The BEC - BCS crossover: what (if anything) do we fundamentally not understand?*

Anthony J. Leggett

Department of Physics
University of Illinois at Urbana-Champaign
Urbana, IL

Workshop
"Universal themes of Bose-Einstein condensation" Lorentz Center, Leiden

11 March 2013

*Work supported by the National Science Foundation under grant no. NSF-DMR-09-06921

Some History

	BOSE-EINSTEIN	COOPER
	CONDENSATION	PAIRING
	("BEC")	("BCS")
Originators	¢ Einstein 1925	Bardeen et al.
	London 1938	1957
what?	(spinless)	degenerate
	bosons	fermions
applied to	$\left\{\begin{array}{l}\text { Liquid }{ }^{4} \mathrm{He} \\ \text { dile }\end{array}\right.$	Superconductors
	Dilute Bose alkali gases	$\left\{\begin{array}{l}\text { Liquid }{ }^{3} \mathrm{He} \\ \text { Neutron Stars }\end{array}\right.$
interactions must be ...	nonexistence or	attractive
	repulsive	
"fraction" of condensed particles	~ 1	$\sim T_{c} / T_{F} \ll 1$
main excitations	phonons,	quasiparticles,
	$E(k)=\hbar c k$	$E(k)=\sqrt{\left(\varepsilon_{k}-\mu\right)^{2}+\|\Delta\|^{2}}$
	(bosons)	(fermions)
transition temperature	$\sim T_{\text {deg }}$	
$T_{c},$	$\sim " T_{F} "$	$\sim \overparen{T}_{F}$
consequences	superfluidity	superfluidity
		(or superconductivity)
"Crossover" systems:		
electrons + holes in	unstable	long-range polarization
dilute Fermi alkali gases	stable no l	long-range polarization

A Unifying Concept: Pseudo-BEC (~ODLRO)
 (Penrose-Onsager, Yang)

Consider a general system of N indistinguishable particles (bosons or fermions) occupying N-particle states $\Psi_{n}\left(\boldsymbol{r}_{1} \sigma_{1}, \boldsymbol{r}_{2} \sigma_{2} \ldots \boldsymbol{r}_{N} \sigma_{N}\right)$ with probability p_{n}.

Define:

spin may be absent (0)
(a) Single-particle reduced density matrix (RDM)

$$
\begin{aligned}
& \rho_{1}\left(\boldsymbol{r}_{1} \sigma_{1}, \boldsymbol{r}_{1}^{\prime} \sigma_{1}^{\prime}\right) \equiv \sum_{\sigma_{2} \ldots \sigma_{N}} \int d \boldsymbol{r}_{2} \ldots d \boldsymbol{r}_{N} \bullet \\
& \sum_{n} p_{n} \Psi_{n}\left(\boldsymbol{r}_{1} \sigma_{1}, \boldsymbol{r}_{2} \sigma_{2} \ldots \boldsymbol{r}_{N} \sigma_{N}\right) \Psi_{n}^{*}\left(\boldsymbol{r}_{1}^{\prime} \sigma_{1}^{\prime}, \boldsymbol{r}_{2} \sigma_{2} \ldots \boldsymbol{r}_{N} \sigma_{N}\right)
\end{aligned}
$$

("behavior of single atom arranged over behavior of all the $\mathrm{N}-1$ others")

Can diagonalize:

$$
\rho_{1}\left(\boldsymbol{r}_{1} \sigma, \boldsymbol{r}_{1} \sigma^{\prime}\right)=\sum_{i} n_{i} \chi_{i}\left(\boldsymbol{r}_{1} \sigma_{1}\right) \chi_{i}^{*}\left(\boldsymbol{r}_{1}^{\prime} \sigma_{1}^{\prime}\right)
$$

For bosons (only!), can have $\quad n_{0} \sim N \equiv N_{0} \quad$ (condensate)
(b) 2-particle RDM:

$$
\begin{aligned}
& \rho_{2}\left(r_{1} \sigma_{1}, r_{2} \sigma_{2}: r_{1}^{\prime} \sigma_{1}^{\prime}, r_{2}^{\prime} \sigma_{2}^{\prime}\right) \equiv \sum_{\sigma_{3} \ldots \sigma_{N}} \int d r_{3} \ldots d r_{N} \\
& \sum_{n} p_{n} \Psi_{n}\left(r_{1} \sigma_{1}, r_{2} \sigma_{2}, r_{3} \sigma_{3} \ldots r_{N} \sigma_{N}\right) \Psi_{n}^{*}\left(r_{1}^{\prime} \sigma_{1}^{\prime}, r_{2}^{\prime} \sigma_{2}^{\prime}, r_{3} \sigma_{3} \ldots r_{N} \sigma_{N}\right) \\
& =\sum_{i} n_{i} \chi_{i}\left(\boldsymbol{r}_{1} \sigma_{1}, \boldsymbol{r}_{2} \sigma_{2}\right) \chi_{i}^{*}\left(\boldsymbol{r}_{1}^{\prime} \sigma_{1}^{\prime}, \boldsymbol{r}_{2}^{\prime} \sigma_{2}^{\prime}\right)
\end{aligned}
$$

"behavior of single pair arranged over behavior of the N-2 particles"

Pseudo-BEC of fermions:

$$
\begin{gathered}
\rho_{2}\left(r_{1} \sigma_{1} r_{2} \sigma_{2}: r_{1}^{\prime} \sigma_{1}^{\prime} r_{2}^{\prime} \sigma_{2}^{\prime}\right)=\sum_{i} n_{i} \chi_{i}\left(\boldsymbol{r}_{1} \sigma_{1} \boldsymbol{r}_{2} \sigma_{2}\right) \chi^{*}\left(\boldsymbol{r}_{1}^{\prime} \sigma_{1}^{\prime} \boldsymbol{r}_{2}^{\prime} \sigma_{2}^{\prime}\right) \\
\left(\sum_{i} n_{i}=N(N-1)\right)
\end{gathered}
$$

Thermal equilibrium in translation-invariant system:
3 classes of eigenfunctions $\chi_{i}\left(r_{i} \sigma_{i} r_{2} \sigma_{2}\right)$:
(1) $\chi_{i} \sim$ const. for $\left|\boldsymbol{r}_{1}-\boldsymbol{r}_{2}\right| \rightarrow \infty$
unbound $o\left(N^{2}\right)$
(2) $\begin{aligned} \chi_{i} & \rightarrow 0 \text { for }\left|r_{1}-r_{2}\right| \rightarrow \infty, & \text { bound, } & N \\ & \chi(\boldsymbol{R}) \sim \exp i \boldsymbol{K} \cdot R, \boldsymbol{K} \neq 0 & & \text { noncondensate }\end{aligned}$ \uparrow
$\frac{\underline{r}_{1}+\underline{r}_{2}}{2}$
(3) $\chi_{i} \rightarrow 0$ for $\left|r_{1}-r_{2}\right| \rightarrow \infty$, $\downarrow \equiv \chi_{0}$ bound, $\chi(\boldsymbol{R}) \sim$ const. $\quad \mathcal{} \equiv \chi_{0}$ condensate N_{0}]
"Condensate function" $\equiv N_{0} / N, N_{0}=$ eigenvalue assoc. with χ_{0}.
Can classify $\chi_{\mathrm{i}}^{\prime}$'s by spin and relative orbital angular momentum ℓ

Special case: dilute ultracold 2-species Fermi gas with attraction s-wave state (specified by a_{s})

General expectation: phase diagram specified completely by T and dimensionless parameter:

$$
\xi \equiv-1 / k_{f} a_{s}
$$

Separation of "atomic" and "many-body" effects

Consider av. A of any short-range 2-particle property described by $f\left(r_{12}\right)$ where $f(r) \rightarrow 0$ for $r » r_{0}$ (range of 2-particle potential) (exx: potential en. V(r), closed-channel fraction ...). Then $\ell \neq 0$ eigenfunctions do not contribute. So

$$
A=\sum_{i \in S \wedge}^{n_{i}} \iint d r_{1} d r_{2} f\left(r_{1}-r_{2}: \sigma_{1} \sigma_{2}\right)\left|\chi_{i}\left(r_{1} r_{2}: \sigma_{1} \sigma_{2}\right)\right|^{2}
$$

Crucial observation (Tan 2005):
in range $r_{0}<r \ll k_{F}{ }^{-1}$, all the s-wave χ_{i} are of the form

$$
\chi_{i}(r)=C_{i}(\xi, T)\left(\frac{1}{r}-\frac{1}{a_{s}}\right)
$$

(with $C_{i} \sim L^{-1 / 2}$ for unbound eigenf. and $\sim \ell^{-1 / 2}$ for bound ones)

More generally, for $\mathrm{r}<k_{F}^{-1}$ (but possibly $\lesssim r_{\mathrm{o}}$).

$$
\chi_{i}(r)=C_{i}(\xi, T) \times \psi_{a t}(r) \leftarrow \text { 2-particle } \in=0 \text { w.f. }
$$

Thus,

$$
\begin{aligned}
& A=N k_{F} h(\xi, T) \cdot \int_{0}^{\infty} d r f(r)|\psi a t(r)|^{2} \\
& h(\xi, T) \equiv \underbrace{\text { atomic }}_{\sum_{i \in s}\left(n_{i} / N k_{F}\right)\left|C_{i}(\xi, T)\right|^{2}}(\equiv \text { const. } \times \text { "contact") }
\end{aligned}
$$

many-body

\Rightarrow ratios of (2-body) microscopic quantities entirely det. by atomic physics, absolute value by many-body physics.

All this is quite general ...

The problem: N fermions, equal nos. \uparrow and \downarrow,

$$
\hat{H}=-\frac{\hbar^{2}}{2 m} \sum_{i} \nabla_{i}^{2} \quad N_{t o t}=\left(k_{F}^{3} / 3 \pi^{2}\right)
$$

subject to b.c.
$\Psi_{\mathrm{N}} \sim$ const. $\left(1-\mathrm{a}_{s} / r_{i j}\right)$ for antiparallel-spin particles i, j for $r_{o} \ll r_{\ddot{y}} \ll n^{-1 / 3}$
(in dilute limit, parallel-spin particles noninteracting)

$$
\begin{aligned}
& \text { All (equilibrium) props. must be functions only } \\
& \qquad \text { of } \xi \equiv-1 / \mathrm{k}_{\mathrm{F}} \mathrm{a}_{\mathrm{S}}
\end{aligned}
$$

"Naïve" Ansatz (Eagles 1969, AJL 1980, Randeria et al. 1985, Stajic et al. 2005 . . .):
$\Psi_{N}=\mathcal{N} \cdot \mathcal{A} \cdot\left\{\varphi\left(r_{1}-r_{2:}: \sigma_{1} \sigma_{2}\right) \varphi\left(r_{3}-r_{4:}: \sigma_{3} \sigma_{4}\right) \ldots \varphi\left(r_{N-1}-r_{N:}: \sigma_{N-1} \sigma_{N}\right)\right\}$
$\left\langle\Psi_{N}\right| \hat{H}\left|\Psi_{N}\right\rangle=:$

1. Pairing terms \leftarrow fully taken into account
2. Fock terms \leftarrow vanish in dilute limit
3. Hartree terms \leftarrow ??
equivalently: each term of $\Psi_{\mathrm{N}}{ }^{\text {(naïve) }}$ satisfies b.c. for paired particles only, e.g. $1^{\text {st }}$ term satisfies it for 1,2 but not (e.g.) for 1,3 .

Output of naïve ansatz:

$$
\mu(\xi), \Delta(\xi)
$$

(calc ${ }^{\mathrm{n}}$ analytic except for 2
|D numerical integrals)
Hence also $(E / N)(\xi)$.
\uparrow : not obvious a priori that naïve ansatz is even qualitatively right!

$$
\left(\xi \equiv-1 / \mathbf{k}_{\mathrm{F}} \mathbf{a}_{\mathbf{s}}\right) \quad \text { No }(\mathrm{T}=0) \text { phase transition! }
$$

Excitation energy of quasiparticle with momentum $\underline{\mathrm{k}}$
(normal-state energy $\xi_{\mathrm{k}} \equiv \hbar^{2} \mathrm{k}^{2} / 2 \mathrm{~m}$):
$E_{K}=\sqrt{\left(\xi_{k}-\mu\right)^{2}+|\Delta|^{2}}$
$\mu>0: \min \mathrm{E}_{\mathrm{k}}=|\Delta|$
$\mu<0: \min E_{\mathrm{k}}=\sqrt{|\mu|^{2}+|\Delta|^{2}}$

Why is the "naïve ansatz" so (comparatively) good?

- correct qualitatively (e.g. no phase transition as $f(\xi)$)
- not so bad quantitatively (e.g. predicts Bertsch parameter ~ 0.59 : variational estimates ~ 0.4)

Clue by analogy: low-T props. of normal metals close to Fermi gas model.

Solution: Landan Fermi-liquid theory!
Landan's "adiabatic" argument:

Fermi gas
i.e. low-lying excitations (qp states) in 1-1 correspondence with excited states of Fermi gas. (Very detailed discussion + justification: Nozières, Theory of Interacting Fermi Systems)

Can we do something similar for low-lying excitations of UC Fermi gas?
e.g. start close to BCS, end $(\xi \rightarrow+\infty)$, i.e. $0<\lambda(-\infty) \ll 1$.

GS is BCS state, excited states are
(a) Bogoliubov quasiparticles
(b) AB phonons. Should evolve adiabatically ...
\triangle : at BCS end, AB phonons not well-defined for $k \gtrsim \xi_{p}^{-1} \rightarrow 0$

pair radius

\Rightarrow region of validity of "Landan-like"
theory vanishes? (may need nontrivial extension of Nozières argument).

BEC-BCS crossover: The $\ell \neq 0$ case

Qualitative differences from s-wave case:

1. (2-body prob): In s-wave case, general $\mathrm{E}=0$ solution outside potential is

$$
\Psi(\boldsymbol{r})=1-a_{s} / r
$$

and in particular, at unitarity, $\Psi(\boldsymbol{r}) \sim r^{-1} \Rightarrow$ in many-body cases expect strong $3,4 \ldots$-body interaction effects.

In $\ell \neq 0$ case,

$$
\Psi(\boldsymbol{r}) \sim+\frac{c_{2}}{r^{\ell+1}}
$$

suggests unitary limit may be (almost) trivial in $\lim r_{o} \ll a n^{-1 / 3}$!
2. Standard BCS-type ansatz gives topological phase transition at $\mu=0$.

BEC-BCS crossover: The $\ell \neq 0$ case (cont.)

3. The angular momentum problem:

In BEC of tightly bound $\ell \neq 0$ diatomic modules, overwhelmingly plausible that

$$
L=\frac{N}{2} \hbar \hat{\imath}
$$

What is situation in BCS limit?
Most "obvious" number-conserving ansatz:

$$
\Psi \sim\left(\sum_{k} c_{k} a_{k}^{+} a_{-k}^{+}\right)^{N / 2}, \quad c_{k} \equiv U_{k} / u_{k}
$$

with (e.g.) $c_{k} \sim \exp i \varphi_{k}$. This has $\boldsymbol{L}=\frac{N}{2} \hbar \hat{\ell}$ just as in
BEC limit, irrespective of magn. of $|\Delta|$.
Problem: macroscopic discontinuity at transition to normal state $(\boldsymbol{L}=0)$!

This may not be worrying, because as $|\Delta| \rightarrow 0$ there is a char. length (the pair radius $\xi_{\mathrm{r}} \sim \hbar \mathrm{V}_{\mathrm{F}} /|\Delta|$) which $\rightarrow \infty$. (so that for any finite container radius R transition is smooth)
\uparrow : What about limit $T \rightarrow T_{c}$? Here $\xi_{\mathrm{p}} \sim \hbar \mathrm{v}_{\mathrm{F}} / \mathrm{k}_{\mathrm{B}} \mathrm{T}_{\mathrm{c}}$ does not diverge

Alternative MBWF of ($p+i$ ip) Fermi superfluid

Recap: standard ansatz is (for say $\uparrow \uparrow$)

$$
\Psi \sim\left(\sum_{k} c_{k} a_{k}^{+} a_{-k}^{+}\right)^{N / 2}|\mathrm{vac}\rangle, c_{k} \sim \exp i \varphi_{k}
$$

i.e. all pairs of states in Fermi sea have angular momentum \hbar.

Alternative ansatz:
first shot:

$$
\begin{aligned}
& \Psi\left(N_{P}, N_{h}\right) \\
& \sim\left(\sum_{k>k_{F}} c_{k} a_{k}^{+} a_{-k}^{+}\right)^{N_{p} / 2}, \\
& \\
& \left(\sum_{k<k_{F}} d_{k} a_{-k} a_{k}\right)^{N_{h} / 2}|\mathrm{vac}\rangle
\end{aligned}
$$

$\mathrm{Q}^{:}:$keeps $\mathrm{pp} \rightarrow \mathrm{pp}$ and $\mathrm{hh} \rightarrow \mathrm{hh}$, but not (e.g.) $\mathrm{pp} \rightarrow \mathrm{hh}$.
Remedy:

$$
\begin{aligned}
& \Psi \sim \sum_{N_{p}, N_{K}} Q_{N_{p} N_{k}} \Psi\left(N_{p}, N_{k}\right), \\
& Q \text { slowly varying as } f\left(N_{p}, N_{k}\right)
\end{aligned}
$$

degenerate with standard ansatz to $0\left(\mathrm{~N}^{-1 / 2}\right)$, but

$$
L \sim(N \hbar / 2) \cdot\left(\Delta / E_{F}\right)^{2}
$$

IS GS OF ($\mathrm{p}+\mathrm{ip}$) Fermi Superfluid UNIQUE?

Can we settle this question experimentally?
(and does alternative description have any implications for topological phase transition?)

