What Can We Do With a Quantum Liquid?

- Anthony J. Leggett
- University of Illinois at Urbana-Champaign

B2 - 2

TEMPERATURE, ORDER and DISORDER

PARTICLES AS WAVES

Quantitative particle-wave relation ("de Broglie relation"):

When does a "wave" behave like a "particle"?

In a gas/liquid/solid, take "slit width" a ~ interparticle spacing

⇒ to get "wavelike" behavior, need (for atoms) T $\leq 20^{\circ}$ K/(atomic number)

electrons show "wavelike" behavior for all T in liquid/solid phase)

need: T $\leq 20^{\circ}$ K/(atomic no.) and liquid!

Atoms: helium (and ultracold atomic gases) Electrons: all liquid/solid metals

Indistinguishablity of elementary particles

Because particles behave like waves, impossible to "tag" them.

Evidently, for this property to be important, must be able to change places

Result of indistinguishability:

"QUANTUM STATISTICS"

WHY BEC?

I. Qualitative argument:

Distribute N objects between 2 boxes: what is probability P(M) of finding M in one box?

chemical potential,
$$\leq 0$$

 $n_i(T) = [\exp(\epsilon_i - \mu(T)/k_BT - 1)]^{-1}$
 $\mu(T)$ fixed by: $\sum_i n_i (T: \mu(T))) = N \leftarrow \text{total no. of particles}$
 $T \rightarrow \infty \Rightarrow \mu \rightarrow -\infty: T \downarrow \Rightarrow \mu \uparrow$. But what if
 $\sum_i [\exp(\epsilon_i/k_BT) - 1]^{-1} < N$?

Einstein: Macroscopic no. of particles occupy lowest (ϵ =0) state!

Condition for this to happen: roughly, $T \leq h^2/2mk_Ba^2$ (as above)

HOW TO SEE BEC OCCURRING?

"NO-ROTATION" EFFECT IN LIQUID ⁴HE

Walls rotating with ang. velocity $\omega \leq \omega_c \Leftarrow \equiv \hbar/m R^2$ (typically ~ 1 revolution/ What does liquid do? hour!)

General principle: Average ang. velocity of atoms $(\overline{\omega})$ as close as possible to ω

† : Single-atom states must obey quantization condition:

$$n\lambda = 2\pi R + d.B. \lambda = h/mv$$

$$\Rightarrow L = mvR = n\hbar \qquad (\hbar = h/2 \pi)^{-1}$$
ang. momentum
$$\Rightarrow L/mR^{2} \equiv \omega = n\omega_{c}$$

A. "Normal" (non-BEC) system: many different single-particle states occupied (typical value of $n \sim (kT/\hbar\omega_c)^{1/2} \sim 10^7$)

 \Rightarrow to get $\overline{\omega} = \omega$, just shift atoms slightly between states.

B. BEC system $(T \leq T_c)$: (almost) all atoms in condensate must have same value of n. $(n_o) \Rightarrow \overline{\omega} \cong n_o \omega_c$

resistance of -= V/A = voltage/current

HISTORY OF THE HIGHEST TEMPERATURE

("Tc") AT WHICH SUPERCONDUCTIVITY KNOWN

PHYSICS OF SUPERCONDUCTIVITY

Electrons in metals: spin $\frac{1}{2} \Rightarrow$ fermions But a compound object consisting of an even no. of fermions has spin 0, 1, 2 ... \Rightarrow boson. (Ex: 2p + 2n + 2c = ⁴He atom) \Rightarrow can undergo Bose condensation

In simplest ("BCS") theory, Cooper pairs, once formed, must automatically undergo Bose condensation!

 \Rightarrow must all do exactly the same thing at the same time (also in nonequilibrium situation)

NUCLEAR MAGNETIC RESONANCE

 γ is known, (in ³He, ~ 3 kHz/gauss) so, rate of precession (**v**) measures magn. field (**H**) To measure v, apply oscillating (r.f.) field \perp H: field is strongly absorbed when its frequency is v.

NMR IN LIQUID ³He BELOW 3mK:

THE ³HE NMR PUZZLE (cont.)

In A phase, precession freq. ν is larger than value ($\gamma H_{ext})$ in N phase, and given be expression of form

$$v = \gamma \sqrt{H_{ext}^2 + H_{int}^2(T)}$$

Simplest interpretation:

Problem:

Only possible origin of H_{int} (T) is other nuclear spins

Max. value of field of one nuclear spin on another (at distance of closest approach of atoms) < 1 gauss.

But, experimental value of $H_{int}(T)$ is ~ 30 gauss!

FIRST EVIDENCE FOR BREAKDOWN OF QUANTUM MECHANICS?

RESULT OF MORE SOPHISTICATED APPROACH:

- A. Simple classical argument too naive. (no "transverse" internal field)
- B. Nevertheless, indeed predict formula

$$v = \gamma \sqrt{H_{ext}^2 + H_o^2(T)}$$

where $H_0^2(T)$ is proportional to average value of nuclear dipole interaction energy $E_{dip}(T)$. Experimental value of $H_0(T) \rightarrow E_{dip}(T) \sim 10^{-3} \text{ ergs/cm}^3$ Why is this a problem?

- energy difference (ΔE) between "good" and "bad" orientations < 10⁻⁷ K per pair.
- thermal energy $(E_{th}) (= k_B T) \sim 10^{-3} K$.

 \Rightarrow preference for "good" orientation over "bad" only $\sim \Delta E/E_{th} < 10^{-4}$

 \Rightarrow resulting value of $E_{dip}(T)$ much too small to fit experiment. Need preference for "good" over "bad" ~1 not ~ $\Delta E/E_{th}$!

SPONTANEOUSLY BROKEN SPIN-ORBIT SYMMETRY:

the analogy with ferromagnetism

Hext bad good difference in energy per spin = ΔE (small) Above Curie temp. ("paramagnetic" phase), spins behave independently \Rightarrow thermal energy E_{th} competes with $\Delta E \Rightarrow$ polarization only $\sim \Delta E/E_{eth} \ll 1$ Below T_c ("ferromagnetic" phase): strong (exchange) forces constrain all spins to lie parallel: $\uparrow \uparrow \uparrow \uparrow \uparrow \dots$ or $\downarrow \downarrow \downarrow \downarrow \downarrow \dots$ "good" "bad" $E_{good} - E_{bad} \sim N\Delta E \gg E_{th}$ \Rightarrow polarization ~ 1

FERROMAGNET

difference in energy per pair $\equiv \Delta E < 10^{-7} \text{ K}$ In normal phase, pairs behave independently $\Rightarrow E_{\text{th}}$ competes with $\Delta E \Rightarrow$ "polarization" (pref. for good orientation over bad) only $\sim \Delta E/E_{\text{th}} \ll 1.$

In A phase, assume: strong (kinetic-energy, VDW) forces constrain all pairs to behave in same way \Rightarrow either all "good" or all "bad"

$$E_{good} - E_{bad} \sim N \Delta E$$

$$\gg E_{th} \sim -10^{23}!$$

$$\Rightarrow polarization can be \sim 1$$

SBSOS: ORDERING MAY BE SUBTLE

Amplification of ultra-weak effects by BEC (cf NMR):

Example: P- (but not T-) violating effects of neutral current part of weak interaction:

For single elementary particle, any EDM d must be of form

 $\underline{d} = \text{const. } \underline{J} \leftarrow \text{violates T as well as P.}$

But for ³He – B, can form

 $d \sim const. \ \underline{L} \times \underline{S} \sim const. \ \underline{\omega}$

↑

violates P but not T.

Effect is tiny for single pair, but since all pairs have same value of $L \times S$, is multiplied by factor of $\sim 10^{23} \Rightarrow$

macroscopic P-violating effect?

