
BCSL 1

Application of BCS-like 
Ideas to Superfluid 3-He

Tony Leggett

University of Illinois at 
Urbana-Champaign



BCSL 2

Electrons in Metals (BCS):

Fermions of spin ½,

⇒ strongly degenerate at onset of superconductivity

Normal state: in principle described by Landau Fermi-liquid 
theory, but “Fermi-liquid” effects often small and generally 
very difficult to see.

BCS: model normal state as

Weakly interacting gas with weak “fixed”

attractive interaction

Liquid 3He:
also fermions of spin ½

⇒ again, strongly degenerate at onset of superfluidity

Normal state: must be described by Landau Fermi-liquid 
theory, Fermi-Liquids effects very strong. (e.g. Wilson ratio ∼4)

⇒ low-lying states (inc. effects of pairing) must be described 
in terms of Landau quasiparticles.

What is Common:
2-particle density matrix has single macroscopic (~N) eigenvalue, 

with associated eigenfunction

“wave function of Cooper pairs”

(for                fixed: GL “macroscopic wave function Ψ(R))
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STRUCTURE OF COOPER-PAIR WAVE FUNCTION
(in original BCS theory of superconductivity, for fixed R, σ1, σ2)
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“Number of Cooper pairs” (No) = normn of F(r)

“Number of Cooper pairs” (No) = normn of F(r)

spin singlet           orbital s-wave

⇒PAIRS HAVE NO “ORIENTATIONAL”
DEGREES OF FREEDOM

(⇒stability of supercurrents, etc.)
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HAS ORIENTATIONAL DEGREES OF FREEDOM!

THE FIRST ANISOTROPIC COOPER-PAIRED SYSTEM: 
SUPERFLUID 3HE

2-PARTICLE DENSITY MATRIX  ρ2
still has one and only one  
macroscopic eigenvalue
⇒ can still define “pair wave 
function” F(R,r:σ1σ2 )
However, even when                 , ( )F F≠ R

( )2 2F σ σr

(i.e. depends nontrivially on           ) 1 2ˆ σ σr,

All three superfluid phases have

______________________________

A phase (“ABM”)
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Spin triplet

char. “spin axis”
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Properties anisotropic in orbital and spin space separately,

e.g.

WHAT IS TOTAL ANG. MOMENTUM?

char. “orbital axis”
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B phase (“BW”)

For any particular direction     (in real or k-space) can 
always choose spin axis s.t.

i.e.              . Alternative description:

BW phase is 3Po state “spin-orbit rotated” by 104o.

L=S=J=O        because of dipole force         cos-1(-1/4)=θo

Note: rotation (around axis      ) breaks P but not T

Orbital and spin behavior individually isotropic, but: 
properties involving spin-orbit correlations anisotropic!

Example:  NMR                           dipole energy

∠of rotation about rf field

direction 

In transverse resonance, rotation around          equiv. 
rotation of        with θo unchanged

⇒ No dipole torque.

In longitudinal resonance, rotation changes θo

⇒ finite-frequency resonance!
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“EXOTIC” PROPERTIES OF SUPERFLUID 3HE

A. Orientation const. in space, varying in time:
— spin dynamics (NMR)
— orbital dynamics (“normal locking”) (A phase)
— effect of macroscopic ang. momentum? (A phase)

____________________

B. Orientation const. in time, varying in space
— spin textures (3He-A) ( ) in equation

↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑

↑ ↑ ↓ ↓ ↓
(carries spin current)

— orbital textures
— topological singularities (boojums, “half-quantum”
vortices. . . .)
— instability of supercurrents in 3He-A.

__________________

C. Orientation varying in both space and time
— spin waves
— orbital waves
—”flapping” and “clapping” modes

D. Amplification of ultra-weak effects
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