eta$$

$$\mathcal{L}(xt) \equiv \mathcal{L}_0 - m^2 |\varphi(rt)|^2 - \left(\frac{\partial \varphi}{\partial x_\mu}\right)^2 - g |\varphi(rt)|^4$$

$$(\varphi^4 \text{ field theory})$$

Recap:

$$F\{T:\eta(\underline{r})\} = \int d^3\underline{r} \,\mathcal{F}(T:\eta(\underline{r}))$$
  
$$\mathcal{F}=\mathcal{F}_0 + \alpha(T)|\eta(r)|^2 + \frac{1}{2}\beta(T)|\eta|^4 + \gamma(T)|\nabla\eta|^2 + \dots$$

"Normal" state ( $\eta(r)=0$ ) stable if  $\alpha, \beta > 0$ .

Typically, entropy S is decreasing f( $\eta$  and interaction en. is  $-const.|\eta|^2$ . So, generically, in  $F \equiv E - TS$ ,

$$\begin{split} &\beta(T) > 0, \quad \gamma(T) > 0 \\ &\alpha(T) \sim -J_0 \mid \eta \mid^2 + \zeta T \mid \eta \mid^2 \quad \left(\zeta \equiv \frac{\partial^2 S}{\partial \eta^2} \mid_{\eta=0}\right) \\ &\equiv \alpha_0(T - T_c) \mid \eta \mid^2 \quad , \quad \begin{cases} \alpha_0 \equiv \zeta, \\ T_c \equiv J_0 \mid \zeta \end{cases} \end{split}$$

So, approximately (T~T<sub>c</sub>),

$$\mathcal{F}(\eta) = \alpha_0(T - T_c) |\eta|^2 + \frac{1}{2}\beta_0 |\eta|^4 + \gamma_0 |\nabla \eta|^2 (-\eta \mathcal{H}_{ext})$$

(canonical form of LL("mean-field") free energy) Consequences:

(1) For T>T<sub>c</sub>,  $\eta=0$ 

(2) For Tc, 
$$\eta = \sqrt{\frac{\alpha_0}{\beta_0}} (T_c - T)^{1/2}$$

<u>phase</u> of  $\eta$  det<sup>d</sup> by  $\mathcal{H}_{ext}$ 

(3) Deformation ("twist") of 
$$\eta(\underline{r})$$
 const en.  $\sim |(\nabla \eta)|^2$   
 $\Rightarrow$  Goldstone boson ( $\omega \rightarrow 0$  for  $\underline{k} \rightarrow 0$ ) (generic for broken

continuous symmetry)

 spin + structural glasses dissociation
 FQH ("topologically ordered" state) etc.

#### SYMMETRY BREAKING IN FIELD THEORY



7

horizon

#### 2. HIGGS MECHANISM

Ex: massless vector boson with gauge coupling to scalar field ("toy model" of EW theory)

$$\mathcal{L} = -\frac{1}{4} F^{\mu\nu} F_{\mu\nu} - m^2 \varphi^{2-} \frac{1}{2} g \varphi^4 + j_{\mu} A^{\mu}$$
Current of  $\varphi$ 

 $\Rightarrow$  (Coulomb gauge)

$$\mathcal{H} = \frac{1}{2} \left\{ \left( \frac{\partial \underline{A}}{\partial t} \right)^2 + \left( \frac{\partial \varphi}{\partial t} \right)^2 \right\} + m^2 \varphi^2 + \frac{1}{2} g \varphi^4 + (\operatorname{curl} \underline{A})^2 + |(\nabla - i e \underline{A}) \varphi|^2$$

Groundstate:

(a) 
$$m^2 > 0: \text{no } SB, \langle \varphi \rangle = 0$$
  
 $\Rightarrow \text{ eff Hamiltonian for } \underline{A} \text{ just } \frac{1}{2} \left\{ \left( \frac{\partial A}{\partial t} \right)^2 + \left( \text{curl } \underline{A} \right)^2 \right\}$   
 $\Rightarrow \text{ vector boson remains massless } (\omega = \text{ck})$ 

(b) 
$$m^2 < 0$$
: SB,

$$\langle \varphi(\underline{r}) \rangle \equiv \varphi_0 \neq 0$$

(i) e=0, dynamics of  $\underline{A}$  unaffected.

(ii)  $e \neq 0$ : Can  $\langle \varphi \rangle$  "follow"  $\underline{A}$  to make KE term 0? This would require:  $(\varphi \equiv |\varphi| e^{i\chi})$ 

$$\nabla \chi(rt) = e \underline{A}(rt)$$

But, if curl  $A \neq 0$  ('transverse'' excit<sup>n</sup>) this is not possible!

 $\Rightarrow \varphi$  stays at original value  $\varphi_0$  , and eff. Hamiltonian for  $\underline{A}$  becomes

$$\mathcal{H}(\underline{A}) = \frac{1}{2} \left\{ \left( \frac{\partial A}{\partial t} \right)^2 + (\operatorname{curl} \underline{A})^2 + e^2 \varphi_0^2 \underline{A}^2 \right\}$$

 $\Rightarrow$  Vector boson acquires mass  $(m_A = e | \varphi_0 |)$ 

#### SUPERCONDUCTIVITY AND SUPERFLUIDITY: SPONTANEOUSLY BROKEN U(1) GAUGE SYMMETRY?

#### Phenomenology:



df.  $\omega_c \equiv \hbar/mR^2$ = "quantum unit of angular velocity"

A. Superconductors

Stable diamagnetism ⇒ Meissner effect <u>Metastable</u> persistent currents

"

B. Superfluid <sup>4</sup>He

NCRI (Hess-Fairbank effect)

Bohr-v. Leeuwen theorem (+ neutral analog)  $\Rightarrow$  neither diamagnetism nor NCRI possible in classical system

Usual account of Meissner effect:

$$\hat{H} = \frac{\hbar^2}{2m} \int |(\nabla \Psi)|^2 dr + \frac{1}{2} \int V(\underline{r} - \underline{r}) \Psi^+(\underline{r}) \Psi^+(\underline{r}') \Psi(\underline{r}') \Psi(\underline{r}) d\underline{r} d\underline{r}'$$

Invariant under global U(1) transf<sup>n</sup>

 $\Psi(\underline{r}) \to e^{i\alpha} \Psi(\underline{r}) \qquad (\alpha = const.)$ 

in "super" state, U(1) symm. spontaneously broken,

$$\langle \Psi(\underline{r}) \rangle \neq 0$$
 (or  $\langle \Psi(r)\Psi(r') \rangle \neq 0.$ )  
 $|\underline{r} - \underline{r}'| \rightarrow \infty$  9

CONVENTIONAL ACCOUNT OF MEISSNER EFFECT (cont.)

SB of U(1) symm.  $\Rightarrow \langle \Psi(\underline{r}) \rangle \neq 0.$ 

With gauge coupling to (real) EM field,

$$KE = \frac{\hbar^2}{2m} \int |(\nabla - ie\underline{A})\Psi|^2 d\underline{r}$$

- $\Rightarrow$  "Higgs-like" mechanism, photon acquires mass. (in sup<sup>r</sup>)
- $\Rightarrow$  EM field falls off exp'ly in interior of superconductor (Meissner effect)

WHAT'S WRONG WITH THIS PICTURE?

Well, not exactly wrong, but in CM context:

- (1) "Longitudinal-transverse" symmetry (from Lorentz invariance) lost in CM problems.
- (2)  $\langle \psi(\underline{r}) \rangle \neq 0 \Rightarrow \Psi = \sum_{N} c_{N} \psi$   $\leftarrow$  violates superselection rule on N (but alt<sup>n</sup> d.f.,  $\langle \psi^{+}(\underline{r}) \psi(\underline{r}) \rangle \rightarrow 0$  for  $|\underline{r} - \underline{r}'| \rightarrow \infty$ , is OK)
- (3) SB U(1) symmetry is sufficient for Meissner effect (or NCRI). It is not sufficient for the stability of supercurrents.
- (4) SB U(1) symmetry is not necessary for stability of supercurrents, and poss not even for NCRI.

<u>ALTERNATIVE APPROACH TO SUPERCONDUCTIVITY AND SUPERFLUIDITY</u> (Penrose-Onsager, BCS, Yang...)

- A. <u>Free Bose gas (ultra-naïve model for liquid</u> <sup>4</sup>He) N <u>conserved</u> bosons in free space, in thermal eqn.  $\langle n_k(T) \rangle = (\exp \beta (\in_k -\mu) - 1)^{-1} \qquad (\beta \equiv 1/k_B T)$ <u>chem.</u>  $pot^{\ell}, \leq 0$   $\Rightarrow \sum_{k \neq 0} \langle n_k(T:\mu) \rangle \leq \sum_{k \neq 0} \langle n_k(T:\mu=0) \rangle \equiv N_{exc}(T)$ 
  - If  $N_{exc}(T) < N$ , then Bose-Einstein condensation (BEC)  $N_0(T) = N - N_{exc}(T) = 0(N)$  $\underline{k} \stackrel{\uparrow}{=} 0$  state

Note: effect not of interactions but of "levelling of entropic playing field"

Df: 
$$\rho_1(\underline{r}_1\underline{r}':t) \equiv \int dr_2 ... dr_N \Psi_N^*(\underline{r}, r_2 ... r_N) \Psi_N(\underline{r}', \underline{r}_2 ... r_N)$$

orthonormal set

$$\rho_1(\underline{r},\underline{r}':t) - \sum_i n_i(t)\chi_i^*(\underline{r}:t)\chi_i(\underline{r}':t)$$

 $\approx$  "av. no. in state *i* at time *t*"

("simple") BEC iff one and only one state ("0") s. t.

At any given *t*:

 $n_0(t) = 0(N), n_i(t) = 0(1) \text{ for } i \neq 0$ (otherwise, normal (all  $n_i 0(1)$ ) or poss. "fragmented")

11

#### PENROSE-ONSAGER df. OF ORDER PARAMETER (OP)

Assume (simple) BEC in state  $\chi_0(\underline{r}:t)$ , Not nec<sup>y</sup>? then  $(n_0 \rightarrow N_0)$ 

$$\Psi(\underline{r},t) \equiv \sqrt{N_0(t)} \,\chi_0(\underline{r}:t)$$

"condensate no." "condensate w.f."

Note: From its def<sup>n</sup>, global phase of  $\Psi(rt)$  (like that of single-particle Schrödinger w.f.) is physically meaningless.

Does BEC always occur in an interesting system of bosons at low enough T?

No! (counterexx: solid <sup>4</sup>He, 2D, KSA state...

C. <u>Interacting Fermi system</u> (not nec<sup>y</sup> in eq<sup>m</sup>) (BCS, Yang) Df: 2-particle density matrix  $\rho(\underline{r}_{1} \, \underline{r}_{2} \, \sigma_{1} \, \sigma_{2}, \underline{r}_{1} \, \underline{r}_{2} \, \sigma_{1} \, \sigma_{2} \, t) \equiv \sum_{\sigma_{3}..\sigma_{N}} \int dr_{3}..dr_{N}$ 

$$\Psi_{N}^{*}(r_{1}\sigma_{1}, r_{2}\sigma_{2}, r_{3}\sigma_{3}...r_{N}\sigma_{N}:t)\Psi_{N}(r_{1}'\sigma_{1}'r_{2}'\sigma_{2}', r_{3}\sigma_{3}..r_{N}\sigma_{N}:t)$$

At any given *t*:

orthonormal set

$$\rho(r_1r_2\sigma_1\sigma_2, r_1'r_2'\sigma_1'\sigma_2':t) = \sum_i n_i(t)\chi_i^*(r_1r_2\sigma_1\sigma_2:t)\chi_i(r_1'r_2'\sigma_1'\sigma_2':t)$$

"av. no. of <u>pairs</u> in 2p state *i* at time *t*"

(simple) Cooper pairing ("pseudo-BEC") iff for one and only one value of *i*,

$$n_0(T) = 0(N), n_i(t) = 0(1) \quad i \neq 0.$$
  
(otherwise normal or fragmented) 12

#### BCS-YANG df. OF OP IN FERMI SYSTEM:

Assume (simple) Cooper pairing in state  $\chi_0$ , then  $\Psi(r_1r_2,\sigma_1\sigma_2:t) \equiv \sqrt{N_0(t)} \chi_0(r_1r_2,\sigma_1\sigma_2:t)$ "condensate no." "condensate w.f." Note:

(a) 
$$N_0(t) = 0(N) not \ 0(N^2)!$$
 (Yang)

- (b) For noninteracting F. system,  $N_0(t) \equiv 0$
- (c) As in Bose case, global phase of  $\chi_0$  physically meaningless
- (d) In general,  $\chi_0(\underline{r}_1\underline{r}_2\sigma_1\sigma_2:t)$  (and hence  $\Psi$ ) has nontrivial <u>internal</u> <u>structure</u>:

$$\Psi(r_1r_2,\sigma_1\sigma_2:t) \cong \Psi(\underline{R},t) f_R(\rho,\sigma_1\sigma_2:t)$$

For simple s-wave pairing (BCS theory)  $f(p_1\sigma_1\sigma_2:t)$  is fixed by energetics:

$$f = 2^{-1/2} (\uparrow_1 \downarrow_2 - \downarrow_1 \uparrow_2) \cdot f(|\rho|)$$
  

$$\uparrow \qquad \uparrow$$
  
Spin singlet s-wave

Then  $\Psi(\underline{R},t)$  is "macroscopic wave function" of Ginzburg and Landau, i.e.

"order parameter" in BCS superconductor is COM wave function of Cooper pairs.

#### EXPLANATION OF SUPERFLUIDITY IN TERMS OF BEC

#### A. <u>Hess-Fairbank effect (NCRI)</u>

When container rotates with ang. velocity  $\omega$ , correct quantity

to minimize is  

$$F_{eff} = F - \hat{\omega} \cdot \langle L \rangle = \underbrace{H - \hat{\omega} \cdot \langle L \rangle}_{H_{eff}} - TS$$
Ex: from Bose gas.  
ang. mom<sup>m</sup> q. no.  
 $\ell = \text{integer}, E_{eff}(\ell) = \ell^2 \hbar \omega_c - \ell \hbar \omega$  ( $\omega_c \equiv \hbar/mR^2$ )  
(typically  $\sim 10^{-2} - 10^{-4}s^{-1}$ )  
(a) T »T<sub>c</sub>:  
 $\langle n_\ell(T) \rangle = \text{const. exp} - \beta E_{eff}(\ell)$   
slowly varying  $f(\ell)$   $\langle \ell^2 \rangle \sim \frac{kT}{\hbar \omega_c} \ge 10^{14}$   
 $\Rightarrow L = \sum_{\ell} \ell \hbar \langle n_\ell(T) \rangle \cong mR^2 \omega = I_{c\ell} \omega.$   
 $\Rightarrow$  system rotates with container  
 $L/I_{c\ell}$ 

(b)  $T < T_c$ .  $(N_0(T) = 0(N))$ Condensate must form in unique state with lowest  $E_{eff}(\ell)$ . This corresponds to  $\ell = int(\omega/\omega_c - 1/2) = \ell_0$ Contribution of condensate to ang. momentum is simply  $N_0(T)\ell_0\hbar$ , so at T = 0:

Considerations for interacting Bose system qualitatively similar.

 $L/I_{e\ell}$ 



ωc

#### EXPLANATION OF SUPERFLUIDITY IN TERMS OF BEC (cont.)

## B. <u>Metastability of supercurrents</u>

System initially rotated with int.  $(\omega/\omega_c - 1/2) = \ell_0$ , cooled through T<sub>c</sub> while rotating: condensate forms in state with angular momentum  $\ell_0 \neq 0$ . When rotation is stopped,  $E_{eff}(\ell) = \ell^2 \hbar \omega_c \Rightarrow$  stable state is  $\ell = 0$ , actual state metastable. Why no decay?



| $\psi_i = \exp i\ell_0 \theta$ | $\psi_f = \text{const.}$ |  |  |
|--------------------------------|--------------------------|--|--|
| 1                              | 1                        |  |  |
| "winding no."                  | winding no. $=0$         |  |  |

Electron in atom (semiclassical approximation): More generally, density  $=|a|^2 + |b|^2 + \text{Re } 2a * b \cos \ell_0 \theta$ 

inhomogeneous

For e<sup>-</sup> in atom  $(E \propto |\psi|^2)$  inhomogeneity averages to zero in E. For an interacting Bose system,

 $\exists$  term in energy  $\propto |\psi|^4$ .

- $\Rightarrow$  inhomogeneous states energetically disfavored
- $\Rightarrow$  "topological" conservation of winding no.
- $\Rightarrow$  supercurrent metastable

Similar arguments for charged system

(supercurrent metastability:

NCRI  $\rightleftharpoons$  diamagnetism  $\Rightarrow$  Meissner effect) Fermi system: argts. similar but  $\Psi(rt)$  now 2-<u>particle</u> function (so. e.g.  $\omega_c = (\hbar/2m)R^{-2}$ )

#### SPONTANEOUSLY BROKEN U(1) GAUGE SYMMETRY (and BEC): SOME PROBLEMS

Formally, the OP as defined from BEC can be obtained equivalently from symmetry-breaking: in particular, can define (e.g. in Bose system) ODLRO by

$$P_{1}(rr') \equiv \left\langle \psi^{+}(\underline{r})\psi(\underline{r}') \right\rangle \rightarrow \chi_{0}^{*}(r)\chi_{0}(r')$$
$$|\underline{r} - \underline{r}'| \rightarrow \infty$$
$$\Rightarrow "\left\langle \psi(r) \right\rangle " \equiv \chi_{0}(r)$$

But, explicit df via BEC focuses on some interesting issues:

- (1) Why does BEC happen?
- (2) Is BEC sufficient for "superfluidity"? In sense of NCRI, yes
  In sense of metastable supercurrents, no: we require in addition
  (i) Net repulsive interaction (a|ψ|<sup>4</sup>, a>0)
  - (ii) order parameter a complex order
- (3) Is BEC necessary for "superfluidity"?In sense of persistent supercurrents, no (quasi-1 D systems)In sense of NCRI, ?? ("Japanese-bus" situations?)
- (4) More generally, malign effects of thermal averaging
- (5) Conceptual problems with Kibble mechanism (cf. optical-lattice expts)

#### MORE SOPHISTICATED SUPERFLUID/SUPERCONDUDTOR OP'S

So far, in considering Fermi systems with Cooper pairing, assumed dependence of OP

 $\Psi(\underline{R},\rho,\sigma_1\sigma_2)$ 

on  $\rho \sigma_1 \sigma_2$  corresponds to singlet s-wave and hence is fixed by energetics. But in e.g. superfluid <sup>3</sup>He, OP is triplet and p-wave: e.g. in A phase, COM at rest

$$\Psi(\rho;\sigma_1\sigma_2) \sim f(|\rho|) \sin\theta \, e^{i\varphi} \cdot \frac{1}{\sqrt{2}} (\uparrow_1\downarrow_2 + \downarrow_1\uparrow_2)$$

 $\ell = 1$  with same (orbital) axis  $\ell$  S=1, S<sub>z</sub>=0 with same

(spin) axis d

To the extent that  $\hat{H}$  is invariant under rot<sup>n</sup> of orbital and spin axes separately,  $O(3)_{orb}$  and  $SU(2)_{spin}$  still unbroken: will be broken by walls, margnetic field, etc.

What if  $\hat{H}$  invariant under <u>total</u> rot<sup>n</sup> but not under <u>relative</u> rot<sup>n</sup> of spin and orbital coords? (e.g. nuclear dipole interaction). Then thermodynamic eqn. state may have similar props: e.g. <sup>3</sup>He-B,

start with  ${}^{3}P_{o}$  configuration, rotate through "spin-orbit rot"  $\angle$ "  $(\cong 104^{\circ})$  around orb. axis  $\omega$ 

 $\Rightarrow$  very anomalous NMR props.

Cf. also: cuprate superconductors  $(d_{r^2-v^2})$ 

 $Sr_2Ru0_4$  (p-wave, T-violating) (Kidwiringa et al.)

#### BACK TO "MEANING" OF OP

"Absolute" phase of OP is meaningless. What about relative phase?

Ex: <sup>3</sup>He-A: with appropriate choice of axes, usual form of OP is

$$\Psi(\rho, \sigma_1 \sigma_2) \sim f(\rho) \left( \frac{1}{\sqrt{2}} (\uparrow \uparrow + e^{i\Delta \varphi} \downarrow \downarrow) \right)$$

But: corresponding MBWF is not eigenf'n of  $S_z \Rightarrow$  energetically disadvantageous?



Crux: both  $\chi$  and  $g_D \propto N!$  Hence for  $N \rightarrow \infty$ ,  $\Delta \varphi$  well-defined, at expense of  $S_z$ 

But for N $\rightarrow$ 0 (or g<sub>D</sub> $\rightarrow$ 0), S<sub>z</sub> well-df,  $\Delta \phi$  undefined (cf. ultra-small capacitance Josephson junctions)

> Even if  $\Delta \varphi$  "initially" undefined, may be defined "by measurement" (cf. MIT expt. on <sup>87</sup>Rb) relevant to Kibble mechanism/optical-lattice expts?

BOTTOM LINE: QUITE A BIT REMAINS MURKY!