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TOPOLOGICAL QUANTUM COMPUTING/MEMORY

Qubit basis.      | ↑ 〉 = ∝ |,  | ↓ 〉

|Ψ〉 = ∝ | ↑ 〉 + β | ↓ 〉

To preserve, need (for “resting” qubit)
ˆ  diagonal H in | ↑ 〉,  | ↓ 〉 basis

12 2 11 22 2
ˆ ˆ ˆ( 0 " ": const " ")H T H H T= ⇒ →∞ − = ⇒ →∞

on the other hand, to perform (single-qubit) operations, need 
to impose nontrivial

⇒we must be able to do something Nature can’t.

(ex: trapped ions: we have laser, Nature doesn’t!) 

Topological protection:

would like to find d–(>1) dimensional Hilbert space within 
which (in absence of intervention)
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EXAMPLE OF TOPOLOGICALLY PROTECTED STATE: 
FQH SYSTEM ON TORUS (Wen and Niu, PR B 41, 9377 (1990))

Reminders regarding QHE:
2D system of electrons, B ⊥ plane
Area per flux quantum = (h/eB) ⇒ df.

“Filling fraction” ≡ no. of electrons/flux quantum ≡ ν
“FQH” when ν = p/q incommensurate integer

Argument for degeneracy: (does not need knowledge of w.f.)
can define operators of “magnetic translations”

1/ 2( / )eB≡ ← “magnetic length”

( 100  for B = 10 T)A∼

(≡ translations of all electrons through 
a(b) × appropriate phase factors). In general

In particular, if we choose         no. of flux quanta 

then          commute with b,c’s (?) and moreover

ˆ ˆ( ), ( )x yT Ta b
ˆ ˆ( ), ( )] 0x yT T ≠a b

2
1 21 2 ( / 2 )/ , /s s L LN L N π== =a L b

1 2 2 1
ˆ ˆ ˆ ˆ exp 2T T T T iνπ= −

1 2
ˆ ˆTT

1 2

1 2

ˆ ˆ ˆ ˆ[ , ] [ , ] 0 (*)
ˆ ˆso since [ , ] 0

T H T H
T T

= =
≠

must ∃ more than 1 GS (actually q). 

Corrections to (*): suppose typical range of (e.g.) external potential 
V(r) is o, then since |Ψ>’s oscillate on scale osc,

1 2
ˆ| | ~ exp / ~ exp /

ˆ(  const. 1)
o oscH Lψ ψ ξ− −

+

But the o. of m. of a and b is ·( /L) « , and ⇒ 0 for L→∞. 
Hence to a very good approximation,
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TOPOLOGICAL PROTECTION AND ANYONS

Anyons (df): exist only in 2D

12(1,2) exp(2 ) (2,1) ˆ (1,2)Tiπ αΨ = Ψ ≡ Ψ

Nonabelian statistics* is a sufficient condition for topological 
protection:
(a) state containing n anyons, n ≥ 3:

(bosons: α = 1, fermions: α = ½

abelian if 12 22 23 12
ˆ ˆ ˆ ˆ      (ex: FQHE)T T T T=

12 22 23 12 ,     ˆ ˆ i.e., iˆ fˆT T T T≠nonabelian if 

1

2

3

1 2

("braiding statistics")
ψ ψ≠

1ψ
2ψ

[not necessary, cf. FQHE 
on torus]

12 23

12 22

ˆ ˆ ˆ ˆ[ , ] [ , ] 0

ˆ ˆ[ , ] 0 

T H T H

T T

= =

≠

⇒ space must be more than 1D.

(b) groundstate:

GS GS

create anyons annihilate anyons

annihilation process inverse of creation ⇒

GS also degenerate. *plus gap for 
anyon creation
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SPECIFIC MODELS WITH TOPOLOGICAL PROTECTION
1. FQHE on torus

Obvious problems:

(a) QHE needs GaAs–ALGaAs or 
Si MOSFET: how to “bend”
into toroidal geometry?

QHE observed in (planer) graphene (but not obviously 
“fractional”!): bend C nanotubes?

(b) Magnetic field should everywhere have large compt ⊥ to 
surface: but div B = 0 (Maxwell)!

2. Spin Models (Kitaer et al.) (adv: exactly soluble)

(a) “Tonic code” model

Particles of spin ½ on lattice

s

p

ˆˆ ˆ
s p

s p
H A B= − −∑ ∑

ˆ ˆˆ ˆ,s j p jj s j p

x zA B
ε ε
σ σ≡ Π ≡ Π

ˆ ˆ(so [ , ] 0 in general)s pA B ≠

Problems:

(a) toroidal geometry required (as in FQHE)

(b) apparently v. difficult to generate Hamn physically
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subl. A
subl.

B

y        x

z

(b) Kitaer “honeycomb” model

Particles of spin ½ on
honeycomb lattice
(2 inequivalent sublattices,
A and B)

SPIN MODELS (cont.)

ˆ ˆ ˆ ˆ ˆ ˆ ˆx x y y z z
x j k y j k z j k

y linkx l zi linksks sn
H J J Jσ σ σ σ σ σ

−−−
= − − −∑ ∑ ∑

| | | | | |, | | | | | |,
| | | | | |       and 0
x y z y z x

z x y

J J J J J J
J J J K
≤ + ≤ +
≤ + ≠

nb: spin and space axes indepent

Strongly frustrated model, but exactly soluble.*

Sustains nonabelian anyons with gap provided

(in opposite case anyons are abelian + gapped)

Advantages for implementation:

(a) plane geometry (with boundaries) is OK

(b) bilinear in nearest-neighbor spinsĤ

* A. Yu Kitaer, Ann. Phys. 321,2 (2006)

H-D. Chen and Z. Nussinov, Cond-mat/070363 (2007)
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Can we Implement Kitaev Honeycomb Model?
One proposal (Duan et al., PRL 91, 090492 (2003)): use optical 
lattice to trap ultracold atoms

Optical lattice:

3 counterpropagating pairs of laser beams create potential, e.g. 
of form

in 2D, 3 counterpropagating beams at 120° can create honeycomb
lattice (suppress tunnelling along z by high barrier)

For atoms of given species (e.g. 87Rb) in optical lattice 2 
characteristic energies:

interwell tunnelling, t
intrawell atomic interaction (wave. repulsion)    

For 1 atom per site on average:

if t » ∪, mobile (“superfluid”) phase

if t « ∪, “Mott-insulator”phase
(1 atom localized on each site)

If 2 hyperfine species (≅ “spin –1/2” particle), weak 
intersite tunnelling ⇒ AF interaction

(irrespective of lattice symmetry).

So far, isotropic, so not Kitaev model. But …

0const. (~ )Ve−

V0

2 2 2( ) (cos cos cos )oV V kx ky kz= + +r
(2π/λ laser wavelength)

2 /ˆ
AF i j

nn
H J J t U∑ −= σ σ
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THE FRACTIONAL QUANTUM HALL EFFECT:
THE CASES OF ν = 5/2  AND ν = 12/5

Reminder re QHE:

Occurs in (effectively) 2D electron system (2DES”) (e.g. 
inversion layer in GaAs – GaAlAs heterostructure) in strong 
perpendicular magnetic field, under conditions of high purity 
and low ( 250 mK) temperature.

If df. lm ≡( /eB)1/2 (“magnetic length”) then area per flux 
quantum h/e is          , so, no. of flux quanta
(A ≡ area of sample). If total no. of electrons* is Ne, define

QHE occurs at and around (a) integral values of ν (integral 
QHE) and (b) fractional values p/q with fairly small ( 13) 
values of q (fractional QHE). At ν’th step, Hall conductance Σxy
quantized to νe2/ and longitudinal conductance Σxx≅ 0

22 mlπ
2/ 2 mA lπ=

("filling fa t/ c or")cv N NΦ≡

Nb: (1) Fig. shows IQHE 
only

(2) expts usually plot 

so general pattern is same 
but details different

 
1vs xyR B
ν

⎛ ⎞∝⎜ ⎟
⎝ ⎠

* strictly, no./spin: valley (but see below)
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If tunnelling is different for ↑ and ↓, then H’berg Hamiltonian is 
anisotropic: for fermions,

⇒ if t » , get Ising-type intn

We can control t and t with respect to an arbitrary “z” axis by 
appropriate polarization and turning of (extra) laser pair. So, 
with 3 extra laser pairs polarized in mutually orthogonal 
directions (+ appropriately directed) can implement

2 2
ˆ ˆ ˆ ˆ ˆ ˆ ˆ( )

2
z z x x y y

AF i j i j i j
nn nn

t t t t
H

U U
σ σ σ σ σ σ↑ ↓ ↑ ↓+

= + +∑ ∑

ˆ ˆ const. z z
AF i j

nn
H σ σ= ∑

ˆ ˆ ˆ ˆ

 Kitaer honeycomb mo

ˆ ˆ ˆ(

del
x i j y i

y y

y b
j

x x

x

z z

z
z

bonds
i j

ondsbonds
H J J Jσ σ σ σ σ σ

− − −
= + +∑ ∑

≡

∑

Some potential problems with optical-lattice implementation:

(1) In real life, lattice sites are inequivalent because of background 
magnetic trap ⇒ region of Mott insulator limited, surrounded 
by “superfluid” phase.

(2) V. long “spin” relaxation times in ultracold atomic gases ⇒ true 
groundstate possibly never reached.

So, how about a “literal” implementation of the KH model?
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p-WAVE FERMI SUPERFLUIDS (in 2D)
Generically, particle-conserving wave function of a Fermi 

superfluid (Cooper-paired system) is of form

Consider the case of pairing in a spin triplet, p-wave 
state (e.g. 3He-A). If we neglect coherence between 
and spins, can write

/ 2

,
( ) |N

N k k
k

c a a k vacα
αβ

η β+ +Ψ = ⋅ − 〉∑

e.g. in BCS superconductor

What is ck?                                             kε maximal from µ

Standard choice:

/ 2( ) |N
N k k

k
c a a k vacη + +

↑Ψ = − ↓ −∑

/ 2, / 2,N N N↑ ↓Ψ = Ψ Ψ

Concentrate on               and redef. N→ 2N./ 2,N ↑Ψ
/ 2( ) |N

k k kN c a a vacη + +
−↑Ψ = Σ 〉

suppress spin index

How does ck behave for k→0? For p-wave symmetry, 
|Δk| must ∝ k, so 

Thus the (2D) Fournier transform of ck is ∝

and the MBWF has the form   

1/ 2
1 /exp
1 /

k k
k

k
k

k

Ec
E

iφ ε
ε

⎛ ⎞−
= ⎜ ⎟

⎠
−

+⎝
“p+ip”

real
factor

( )1/ 22 2| |k kε + Δ

1| |~ / | |~k F kc kε −Δ

1 1exp ,r i zϕ− −− ≡

1 2( .. 1. )N N Pf
z

Z Z
z

Z
⎛ ⎞
⎜ ⎟⎜ −

=
i j⎝ ⎠

Ψ ⎟× uninteresting factors
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Conclusion: apart from the “single-particle” factor 

MR ansatz for ν = s/2 QHE is identical to the 

“standard” real-space MBWF of a (p + ip) 2D Fermi superfluid. 

Note one feature of the latter:
if

then

so

possesses anyon momentum –N /2, no matter how weak the 
pairing!

Now: where are the nonabelian anyons in the p + ip Fermi 
superfluid?

Read and Green (Phys. Rev. B 61, 10217(2000)):
nonabelian anyons are zero-energy fermions bound to cores of 
vortices.

2
2

1exp | | ,
4 jj

z− Σ

ˆ , | | expk k k k k kk
c a a c c iϕ+ +

−−Ω ≡ Σ = −

2,
ˆ ˆ ˆ[ ]L Ω = − Ω

ˆconst. |N
N vacΨ ≡ Ω 〉

z-computation of anyon momentum

Consider for the moment a single-component 2D Fermi superfluid, 
with p + ip pairing. Just like a BCS (s-wave) superconductor, it can 
sustain vortices: near a vortex the pair wf, or equivalently the gap 
Δ(r), is given by

Since |Δ (r)|2 → 0 for r → 0, and (crudely) Ek(r) ~ 
bound states can exist in case. In the s-wave case their energy is 
~η |Δo|2 εF, η ≠ 0 so no zero-energy bound states.

What about the case of (p + ip) pairing?

∃ mode with u(r) = ν*(r), E = 0

COM of 
Cooper pairs

( ) ( )  const. zzΔ ≡ Δ =r
2 2 1/ 2( | ( ) | )) ,kε + Δ r
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Now, recall that in general

zero-energy modes are their own antiparticles
(“Majorana modes”)

†ˆ ˆBut, if *( ) ( ),  then ( ) ( )! i.e.u r u r r rϕ ϕ− = ≡

†ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) | 0 ( ) | 0( )exc u r r u r r rψ ϕ= Ψ + Ψ 〉 ≡ 〉r

Consider two vortices i, j with attached Majorana modes with 
creation ops.

What happens if two vortices are
interchanged?*

Claim: when phase of C. pairs changes by 2π, phase
of Majorana mode changes by π (true for assumed
form of υ, ν for single vortex). So

This is true only for spinless particle/pairing of 11 spins 
(for pairing of anti || spins, particle and both 
distinguished by spin).

Δ:

†.i iγ γ≡

i j

j i

γ γ

γ γ

→

→−

more generally, if ∃ many vortices + wc df as exchanging
i, I + 1, then for |i–j|>1

for |i–j|=1,
braid 
group!

îT
ˆ ˆ[ , ] 0, buti jT T =

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ[ , ] 0, i j i j i j i jT T T T T T T T≠ =

≠
=

* Ivanov, PRL 86, 268 (2001)
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( ) / 2

k

, |  (etc.)

c ~| | exp

N

k k kk

k k

c a a vac

c iϕ

+ +
↑ ↓ ↑ ↑ − ↑Ψ = Ψ Ψ Ψ = Σ 〉

How to implement all this?

(a) superfluid 3He-A:
to a first approximation,

so prima facie suitable.
Ordinary vortices (Δ (r) ~ Δ (r) ~ z) well known to occur. Will 

they do?
Literature mostly postulates half-quantum vortex

(Δ (r) ~z, Δ (r) = const., i.e. vortex in spins, none in )
HQV’s should be stable in 3He-A under appropriate conditions 

(e.g. annular germ., rotation at ω ~ ωc/2, ω ≡ /2mR2) 
sought but not found:

? ?

Additionally, would need a thin slab (how thin?) for it to count
as “2D”.

How would we manipulate vortices/quasiparticles (neutral) in 
3He-A?

What about charged case (p + ip superconductor)?

Ideally, would like 2D superconductor with pairing in (p + ip) 
state. Does such exist?



AP.19

STRONTIUM RUTKENATE (Sr2RuO4)*

Strongly layered structure, anil. cuprates ⇒ hopefully 
sufficiently “2D.” Superconducting with Tc ~ 1.5 K, good 
type-II props. (⇒ “ordinary” vortices certainly exist).

$64 K question: is pairing spin triplet (p + ip)?
Much evidence* both for spin triplet and for odd parity (“p 
not s”).

Evidence for broken T-reversal symmetry:
optical rotation (Xia et al. (Stanford), 2006)
Josephson noise (Kidwingira et al. (UIUC), 2006)

⇒“topology” of orbital pair w.f. probably (px + ipy).

Can we generate HQV’s in Sr2RuO4?

Problem:
in neutral system, both ordinary and HQ vortices have 1/r
flow at ∞.  ⇒HQV’s not specially disadvantaged in 
charged system  (metallic superconductor), ordinary 
vortices have flow completely screened out for r λL by 
Meissner effect. For HQV’s, this is not true:

London 
penetration 
depth

So HQV’s intrinsically disadvantaged in Sr2RuO4.

*Mackenzie and Maeno, Rev. Mod. Phys. 75, 688 (2003)

1/ rυ υ↑ ↑= − ∝

λL λL
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Problems:

(1) Is Sr2RuO4 really a (p + ip) superconductor?
If so, is single-particle bulk energy gap nonzero 

everywhere on F.S.?
Even if so, does large counterflow energy of KQV 

mean it is never stable?

(2) Non-observation of KQV’s in 3He-A:
Consider this annular rotating at any
velocity ω, and df. 

At               exactly, the nonrotating
state and the ordinary “vortex” (p-state)
with both spins rotating are degenerate.

But a simple variational argument shows
that barring pathology, there exists a nonzero
range of ω close to         where the
KQV is more stable than either!

In a simply connected flat-disk geometry, 
argument is not rigorous but still plausible.  

2/ 2c mRω ≡
1
2 cω ω=

1
2 cω

Δ:Yamashita et al. (2008) do experiment in flat-disk geometry, 
find NO EVIDENCE for KQV!

Possible explanations:

(1) KQV is never stable (Kawakami et al., preprint, Oct 08)

(2) KQV did occur, but NMR detection technique insensitive to υ.

(3) KQV is thermodynamically stable, but inaccessible in 
experiment.

(4) Nature does not like KQV’s.

R ω

KQV

1
2 c cω ω
ω →

L
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Problems (cont.)

More fundamental problem:

Does the existence of a “split E=0 DB fermion” survive the 
replacement of the scale-invariant gap fermion

by the true gap         

Recall: real-space width of “MF” is

but, range of real-life                           

Possible clues from study of toy model

as f’n of ratios Δ/t and µ/t, taking proper account of boundary 
conditions.

For Δ=t, μ=0   2 MF’s exist at ends of chain

For Δ = 0, any t/μ, trivially soluble, no MF’s or anything else 
exotic.

Where and how does crossover occur?

( , ) ( )b
r

F

r r r r
k

δΔ′ ′Δ = ∂ −

( ) ?r r ′Δ −

1~ ( / )F ok R ξ

1( )  !Fk −′Δ − >r r

1

1 1
1 1

ˆ ( . .)
N N

j j j j j j
j j

H ta a i a a H c a aμ
−

+ + + +
+ +

= =
= − − Δ + −∑ ∑


