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Some History

BOSE-EINSTEIN COOPER
CONDENSATION PAIRING
(“BEC’,) (CCBCS’))
Originators Einstein 1925 Bardeen et al.
London 1938 1957
what? (spinless) degenerate
bosons fermions
applied to Liquid “He Superconductors
Dilute Bose alkali gases Liquid *He
Neutron Stars
interactions must be ... nonexistence or attractive
repulsive
“fraction” of condensed ~1 ~T,/Te <1
particles
main excitations phonons, quasiparticles,
E (k) = fick E(K)=(5 — )+ | AP
(bosons) (fermions)
transition temperature ~Toeq ~ TP —I/NV,
T, ~ J
- IITF n ~ T|:
consequences superfluidity superfluidity

(or superconductivity)

“Crossover” systems:
electrons + holes in unstable long-range polarization
semiconductors

dilute Fermi alkali gases stable no long-range polarization
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A Unifying Concept: Pseudo-BEC (~ODLRQO)

(Penrose-Onsager, Yang)
Consider a general system of N indistinguishable particles (bosons
or fermions) occupying N-particle states ¥ (1,07, I,0,...1 oy )
with probability p,.. f

Define: spin may be absent (0)
(a) Single-particle reduced density matrix (RDM)

p(hoy,rio)= > [dr,..dr, e
0y Oy
% P ¥, (1o, 1,0, 1y o ) ¥, (Ko, 1,0, 1oy )

(“behavior of single atom arranged over behavior of all the N-1
others”)
Can diagonalize:

p(ro,ro’) = Z N xi (rlal)li*(rlbll)
For bosons (only!), can have n,~N=N, (condensate)
(b) 2-particle RDM:
p, (o, 1o, o, rhoy,)= > [dr.dr, -

03...0)\

Zn: P, ¥, (hoy, 1,0y, 1,05..yoy )Y, (hoy, 1,05, 1,05..[ Oy )

:ZniZi(rlo'lirzUz)Z:(rlbll’rzlaé) \

“behavior of single pair
arranged over behavior
of the N-2 particles”
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Pseudo-BEC of fermions:
I 1./

p, (oo, hoho,) = Zni?(i (rlgerJz)Z*(rllglerIO-;)
(Zni = N(N —l))

Thermal equilibrium in translation-invariant system:
3 classes of eigenfunctions y; (ro,r,0,):

(1) x ~ const. for [, —r,|] > unbound o(N?)
(2) x; >0 for |r,—r,| >, bound, Np—
y(R)~ expiK-R, K0 noncondensate
1
I L <0o(N)
2
() x,>0for |r—r,|>0w] bound,
7 (R) ~ const. }: Y condensate Ng—

“Condensate function”= N, /N, N, = eigenvalue assoc. with y,.

Can classify y;’s by spin and relative orbital angular momentum ¢
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Special case: dilute ultracold 2-species Fermi gas with
attraction s-wave state (specified by a,)

General expectation: phase diagram specified completely
by T and dimensionless parameter:

£ =

_]/kfas

Nb~No~O
NCL

Np~ No~0
NBL
7z NFL
BEC *\ BCIS ;\\\
Ne-ON-N 097 Nwﬁ No~ N

(but < N)
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Separation of “atomic” and “many-body” effects

Consider av. A of any short-range 2-particle property
described by f(r,,) where f(r)— 0 for r » r, (range of
2-particle potential) (exx: potential en. V/(r), closed-channel
fraction ...). Then £ # 0 eigenfunctions do not contribute.
So

A= ig/\ﬂdrldrz f(rn—r,: 610'2)‘% (nr,: 510'2)‘2

Crucial observation (Tan 2005):
inrange r, « r « ket all the s-wave y; are of the form

x:(r) :Ci(g,T)(%_aij

(with C; ~ L2 for unbound eigenf. and ~ £-¥/2 for bound
ones) A

microscopic length
More generally, for r « k.t (but possibly < r,).

1 (r)=C,(&,T)xy (r) <« 2Z-particle e=0 w.f.
Thus, atoEnic

A=Nk_h(&,T) -Idrf ('f)\l//at(")‘2

h(&,T)=X(n/Nk:)[C (g‘,T)\2 (= const. x “contact")
c J

Y
many-body

= ratios of (2-body) microscopic quantities entirely det. by
atomic physics, absolute value by many-body physics.

All this is quite general ...
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The problem: N fermions, equal nos. T and !,
g n* 2 \
=—5—2 Vi — /1.3 2
2m 2= N, =(& /372)
subject to b.c.

W\~ const. (1-a/r;;) for antiparallel-spin particles i, j for
T, K1y K n1/3

(in dilute limit, parallel-spin particles noninteracting)

All (equilibrium) props. must be functions only
of &=-1/kraq

“Naive” Ansatz (Eagles 1969, AJL 1980, Randeria et al. 1985,
Stajic et al. 2005 .. . .):

¥, :.7\/-%-{40(7“1—7“2‘, 2010,)Q(13 =14 0 030, )..p(Ty =Ty GN_lo'N)}

<\PN |H | \PN> =
1. Pairing terms <« fully taken into account
2. Fock terms <« vanish in dilute limit
3. Hartree terms <« 77

equivalently: each term of W ("@ve) satisfies b.c. for paired
particles only, e.g. 15t term satisfies it for 1, 2 but not (e.g.)
for 1, 3.

Output of naive ansatz: |
n(&),AE) (calc" analytic except for 2

|D numerical integrals)
Hence also (E/N)(&).
1': not obvious a priori that naive ansatz is even
qualitatively right!



LBEC 7

| Er

~E. exp — p/2k¢|a

!

! ¢ —
~AJE¢
AN _ 1.
2maZ b
(f = _1/kFas) No (T=0) phase transition!

Excitation energy of quasiparticle with momentum k

(normal-state energy &, = h2k?/2m):

Ek = v (& — w2 + |A]2

u> 0:minE, = |A|

w < 0:min Ex = /|pl? + |A|2
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Why is the “naive ansatz” so (comparatively) good?
- correct qualitatively (e.g. no phase transition as f(¢))

- not so bad quantitatively (e.g. predicts Bertsch parameter
~ 0.59: variational estimates ~ 0.4)

Clue by analogy: low-T props. of normal metals close to Fermi
gas model.

Solution: Landan Fermi-liquid theory!

Landan’s “adiabatic” argument:

0" =U(0)|0), @3|0) =U(0)a}|0) U(t):expi}l(t’)dt-\f/tr
1 1 1 ! B

GS  GSof gp  real-particle  (A(-0) =0, A(+0) =1)
Fermi gas

I.e. low-lying excitations (gp states) in 1-1 correspondence with
excited states of Fermi gas. (Very detailed discussion +
justification: Nozieres, Theory of Interacting Fermi Systems)
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Can we do something similar for low-lying excitations of UC
Fermi gas?

e.g. start close to BCS, end (é—+x), i.e. 0 < A(- ) « 1.

GS is BCS state, excited states are
(a) Bogoliubov quasiparticles
(b) AB phonons. Should evolve adiabatically ...

Z% . at BCS end, AB phonons not
well-defined fork = &' — 0

T

pair radius

2-qp contiptium

7/
/

N
\

2A

_AB phonon

k—

= region of validity of “Landan-like”
theory vanishes? (may need nontrivial extension of
Nozieres argument).
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BEC-BCS crossover: The £ #0 case

Qualitative differences from s-wave case:

1. (2-body prob): In s-wave case, general E=0 solution outside
potential is

Yry=1l-ag /7

and in particular, at unitarity, V' (r) ~ 1 —in many-body
cases expect strong 3, 4 . . . -body interaction effects.

In £ £0 case,
C
Y(r)~ + 2

OHL

suggests unitary limit may be (almost) trivial in
limr, < an~1/3

2. Standard BCS-type ansatz gives topological phase transition
atu=0.
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BEC-BCS crossover. The £ #£0 case (cont.)

3. The angular momentum problem:

In BEC of tightly bound £ # 0 diatomic modules,
overwhelmingly plausible that

_ Ny
L=l

What is situation in BCS limit?

Most “obvious” number-conserving ansatz:
N /2

Y~(Zcaa' | , c=v0/u

with (e.g.) ¢, ~ €XP ¢@,. Thishas L = ghz just as in

BEC limit, irrespective of magn. of |A|.

Problem: macroscopic discontinuity at transition to
normal state (L = O)!

This may not be worrying, because as |A| — 0 there is a char.

length (the pair radius §,~hv/|A|) which — .
(so that for any finite container radius R transition is

smooth)

T: What about limit T»T.? Here &, ~hv/KgT, does
not diverge
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Alternative MBWEF of (p + ip) Fermi superfluid

Recap: standard ansatz is (for sayT1)

N/2
Y~ (Z Ckal_:a+k) | vac), ¢, ~ exp g,
K

I.e. all pairs of states in Fermi sea have angular momentum h.

Alternative ansatz:

first shot:
¥(N,,N,)
N, /2 '
(3 eaan ]

N, /2
Z daa] v

k<kg

A keeps pp—pp and hh—hh, but not (e.g.) pp—hh.
Remedy:
y ¥~ ¥ QNka\P(Np,Nk),

N, Ny
Q slowly varying as f (N, N, )
degenerate with standard ansatz to O(N-12), but
L~(Na/l2)-(AlE.)

IS GS OF (p + ip) FERMI SUPERFLUID UNIQUE?
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T
normal Fermi sea.
L=0

|

_ |

BEC of £ = 1 molecules \:/

L = Nh/2 ----------------------- > -

-1/g

Can we settle this question experimentally?

(and does alternative description have any implications for
topological phase transition?)



