What Can We Do With a Quantum Liquid?

- Anthony J. Leggett
- University of Illinois at Urbana-Champaign

TEMPERATURE, ORDER and DISORDER

PARTICLES AS WAVES

Quantitative particle-wave relation ("de Broglie relation"):

When does a "wave" behave like a "particle"?

In a gas/liquid/solid, take "slit width" a ~ interparticle spacing

⇒ to get "wavelike" behavior, need (for atoms) T $\leq 20^{\circ}$ K/(atomic number)

electrons show "wavelike" behavior for all T in liquid/solid phase)

need: T $\leq 20^{\circ}$ K/(atomic no.) and liquid!

Atoms: helium (and ultracold atomic gases) Electrons: all liquid/solid metals

Indistinguishablity of elementary particles

Because particles behave like waves, impossible to "tag" them.

Evidently, for this property to be important, must be able to change places

resistance of -= V/A = voltage/current

HISTORY OF THE HIGHEST TEMPERATURE

("Tc") AT WHICH SUPERCONDUCTIVITY KNOWN

PHYSICS OF SUPERCONDUCTIVITY

Electrons in metals: spin $\frac{1}{2} \Rightarrow$ fermions But a compound object consisting of an even no. of fermions has spin 0, 1, 2 ... \Rightarrow boson. (Ex: 2p + 2n + 2c = ⁴He atom) \Rightarrow can undergo Bose condensation

In simplest ("BCS") theory, Cooper pairs, once formed, must automatically undergo Bose condensation!

 \Rightarrow must all do exactly the same thing at the same time (also in nonequilibrium situation)

