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Broken Symmetry
Hamiltonian (Lagrangian) of system is invariant under 

various symmetry operations.

Examples:

(1) Nonrelativistic CM system, e.g. gas of atoms of spin 
½: (zero magnetic field)

invariant under:          continuous   discrete

spatial
translation rotn in

orbital space
rotn in spin 
space

spatial 
inversion

time 
reversal

also (trivially) invariant under global “gauge transformation, 

(2) QED Lagrangian (density):

invariant under:
Poincaré group (≡ Lorentz + space-time transln), 

C, P, T,
local gauge transfn
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BROKEN SYMMETRY (cont.) 
 

H (or L) is (exactly or approximately) invariant under all the 
operations of some symmetry group G. The thermodynamic equilibrium 
state is invariant only under the operations of some subgroup K∈G. 
(↑: K may be simply the identity!) 
 
In principle, two cases: 

(a) ∃ some small perturbation which is not invariant under (all 
operations of) G. 

 
Examples: 
 CM: earth’s magnetic field, lab bench. . . . 

Particle theory: Coulomb interaction (in context of isotopic spin 
symmetry) 

 
This is the (conceptually) “easy” case. In this case, ∃ same operation 

  (but  ) s.  ˆ t.G KR ∉∈  
   |0 |0R̂ 〉 ≠ 〉  ← physically realized thermodynamic eqn state 
 
so in general  ˆ ˆ ˆ ˆ( ), ( ) ,  s.t. [ , ] 0x x dx R∃Ω Ω =Ω Ω ≠∫   
 
 
but nevertheless 

ˆ0| |0 0.〈 Ω 〉 ≠  
 

(b) ∃ no small (physical) perturbation 
Example (particle physics): Higgs mechanism. 

 
This is the “difficult” case. For this, best df. is 

 

| |

ˆ ˆ0 | ( ) (0) |0 0lim
r

r
→∞

〈 Ω Ω 〉 ≠  

“order parameter” 
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A SIMPLE EXAMPLE: HEISENBERG MAGNET 
N quantum-mechanical spins on lattice: 

, . .

ˆext  fieldˆ ˆ ||ˆ .
N

i j Z
i m n n

zH J S S Sμ
=

←= − −⋅∑ H
 

 
Assume: / 1.Bk Tμ <<H  

 
(a) J=0 (“ideal paramagnet”) 

spins independent, single-spin Zeeman energy 
competes with kBT: e.g. for S=1/2. 
 

/ ~ exp( / )
1 1tanh ( /kT)  . ( ( )2 )2Z

P P kT

S N N okT

μ
μμ

↑ ↓

⇒ = ≈ =H H

H

H
 

 
(b) J > 0 (“Heisenberg ferromagnet”) 

Entropy considerations favor “disorder” ( 0)zS〈 〉 → . 
Interaction term: invariant under 0(3) ⇒ favors spins lying ||, but 
does not specify common direction. 

But, if (common) direction makes angle θ with z-axis, then 
 

~ cos
1~ tanh( / )2

z

z

E

N

N

S kN T

μ θ

μ μ

−

⇒

H

H
 

 
Provided / 1,BN k Tμ >>H  
 

independe1~ , n  f  2 t ozS Nμ = H  

 
In this example, ˆ (e.g.) rotnR =  around x-axis, 

ˆ ( ) ( ). Note , 0z zr S r S H⎡ ⎤
⎣ ⎦Ω = =  

invariant under 0(3) 
[also T(a )] 

magnetic moment 
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HEISENBERG MAGNET (cont.) 

Recap:        , . .

ˆ ˆˆ )(
N

i j Z
i m n n

H J S S Sμ
=

= − −⋅∑ H
 

 
 

(c) J<0 (“Heinsenberg antiferromagnet”) 
Interaction now favors nearest-neighbor spins lying 

antiparallel (“Néel state”): 
 

↑ ↓ ↑ ↓ ↑ ↓  

↓ ↑ ↓ ↑ ↓ ↑ . . .

↑ ↓ ↑ ↓ ↑ ↓  

 
Uniform field H now does not “break” symmetry. What does? 
(1) Generally, crystal-field effects break 0(3) symmetry 

(Heisenberg → Ising), but leave symmetry under T intact. 
(2) V. weak inhomogeneous magnetic fields break residual T-

invariance. 
 

In this case, 0.zS =  What is order parameter? 
Ans:  “Staggered” magnetization, 
 ( 1) iP

i
iSN −≡∑  

 iP ≡  “parity” of atomic site i 
Note: 
(a) in this case, ˆ ˆ, 0N H⎡ ⎤

⎢ ⎥⎣ ⎦
≠  

(b) N  is not invariant under T or ℑ  alone, but is invariant under 
their combination. 

tinv  under  0(3), , ,a P Tℑ

 
Pi=+1 

 
• • • 
• • • 
• • • 

 
Pi=-1 
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LANDAU-LIFSHITZ THEORY OF PHASE TRANSNS 
(2nd or 1st order!) 
Hamiltonian has some symmetry which is broken by formation of 

nonzero order parameter ( ) ( ) .x xη ≡ Ω  At high enough T, expect entropy 
considerations to favor 0:η =  at low T, interaction energy may favor 
finite η. Expand free energy FE-TS in powers of η: schematically. 

 
2 3

0 1 2 3( : ) ( ) ( )0( ) ( )0( ) ( )0( ) ...( gradient terms)F T a T a T a T a Tη η η η= + + + + +  
 

1( ) 0 no phase transitiona T ≠ ⇒  

1( ) 0  phase transitiona T ≠ ⇒  of 1st order (e.g. Xtal) 
Fortunately, ( : )F Tη  must respect symmetry of Ĥ ! In particular, if  
Ĥ invariant under ˆ ˆ( ) ( ),x xΩ →−Ω  then all odd terms vanish. ⇒ (poss. 
of) 2nd order phase transition. 

Illustration: Heisenberg spins confined to plane: OP is complex 
scalar. 

 
( ) ( ) ( )x yr S r iS rη ≡ +  

in this case, invariance requires 
 

{ }: ( )F T r drη = ∫ F ( : ( ))T rη  

F ( : ( ))T rη =  F 0 2 41( ) ( ) | ( ) | ( ) | ( ) | ...2T T r T rη β η+∝ + +  
2( ) | ( ) | ...T rγ η+ ∇ +  

 
 

cf:      4 ( , )S d x x t= ∫ L  

         

2

4

2 2 4
0

 field theory)

( ) | ( )| | ( )

(

|xt m rt g rtxμ
ϕϕ ϕ

ϕ

⎛ ⎞
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

∂≡ − − −∂L L  

0(2) invariance

0(2) invariance plus analyticity 
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LL THEORY OF (2ND ORDER) PHASE TRANSITIONS (cont.) 
 

Recap: 
{ } 3: ( )F T r d rη = ∫ F ( : ( ))T rη  

F=F 0 22 41( )| ( )| ( )| | ( )| | ...2T r T Tα η β η γ η ++ + + ∇  

“Normal” state (η(r)=0)  stable if 0α β >, .  
Typically, entropy S is decreasing f(ηand interaction en. is  –const.|η|2. 
So, generically, in ≡ −F E TS, 
 

( )
2

02
2 2

0

2

0
0

0

0 0

ηα ζ
η

α ζ
ζ

β γ

η ζ η

α η

=

⎛ ⎞∂
≡⎜ ⎟∂⎝ ⎠

> >

− +

≡ −
≡

≡c
c

S
|

(T ) , (T )

T ~ J | | T | |

(T T )
,

T
| ,

J
|

/
{

 

So, approximately (T~Tc), 
 

2 4 2
0 0 0

1
2η α η β η γ η η= − + + −∇c ext( ) (T T ) | | | | | ( )| HF  

(canonical form of LL(“mean-field”) free energy) 
Consequences: 

(1) For T>Tc, η=0 
 

(2) For T<Tc, η= 1 20

0

α
β − /

c(T T)  

phase of η detd by Hext 
 

(3) Deformation (“twist”) of 2const en.( ) ~| ( ) |rη η∇  
⇒ Goldstone boson ( 0 for 0)kω→ →  
 

: spin + structural glasses 
dissociation 
FQH (“topologically ordered” state) 

 etc. 

(generic for broken 
continuous symmetry)
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SYMMETRY BREAKING IN FIELD THEORY 
 

2nd order phase transn: 
( ) ( ) 0

2 4 2
0 0

1| ( ) | | ( ) |) ) |( | (2r r r rTη η β η γ ηα⎡ ⎤
⎣ ⎦ + + + ∇=F F  

ϕ4 field theory: 
2

2 4 22 1[ ( )] | ( ) | | | | ( ) |2rt r rm t g tt
ϕϕ ϕ ϕ ϕ

⎛ ⎞⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∂= + + + ∇
∂

H  

 
 
 

2 2. ( ) ( ) 0 . ( ) ( ) 0A T m B T m∝ > ∝ <  
 
 

“Disordered” phase:  ( ) 0rtϕ〈 〉 =  
“Ordered” phase: 
 

( ) 0 or ( ) ( ) 0, | ' | .rt rt rt r rϕ ϕ ϕ≠ + − →∞  
 
Some consequences: 

1. Kibble mechanism 
 
 

 
 

 

No gauge coupling 
(so far) 

horizon ⇒

“cosmic string” 

horizon 
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2. HIGGS MECHANISM 
 

Ex: massless vector boson with gauge coupling to scalar field (“toy 
model” of EW theory) 

2 2 41 1
4 2F F jg Amμν

μν
μ

μϕ ϕ−=− − +L  

 
⇒ (Coulomb gauge) 

 
2 2

2 2 4 2 21 1 (curl ) | ( ) |2 2
A m g At t ieAϕ ϕ ϕ ϕ

⎧ ⎫⎛ ⎞ ⎛ ⎞⎪ ⎪
⎜ ⎟ ⎜ ⎟⎨ ⎬⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎪ ⎪⎩ ⎭

∂ ∂= + + + + +
∂ ∂

∇−H  

 
Groundstate: 

(a) 2 0:no , 0m SB ϕ> =  

 ⇒ eff Hamiltonian for ( ) ( )2 21just / curl 2A A t A⎧ ⎫
⎨ ⎬
⎩ ⎭
∂ ∂ +  

 ⇒ vector boson remains massless (ω=ck) 
 

(b) m2 < 0: SB, 
0( ) 0rϕ ϕ≡ ≠  

 (i) 0e= , dynamics of A unaffected. 
 (ii) 0e≠ : Can ϕ  “follow” A to make KE term 0? 
This would require:    ( )| | ie χϕ ϕ≡  

( ) ( )rt eA rtχ∇ =  
But, if curl 0A≠  (‘transverse” excitn) this is not possible! 
 
⇒ ϕ stays at original value 0ϕ , and eff. Hamiltonian for A becomes 

( ) 2
2

2 2 2
0

1 (curl )2
AA At e Aϕ

⎧ ⎫
⎛ ⎞⎪ ⎪
⎜ ⎟⎨ ⎬⎜ ⎟⎪ ⎪⎝ ⎠
⎩ ⎭

+∂= +∂H  

⇒ Vector boson acquires mass ( )0| |Am e ϕ=  

Current of ϕ 
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SUPERCONDUCTIVITY AND SUPERFLUIDITY: 
SPONTANEOUSLY BROKEN U(1) GAUGE SYMMETRY? 

 
Phenomenology: 
 
 
 
 
 
 

 
 
 

 Stable Metastable 
A. Superconductors diamagnetism 

⇒ Meissner effect 
 

persistent currents

B. Superfluid 4He NCRI 
(Hess-Fairbank effect) 

″ 

 
Bohr-v. Leeuwen theorem (+ neutral analog) ⇒ neither diamagnetism 
nor NCRI possible in classical system 
 
Usual account of Meissner effect: 

( ) ( ) ( )
2

2 1ˆ | ( ) | ( ) ( ) ' ' '2 2H dr V r r r r r r dr drm
+ += ∇Ψ + − Ψ Ψ Ψ Ψ∫ ∫  

 
Invariant under global U(1) transfn 

 

( .)( ) ( )ir e r constα αΨ → Ψ =  

in “super” state, U(1) symm. spontaneously broken, 
 

( ) 0 (or ( ) ( ') 0.)
| '|

r r r
r r

Ψ ≠ Ψ Ψ ≠

− →∞
 

df. 2/c mRω ≡  
≡ “quantum unit of 
angular velocity” R 
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CONVENTIONAL ACCOUNT OF MEISSNER EFFECT (cont.)  
 

SB of U(1) symm. ⇒ ( ) 0.rΨ ≠  
 
With gauge coupling to (real) EM field, 
 

( )2 2| |2KE ieA drm= ∇− Ψ∫  

 
⇒ “Higgs-like” mechanism, photon acquires mass.  (in supr) 
 
⇒ EM field falls off exp’ly in interior of superconductor (Meissner 

effect) 
 
 

WWHHAATT’’SS  WWRROONNGG  WWIITTHH  TTHHIISS  PPIICCTTUURREE??  
 
Well, not exactly wrong, but in CM context: 
 

(1) “Longitudinal-transverse” symmetry (from Lorentz invariance) 
lost in CM problems. 

 
(2) ( ) 0 N

N
r cψ ψ≠ ⇒Ψ=∑     ←violates superselection rule on N 

(but altn d.f., ( ) ( ) 0 for | | ,r r r rψ ψ+ → − →∞′/  is OK) 
 

(3) SB U(1) symmetry is sufficient for Meissner effect (or NCRI). 
It is not sufficient for the stability of supercurrents. 
 

(4) SB U(1) symmetry is not necessary for stability of 
supercurrents, and poss not even for NCRI. 
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ALTERNATIVE APPROACH TO SUPERCONDUCTIVITY AND SUPERFLUIDITY
(Penrose-Onsager, BCS, Yang…)  
 

A. Free Bose gas (ultra-naïve model for liquid 4He) 
N conserved bosons in free space, in thermal eqn. 

1 ( 1/ )

                     ch

( ) (ex

em. po

p ( ) 1)

t , 0

Bk kn k TT β μ β−

↑

〈 〉 = ∈ − − ≡

≤
 

⇒
0 0

( : ) ( : 0) ( )exck k
k k

n T n T N Tμ μ
≠ ≠

≤ = ≡∑ ∑  

 
If ( ) ,excN T N<  then Bose-Einstein condensation (BEC) 

0( ) ( ) 0(

0 sta

)

te

excN T N

k

T NN
↑

= − =

=
 

Note: effect not of interactions but of “levelling of entropic playing 
field” 
 

 
B. Interacting Bose gas (not necessarily in eqm) (but pure state, for 

(Penrose, Onsager) moment) 
 

Df: *
1 1 2 2 2( ': ) .. ( , ... ) ( , ... )'N N N N Nrr r t dr dr r r rr rρ ≡ Ψ Ψ∫  

 
At any given t: 

( ) *
1 , ': ( ) ( : ) ( ': )i i i

i
r r t n t r t r tρ χ χ−∑  

 
 
(“simple”) BEC iff one and only one state (“0”) s. t. 
 

0( ) 0( ), ( ) 0(1) for 0in t in t N == ≠  
(otherwise, normal (all 0(1)in ) or poss. “fragmented”) 

single-particle density matrix 

orthonormal set

≈ “av. no. in state i at time t”
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PENROSE-ONSAGER df. OF ORDER PARAMETER (OP)  
 

Assume (simple) BEC in state 0( : ),r tχ   
then 0 0( )n N→  

0 0( , ) ( ) ( : )r t N t r tχΨ ≡  
 

“condensate no.”           “condensate w.f.” 
Note: From its defn, global phase of ( )rtΨ  (like that of single-particle 
Schrödinger w.f.) is physically meaningless. 
 
 
Does BEC always occur in an interesting system of bosons at low 
enough T? 
 
No! (counterexx: solid 4He, 2D, KSA state… 
 

C. Interacting Fermi system (not necy in eqm)  (BCS, Yang) 
Df: 2-particle density matrix 

3

' ' ' '
1 2 1 2 1 2 1 2 3

..
( , ) ..

N
Nr r r r t dr dr

σ σ
ρ σ σ σ σ ≡ ∑ ∫  

 

( )1 1 2 3 32
' ' ' '

1 1 2 3 32
*( , ... : ) , ., . :N N N N N Nr r r rr r t r r tσ σ σ σσ σ σ σΨ Ψ

 
At any given t: 
 

1
' ' ' ' * ' ' ' '

2 1 2 1 2 1 2 1 2 1 2 1 2 1 2: ) ( ) ( : ) ( : )( , i i i
i

t n t r r t tr r r r r rσ χ σ σ χ σρ σ σ σ σ=∑  

 
 
(simple) Cooper pairing (“pseudo-BEC”) iff for one and only one value 
of i,  

0( ) 0( ), ) ) .( 0(1 0in T N n t i= ≠=  
(otherwise normal or fragmented) 

Not necy? 
0k =  state! 

“av. no. of pairs in 2p state i at time t” 

orthonormal set 
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BCS-YANG df. OF OP IN FERMI SYSTEM: 
 

Assume (simple) Cooper pairing in state 0,χ  then  

1 2 1 2 1 2 1 20 0, : , :( ) ( ) ( )t tr r N t rrσ σ σ σχΨ ≡  

 
“condensate no.”           “condensate w.f.” 

Note: 
(a) 2

0( ) 0( ) 0( )!N t N not N=    (Yang) 
 

(b) For noninteracting F. system, 0( ) 0N t ≡  
 

(c) As in Bose case, global phase of 0χ  physically meaningless 
 

(d) In general, 0 1 2 1 2( : )r r tχ σ σ  (and hence Ψ) has nontrivial internal 
structure: 
 

1 21 2 1 2 ( , : ), :( ) ( , ) R ttr r R t f ρ σ σσ σΨ ≡Ψ  
 
For simple s-wave pairing (BCS theory) 1 1 2( : )f p tσ σ  is fixed by 
energetics: 
 

 
 
 
 
 
Then ( , )R tΨ  is “macroscopic wave function” of Ginzburg and  
Landau, i.e. 
 
“order parameter” in BCS superconductor is COM wave function of 
Cooper pairs. 

( )1/2
1 2 1 22 ( ) | |f f ρ−= ↑ ↓ −↓ ↑ ⋅  

Spin singlet             s-wave 



14

EXPLANATION OF SUPERFLUIDITY IN TERMS OF BEC 
 
A. Hess-Fairbank effect (NCRI) 

When container rotates with ang. velocity ω , correct quantity 
to minimize is 

eff

eff
H

F F L H L TSω ω= − ⋅ ≡ − ⋅ −  

Ex: from Bose gas. 
ang. momm q. no. 

2

2

2

4 1

( / )

(typically ~10 10

integer, ( )

)
ceff c

s

E mRω ω ω
− − −

≡= = −

−
 

(a) T »Tc: 
( ) const. exp ( )effn T Eβ= −  

                                       slowly varying ( )f           2 14~ 10
c

kT
ω >  

2( ) .cL n T mR Iω ω⇒ = ≅ =∑  

⇒system rotates with container 
 
 

 
(b) ( )0. ( ) 0( )cT T N T N< =  

Condensate must form in unique state with lowest ( ).effE  

This corresponds to ( )0int / 1/ 2)cω ω= − ≡   
Contribution of condensate to ang. momentum is  
simply 0 0( ) , so at 0:N T T =  

 
Considerations for interacting Bose 
system qualitatively similar. 

R 

 
↑

/ cL I  

/ eL I  

ωc 
 
↑ 

arrange slope 1 

ωc 
ω→  
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EXPLANATION OF SUPERFLUIDITY IN TERMS OF BEC (cont.) 
 
B. Metastability of supercurrents 

System initially rotated with int. 
0( / 1/ 2) ,cω ω − =  cooled through Tc while 

rotating: condensate forms in state with 
angular momentum 0.( 0).≠  When rotation is 
stopped, 2( ) ceffE ω= ⇒  stable state is 

0,=  actual state metastable. Why no decay? 
 

 0exp const.i fiψ θ ψ= =  
 
 
 

Electron in atom (semiclassical approximation): 
More generally, density 2 2

0| | | | Re 2 * cosa b a b θ= + +  
 
 
For e- in atom 2( | | )E ψ∝  inhomogeneity averages to zero in E. 
For an interacting Bose system, 

4 term in energy  | | .ψ∃ ∝  
⇒ inhomogeneous states energetically disfavored 
⇒ “topological” conservation of winding no. 
⇒ supercurrent metastable 
 
_____________________________________________________ 
 
Similar arguments for charged system 

(supercurrent metastability: 
NCRI        diamagnetism ⇒ Meissner effect) 

Fermi system: argts. similar but Ψ(rt) now 2-particle function (so. 
e.g. 22( / )c m Rω −= ) 

↑    ↑
“winding no.”  winding no. =0 

↑ 
inhomogeneous 
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SPONTANEOUSLY BROKEN U(1) GAUGE SYMMETRY (and BEC): SOME 
PROBLEMS 
 
Formally, the OP as defined from BEC can be obtained equivalently 
from symmetry-breaking: in particular, can define (e.g. in Bose system) 
ODLRO by 
 

*
1 0 0( ') ( ) ( ') ( ) ( ')

| ' |
P rr r r r r

r r
ψ ψ χ χ+≡ →

− →∞
 

 

0" ( ) " ( )r rψ χ⇒ ≡  
 
But, explicit df via BEC focuses on some interesting issues: 

(1) Why does BEC happen? 
 

(2) Is BEC sufficient for “superfluidity”? 
In sense of NCRI, yes 
In sense of metastable supercurrents, no: we require in addition 
(i) Net repulsive interaction ( 4| | , 0)a aψ >  
(ii) order parameter a complex order 

 
(3) Is BEC necessary for “superfluidity”? 

In sense of persistent supercurrents, no (quasi-1 D systems) 
In sense of NCRI, ?? (“Japanese-bus” situations?) 
 

(4) More generally, malign effects of thermal averaging 
 

(5) Conceptual problems with Kibble mechanism 
(cf. optical-lattice expts) 
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MORE SOPHISTICATED SUPERFLUID/SUPERCONDUDTOR OP’S 
 
So far, in considering Fermi systems with Cooper pairing, assumed 
dependence of OP 

1 2, ,( )R ρ σ σΨ  
 

on 1 2ρσ σ  corresponds to singlet s-wave and hence is fixed by 
energetics. But in e.g. superfluid 3He, OP is triplet and p-wave: e.g. in A 
phase, 
 

1 2 1 2 1 2
1( : ) ~ (| |) sin ( )
2

if eϕρ σ σ ρ θΨ ⋅ ↑ ↓ +↓ ↑  

 
 
 
To the extent that Ĥ  is invariant under rotn of orbital and spin axes 
separately, O(3)orb and SU(2)spin still unbroken: will be broken by walls, 
margnetic field, etc. 
 
What if Ĥ  invariant under total rotn but not under relative rotn of spin 
and orbital coords? (e.g. nuclear dipole interaction). Then 
thermodynamic eqn. state may have similar props: 
e.g. 3He-B, 
 start with 3Po configuration, rotate through “spin-orbit rotn ∠” 
( 104 )≅  around orb. axis ω  

⇒ very anomalous NMR props. 
 

Cf. also: cuprate superconductors ( 2 2x yd
−

) 

  2 40Sr Ru  (p-wave, T-violating) (Kidwiringa et al.) 
 

 
1 with same (orbital) axis=  S=1, Sz=0 with same 

(spin) axis d  

COM at rest 
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BACK TO “MEANING” OF OP 
 
“Absolute” phase of OP is meaningless. What about relative phase? 
 
Ex: 3He-A: with appropriate choice of axes, usual form of OP is 
 

( ) ( )1 2
1, ~
2

if e ϕρ σ σ ρ Δ⎛ ⎞⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
Ψ ↑↑+ ↓↓  

 
But: corresponding MBWF is not eigenf’n of Sz  
⇒ energetically disadvantageous? 
 

( )
2

, 2

1, cos2

z

z
z D

S i

SE S g

ϕ

ϕ ϕχ

⎡ ⎤
⎣ ⎦Δ =

Δ = − Δ
 

 
 
 
 
Crux: both and !Dg Nχ ∝   Hence for ,N →∞  

ϕΔ  well-defined, at expense of Sz 
 
But for N→0 (or gD→0), Sz well-df, ϕΔ  undefined 

(cf. ultra-small capacitance Josephson junctions) 
 

______________________________ 
 

Even if ϕΔ  “initially” undefined, may be  
defined “by measurement” (cf. MIT expt. on 87Rb)  
relevant to Kibble mechanism/optical-lattice expts? 

 
 

BOTTOM LINE: QUITE A BIT REMAINS MURKY! 

Nuclear 
dipole polarization 


