Application of BCS-like Ideas to Superfluid 3-He

Tony Leggett

University of Illinois at Urbana-Champaign

Electrons in Metals (BCS):

Fermions of spin $\frac{1}{2}$, $T_F \sim 10^4 K$, $T_c \sim 10 K$

 \Rightarrow strongly degenerate at onset of superconductivity

Normal state: in principle described by Landau Fermi-liquid theory, but "Fermi-liquid" effects often small and generally very difficult to see.

BCS: model normal state as

Weakly interacting gas with weak "fixed"

attractive interaction

Liquid ³He:

also fermions of spin $\frac{1}{2}$ $T_F \sim 1K$, $T_c \sim 10^{-3} K$

 \Rightarrow again, strongly degenerate at onset of superfluidity

Normal state: must be described by Landau Fermi-liquid theory, Fermi-Liquids effects very strong. (e.g. Wilson ratio ~4)

 \Rightarrow low-lying states (inc. effects of pairing) must be described in terms of Landau quasiparticles.

What is Common:

2-particle density matrix has single macroscopic (~N) eigenvalue, with associated eigenfunction

$$F(\mathbf{r}_{1}\mathbf{r}_{2}\sigma_{1}\sigma_{2}) \equiv F(\mathbf{R}:\mathbf{r}\sigma_{1}\sigma_{2})$$

"wave function of Cooper pairs"

(for $\boldsymbol{r}, \sigma_1, \sigma_2$ fixed: GL "macroscopic wave function $\Psi(\mathbf{R})$)

$\frac{STRUCTURE OF COOPER-PAIR WAVE FUNCTION}{(in original BCS theory of superconductivity, for fixed R, \sigma_1, \sigma_2)}$

BCSL 3

"Number of Cooper pairs" $(N_o) = \text{norm}^n$ of $F(\mathbf{r})$

$$\equiv \int |F(\boldsymbol{r})|^2 d\boldsymbol{r} \sim \frac{N^2}{\Omega} \frac{\Delta^2}{E_F^2} \frac{1}{k_F^2} \boldsymbol{\xi} \sim N(\Delta / E_F) \sim 10^{-4} N$$

(cf: $N_0 / N \sim 10\%$ in ⁴He)

In original BCS theory of superconductivity,

$$F(\boldsymbol{r}:\boldsymbol{\sigma}_{1}\boldsymbol{\sigma}_{2}) = \frac{1}{\sqrt{2}} (\uparrow_{1}\downarrow_{2} - \downarrow_{1}\uparrow_{2}) F(|\boldsymbol{r}|)$$

spin singlet orbital s-wave

⇒PAIRS HAVE NO "ORIENTATIONAL" DEGREES OF FREEDOM

(⇒stability of supercurrents, etc.)

THE FIRST ANISOTROPIC COOPER-PAIRED SYSTEM: SUPERFLUID ³HE

2-PARTICLE DENSITY MATRIX ρ_2 still has one and only one macroscopic eigenvalue \Rightarrow can still define "pair wave function" $F(\mathbf{R},\mathbf{r}:\sigma_1\sigma_2)$ However, even when $F \neq F(\mathbf{R})$,

 $T \rightarrow$

3mK

 $F(r\sigma_2\sigma_2)$ HAS ORIENTATIONAL DEGREES OF FREEDOM! (i.e. depends nontrivially on $\hat{r}, \sigma_1\sigma_2$)

All three superfluid phases have $\ell = S = 1$

A phase ("ABM") $F(r:\sigma_{I}\sigma_{2}) = \frac{1}{\sqrt{2}} (\uparrow_{1}\downarrow_{x} + \downarrow_{1}\uparrow_{2})_{\hat{a}} \times f(r)$ $f(r) = f_{e}(|r|) \times (\sin \theta \cdot \exp i\varphi)_{\hat{\ell}} \quad \text{char. "spin axis"}$ $f(r) = f_{e}(|r|) \times (\sin \theta \cdot \exp i\varphi)_{\hat{\ell}} \quad \text{char. "orbital axis"}$ Properties anisotropic in orbital and spin space separately, e.g. $|\Delta_{\kappa}| = |\Delta(\hat{k})| = \Delta_{e} |\hat{k} \times \hat{\ell}| \Leftarrow \text{nodes at } \pm \hat{\ell}!$ WHAT IS TOTAL ANG. MOMENTUM? $(N/N(\Delta/E_{r})/N(\Delta/E_{r})^{2})$?

B phase ("BW")

For any particular direction \hat{n} (in real or **k**-space) can always choose spin axis s.t.

$$F(\hat{n}:\sigma_{1}\sigma_{2}) \sim \frac{1}{\sqrt{2}} (\uparrow_{1}\downarrow_{2}+\downarrow_{1}\uparrow_{2})_{\hat{d}}$$
i.e. $\hat{d}=\hat{d}(\hat{n})$. Alternative description:
BW phase is ${}^{3}P_{o}$ state "spin-orbit rotated" by 104°.
L=S=J=O because of dipole force $\cos^{-1}(-1/4)=\theta_{o}$
Note: rotation (around axis $\hat{\omega}$) breaks P but not T
 $\parallel ext\ell$ field H_{o} inversion time reversal
Orbital and spin behavior individually isotropic, but:
properties involving spin-orbit correlations anisotropic!
Example: NMR
 $\frac{dS}{dt} = S \times H_{o} + \frac{\delta E_{D}}{\delta \theta}$
 $\downarrow H_{o}, \hat{\omega}$
 $\uparrow \mathcal{H}_{rf}(\text{long})$
 $\checkmark of rotation about rf field$
direction $\hat{\mathcal{H}}_{rf}$
In transverse resonance, rotation around $\hat{\mathcal{H}}_{rf}$ equiv.
rotation of $\hat{\omega}$ with θ_{o} unchanged
 \Rightarrow No dipole torque.
In longitudinal resonance, rotation changes θ_{o}
 \Rightarrow finite-frequency resonance!

1

RESOLUTION OF THE PARADOX OF TWO NEW PHASES.

(Anderson & Brinkman, Phys. Rev. Letters 30, 1108 (1973))

In BCS (weak-coupling) theory for $\ell = 1$, BW phase is always stable, independently of pressure and temperature. Crucial difference between Cooper pairing in superconductors and ³He:

Superconductor:

lattice vibration, insensitive to onset of pairing of electrons

³He

liquid ³He:

atom

spin fluctuations of ³He system ⇒ sensitive to onset of pairing

 \Rightarrow "feedback" effects: Over most of the phase diagram, BW state stable as in BCS theory. But at high temperature and pressure, feedback effects uniquely favor ABM phase.

"EXOTIC" PROPERTIES OF SUPERFLUID ³HE

- A. Orientation const. in space, varying in time:
 spin dynamics (NMR)
 - orbital dynamics ("normal locking") (A phase)
 - effect of macroscopic ang. momentum? (A phase)
- B. Orientation const. in time, varying in space — spin textures (³He-A) ($\hat{d} = \pm \hat{l}$) in equation
 - $\hat{\ell}$ \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow

 \hat{d} \uparrow \uparrow \uparrow \uparrow \checkmark \checkmark \downarrow \downarrow \downarrow \downarrow \downarrow (carries spin current)

- orbital textures

— topological singularities (boojums, "half-quantum" vortices. . . .)

— instability of supercurrents in ³He-A.

- C. Orientation varying in both space and time
 - spin waves
 - orbital waves
 - -"flapping" and "clapping" modes
- D. Amplification of ultra-weak effects

SPONTANEOUSLY BROKEN SPIN-ORBIT SYMMETRY

Ferromagnetic analogy:

FERROMAGNET

 $\hat{H} = \hat{H}_{o} + \hat{H}_{z}$

↑ invariant under simult. rotation of all spins

extl. field

 $\hat{H}_z = -\mu_B \mathcal{H} \sum_i S_{zi}$

breaks spin-rot." symmetry

Paramagnetic phase (T > T_c): spins behave independently, kT competes with $\mu_B \mathcal{H} \Rightarrow$ polarization ~ $\mu_B \mathcal{H}/kT \ll 1 \Rightarrow$ $\langle H_z \rangle \sim N(\mu_B \mathcal{H})^2/kT$

Ferromagnetic phase (T < Tc): $\stackrel{^{}}{H_{o}}$ forces all spins to lie parallel \Rightarrow k_BT competes with Nµ_B \mathcal{H} \Rightarrow <S_z> ~ 1 \Rightarrow <H_z> ~ Nµ_B \mathcal{H}

LIQUID ³HE

$$\hat{\mathbf{H}} = \hat{\mathbf{H}}_{o} + \hat{\mathbf{H}}_{D}$$

invariant under <u>relative</u> rotation of spin + orbital coordinate systems $\equiv \mu_o \mu_n^2 / r_o^3$ $\hat{H}_D = g_D \sum_{ij} \left(\frac{\underline{\sigma}_i \cdot \underline{\sigma}_j - 3\underline{\sigma}_i \cdot \hat{\underline{r}}_{ij} \underline{\sigma}_j \cdot \hat{\underline{r}}_{ij}}{(r_{ij}^3 / r_o^3)} \right)$ breaks relative spin-orbit

rotⁿ symmetry

Normal phase (T > T_A): pairs of spins behave independently \Rightarrow polarization ~ g_D/kT « 1 \Rightarrow <H_D> ~ N g_D²/kT

Ordered phase $(T < T_A)$: H_o forces all pairs to behave similarly \Rightarrow kT competes with Ng_D $\Rightarrow <H_D > \sim Ng_D$ $\sim 10^{-3}$ ergs/cm³ !

SBSOS: ORDERING MAY BE SUBTLE

Amplification of ultra-weak effects (cf NMR):

Example: P- (but not T-) violating effects of neutral current part of weak interaction:

For single elementary particle, any EDM d must be of form

 $\underline{d} = \text{const. } \underline{J} \leftarrow \text{violates T as well as P.}$

But for ${}^{3}\text{He} - \text{B}$, can form

 $d \sim \text{const. } \underline{L} \times \underline{S} \sim \text{const. } \hat{\underline{\omega}}$

violates P but not T.

Effect is tiny for single pair, but since all pairs have same value of $L \times S$, is multiplied by factor of $\sim 10^{23} \Rightarrow$

macroscopic P-violating effect?

