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Some History 

  BOSE-EINSTEIN  COOPER 

  CONDENSATION  PAIRING 

         (“BEC”)    (“BCS”) 

Originators                       Bardeen et al.

        1957

    

what?          (spinless)                    degenerate 

            bosons   fermions 

 

 applied to  

 

 

interactions must be …          nonexistence or    attractive 

               repulsive  

 

“fraction” of condensed   ~1   

particles 

 

main excitations               phonons,                   quasiparticles, 

     

                (bosons)                        (fermions) 

transition temperature      

Tc, 

 

consequences              superfluidity                      superfluidity 

         (or superconductivity) 

 

“Crossover” systems:      

electrons + holes in                     unstable       long-range polarization 

    semiconductors  

dilute Fermi alkali gases                       stable          no long-range polarization 

Einstein 1925

London 1938
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Dilute Bose alkali gases
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Superconductors

Liquid He       

Neutron Stars    
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A Unifying Concept: Pseudo-BEC (~ODLRO) 

(Penrose-Onsager, Yang) 

Consider a general system of N indistinguishable particles (bosons 

or fermions) occupying N-particle states 

with probability pn.  

Define: 

(a) Single-particle reduced density matrix (RDM) 

1 1 2 2( , ... )n N N   r r r

spin may be absent (0) 

2

1 1 1 1 1 2
...

*
1 1 2 2 1 1 2 2
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n n N N n N N
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d d
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(r r r r

r r r r r r

Can diagonalize: 

(b) 2-particle RDM: 

*
1 1 1 1 1 1 1( , ) ( ) ( )i i i

i

n         r r r r

For bosons (only!), can have 0 0 (condensate)  ~  n N N

3

*
3 3 3 3

*
1 1 2

1 1 2 2 1 1

2 1 1 2 2

2

2 1 1 2 2 1 1 2 2 3
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2( , ... ) ( , ... )

( ,

( , : , ) ...
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N
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(“behavior of single atom arranged over behavior of all the N-1 

others”) 

“behavior of single pair 

arranged over behavior 

of the N-2 particles” 

• 
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Pseudo-BEC of fermions: 

 

 

 

 

 

Thermal equilibrium in translation-invariant system: 

    3 classes of eigenfunctions 

 

 

 

 

 

 

 

 

 

 

 

 

 

“Condensate function” 

 

Can classify χi’s by spin and relative orbital angular momentum ℓ 

*

2 1 1 2 2 1 1 2 2 1 1 2 1 2 2( : ) ( ) ( )i i
i

r r r r n                  2 1r r r r
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n N N 

2 2( ) :i i ir r  

1 2

1 2

1 2

1 2

(1)  const. for         

(2) 0 for ,              

            ( )  exp ,  0    

        

unbound

bound,

noncondensate

      

       

(3) 0 for ,                
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             ( )  const.                      

bound,

condensate R

 2o N

( )o N
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0N

0 0 0,   eigenvalue assoc. with .N N N  

≡ 𝜒0 
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Special case: dilute ultracold 2-species Fermi gas with 

attraction s-wave state  (specified by as)   

               

 General expectation: phase diagram specified completely 

by T and dimensionless parameter: 

1 f sk a  
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0b oN N

N C L 

T↑ 

0,  o b NN N

N B L 
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Separation of “atomic” and “many-body” effects 

 Consider av. A of any short-range 2-particle property 

described by f(r12) where f(r)→ 0 for r » ro (range of  

2-particle potential) (exx: potential en. V(r), closed-channel 

fraction …). Then ℓ ≠ 0  eigenfunctions do not contribute. 

So 

 

 

Crucial observation (Tan 2005): 

 in range ro « r « kF
-1 , all the s-wave χi are of the form 

 

 

 

(with Ci ~ L-1/2 for unbound eigenf. and ~ ℓ-1/2 for bound 

ones) 

 

More generally, for r « kF
-1 (but possibly ≲ ro). 

 

 

Thus, 

 

 

 

 

 

 

⇒ ratios of (2-body) microscopic quantities entirely det. by 

atomic physics, absolute value by many-body physics. 

 

  All this is quite general … 
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The problem: N fermions, equal nos.  and , 
2

2

2
   i

i

Ĥ
m 3 23FtotN ( / )k 

subject to b.c. 

N~ const. (1-as/rij) for antiparallel-spin particles i, j for 

𝑟𝑜 ≪ 𝑟𝑦 ≪ 𝑛−1/3 

(in dilute limit, parallel-spin particles noninteracting) 

All (equilibrium) props. must be functions only  

of   ξ ≡ –1/kFaS 
____________________________ 

 

“Naïve” Ansatz (Eagles 1969, AJL 1980, Randeria et al. 1985, 

Stajic et al. 2005 . . .): 

 1 2 1 2 3 4 3 4 1 1
       

 
      N : : N N: N N(r r : ) (r r : )... (r r : )AN

N N
ˆ|H | :   

1. Pairing terms  fully taken into account 

2. Fock terms   vanish in dilute limit 

3. Hartree terms  ??  

equivalently: each term of N
(naïve) satisfies b.c. for paired 

particles only, e.g. 1st term satisfies it for 1, 2 but not (e.g.) 

for 1, 3. 

Output of naïve ansatz: 

𝜇 ξ , Δ ξ  

Hence also (E/N)(ξ). 

(calcn analytic except for 2 

|D numerical integrals) 

↑: not obvious a priori that naïve ansatz is even  

        qualitatively right! 
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1 

 

EK = ξk − μ 2 + Δ 2 

Excitation energy of quasiparticle with momentum k 

 

(normal-state energy k ≡ ħ2k2/2m): 

𝛏 ≡ −𝟏
𝐤𝐅𝐚𝐬
  

|| 

1 

 ̶  EF EF 

~EF exp – p/2kF|as| 

 

N0 

−
ħ𝟐

𝟐𝐦𝐚𝐬
𝟐
≡ −

𝟏

𝟐
𝐄𝐛 

 μ > 0:minEk = Δ  

 

μ < 0:min Ek = μ 2 + Δ 2 

No (T=0) phase transition! 

~/EF 

~𝐸𝐹 𝜉
1
2  
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Why is the “naïve ansatz” so (comparatively) good? 

 - correct qualitatively (e.g. no phase transition as f(ξ)) 

 

 - not so bad quantitatively (e.g. predicts Bertsch parameter  

    ~ 0.59: variational estimates ~ 0.4) 

 

 

Clue by analogy: low-T props. of normal metals close to Fermi   

                             gas model. 

 

Solution: Landan Fermi-liquid theory! 

 

 Landan’s “adiabatic” argument: 

 

 

 

 

 

 

 

 

i.e. low-lying excitations (qp states) in 1-1 correspondence with 

excited states of Fermi gas.  (Very detailed discussion + 

justification: Nozières, Theory of Interacting Fermi Systems) 

    

ˆ ˆ ˆ ˆ( ) ,      ( )      ( )  exp ( )
t

p p rO U O O U O U t i t dt V t 
 



      

 ( ) 0,  ( ) 1    GS GS of 

Fermi gas 

qp real-particle 
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Can we do something similar for low-lying excitations of UC 

Fermi gas? 

 

     e.g. start close to BCS, end (ξ→+∞), i.e. 0 < λ(- ∞) « 1. 

 

GS is BCS state, excited states are  

 (a) Bogoliubov quasiparticles 

      (b) AB phonons. Should evolve adiabatically … 

 

 : at BCS end, AB phonons not 

   well-defined for k ≳ ξp
-1 → 0 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

⇒ region of validity of “Landan-like” 

    theory vanishes? (may need nontrivial extension of  

    Nozières argument). 

pair radius 

AB phonon 

2-qp continuum 

k→ 

2∆ 
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BEC-BCS crossover:   The ℓ ≠ 0  case  

 

Qualitative differences from s-wave case:  

1.  (2-body prob): In s-wave case, general E=0 solution outside 

potential is  

 

 and in particular, at unitarity,                          in many-body 

cases expect strong 3, 4 . . . -body interaction effects. 

  In ℓ ≠ 0 case, 

Ψ 𝒓 ~ +
𝑐2
𝑟ℓ+1

 

 suggests unitary limit may be (almost) trivial in  

lim 𝑟𝑜 ≪ 𝑎 𝑛−1/3! 

 

 

2.  Standard BCS-type ansatz gives topological phase transition 

at μ = 0.  

  1 a / rs  r

  1 ~rr
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BEC-BCS crossover:   The ℓ ≠ 0  case   (cont.) 

3. The angular momentum problem: 

  In BEC of tightly bound ℓ ≠ 0  diatomic modules, 

overwhelmingly plausible that 

 

 

What is situation in BCS limit? 

 

Most “obvious” number-conserving ansatz: 

 

 

  

with (e.g.)                      .  This has                    just as in  
 

BEC limit, irrespective of magn. of ||. 

  Problem: macroscopic discontinuity at transition to 

normal state             ! 

 

This may not be worrying, because as Δ → 0 there is a char. 

length (the pair radius r~ħvF/||) which  .  

(so that for any finite container radius R transition is 

smooth) 

     : What about limit TTc?   Here p~ħvF/kBTc does 

not diverge 
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Recap: standard ansatz is (for say) 

 

 

i.e. all pairs of states in Fermi sea have angular momentum ħ. 

Alternative ansatz: 

first shot: 
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Alternative MBWF of (p + ip) Fermi superfluid 

      keeps pp→pp and hh→hh, but not (e.g.) pp→hh. 

Remedy: 

: 

,

~ ( , ),

 slowly varying as ( , )

p k

p K

N N p k
N N

p k

Q N N

Q f N N

 

degenerate with standard ansatz to 0(N–1/2), but  

2~ ( / 2 ( /) )FL N E 

IS GS OF (p + ip) FERMI SUPERFLUID UNIQUE? 

 
/2

~ | vac , ~ exp
N

k k k k k
k

c a a c i 
 

EF 

~Δ 

unchanged 

from N 
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T 

normal Fermi sea. 

L = 0 

BEC of ℓ = 1 molecules 

     L = Nħ/2 

Can we settle this question experimentally? 

 

(and does alternative description have any implications for 

topological phase transition?) 

−1/𝑔 


