THE COULOMB INTERACTION AND SUPERCONDUCTIVITY IN QUASI-TWO-DIMENSIONAL SYSTEMS

Anthony J. Leggett Department of Physics University of Illinois at Urbana-Champaign

Conference on Correlated Matter and Light in honor of the retirement of Dirk van der Marel

University of Geneva, 7 Sept. 2022 (by zoom)

based in part on work done in collaboration with M. Turlakov and D. Pouliot.

<u>HIGH-TEMPERATURE AND</u> "QUASI-HIGH-TEMPERATURE" SUPERCONDUCTORS

Compound	(quasi-) 2D?	proximity to AF?	MIR peak?
cuprates	\checkmark	\checkmark	\checkmark
ferropnictides	\checkmark	\checkmark	\checkmark
β -FeSe	\checkmark	\checkmark	\checkmark
organics (including doped PAH*)	✓	\checkmark	\checkmark
PuMGa ₅	\checkmark	(√)	?

(exceptions: doped fullerenes, $(H_2S) - BCS$ -like?)

On the other hand: band structures very different order parameter symmetry probably very different ...

What does this suggest?

Answer: Common factor related to above commonalities, but insensitive to details of band structure and OP symmetry maybe long-range part of Coulomb interaction?

WHICH ENERGY IS SAVED IN THE SUPERCONDUCTING* PHASE TRANSITION?

A. DIRAC HAMILTONIAN (NR LIMIT):

$$\hat{H} = \sum_{i} \hat{p}_{i}^{2} / 2m + \sum_{\alpha} \hat{P}_{\alpha}^{2} / 2M + \frac{1}{2} \cdot \frac{1}{4\pi\varepsilon_{o}} \begin{cases} \sum_{ij} \frac{e^{2}}{|\mathbf{r} - \mathbf{r}_{j}|} \\ + \sum_{\alpha\beta} \frac{(Ze)^{2}}{|\mathbf{R}_{\alpha} - \mathbf{R}_{\beta}|} - 2\sum_{i\alpha} \frac{Ze^{2}}{|\mathbf{r}_{i} - \mathbf{R}_{\alpha}|} \end{cases}$$
Consider competition
between "best" normal GS
and superconducting GS:

Chester, Phys. Rev. 103, 1693 (1956): at zero pressure,

$$\begin{split} \left\langle \widehat{H} \right\rangle &= \left\langle \widehat{K} \right\rangle + \left\langle \widehat{V} \right\rangle \\ \left\langle \widehat{K} \right\rangle &= -\frac{1}{2} \quad \left\langle \widehat{V} \right\rangle \quad \leftarrow \text{ virial theorem} \\ &\rightarrow \left\langle \widehat{H} \right\rangle &= \frac{1}{2} \quad \left\langle \widehat{V} \right\rangle \\ &\text{Since } E_{cond} \quad \equiv \quad \left\langle \widehat{H} \right\rangle_{N} - \quad \left\langle \widehat{H} \right\rangle_{S} > 0, \\ &\quad \left\langle V \right\rangle_{S} < \left\langle V \right\rangle_{N} \end{split}$$

i.e. total Coulomb energy must be saved in S transⁿ.

(and total kinetic energy must increase) e-e, e-n, n-n

*or any other.

B. INTERMEDIATE-LEVEL DESCRIPTION:

partition electrons into "core" + "conduction", ignore phonons. Then, eff. Hamiltonian for condⁿ electrons is

$$\widehat{H} = \widehat{K} + \sum_{i} \widehat{U}(r_{i}) + \frac{1}{2} \frac{1}{4\pi\varepsilon_{o}} \sum_{ij} \frac{e^{2}}{\varepsilon |r_{i} - r_{j}|} \leftarrow \widehat{V}$$

$$\widehat{K}_{eff}$$
with $U(r_{i})$ independent of ε (2) (from jonic cores)

with $U(r_i)$ independent of ε (?).

If this is right, can compare 2 systems with same form of U(r) and carrier density but different ε .

Hellman-Feynman:

$$\frac{\partial \langle H \rangle}{\partial \varepsilon} = \left\langle \frac{\partial \widehat{V}}{\partial \varepsilon} \right\rangle = - \frac{\widehat{V}}{\varepsilon}$$

Hence provided $\langle \hat{V} \rangle$ decreases in N \rightarrow S transⁿ, (assumption!) $\frac{\partial E_{cond}}{\partial \varepsilon} < 0, \quad \text{ i.e. "other things" } (U(r), n) \text{ being equal,}$

advantageous to have as strong a Coulomb repulsion as possible ("more to save"!)

ENERGY CONSIDERATIONS IN "ALL-ELECTRONIC" QUASI-2D SUPERCONDUCTORS

(neglect phonons, inter-cell c-axis tunnelling)

in-plane
$$e^- KE$$

 $\widehat{H} = \widehat{T}_{(\parallel)} + \widehat{U} + \widehat{V}_c$
potential energy of
conduction e^- 's in

inter-conduction e⁻ Coulomb energy (intraplane & interplane)

AND THAT'S ALL

field of static lattice

(DO NOT add spin fluctuations, excitons, anyons....) At least one of $\langle T \rangle, \langle U \rangle, \langle V_c \rangle$ must be decreased by formation of Cooper pairs. Default option: $\langle V_c \rangle$

Rigorous sum rule:

$$\langle V_C \rangle \sim -\int d\mathbf{q} \int d\omega \, \mathbf{Im} \left\{ \frac{1}{1 + V_q \chi_o(q\omega)} \right\}$$
$$\begin{bmatrix} 3D := \int dq \int d\omega \left(\mathrm{Im} \frac{1}{\varepsilon(q\omega)} \right) \end{bmatrix} \begin{array}{c} \text{Coulomb} & \text{bare density} \\ \text{interaction} & \text{response} \\ \text{(repulsive)} & \text{function} \\ \end{bmatrix}$$

WHERE IN THE SPACE OF (q, ω) IS THE COULOMB ENERGY SAVED (OR NOT)?

loss function

THIS QUESTION CAN BE ANSWERED BY EXPERIMENT! (EELS, OPTICS, X-RAYS)

THE ROLE OF 2-DIMENSIONALITY

As above,

$$\langle V \rangle = -\frac{1}{2} \cdot \sum_{q} \int_{o}^{\infty} \frac{d\omega}{2\pi} \operatorname{Im} \left\{ \frac{1}{1 + V_{q}\chi_{o}(q\omega)} \right\}$$

$$= -\frac{1}{2} \cdot \frac{1}{(2\pi)^{d+1}} \int_{o}^{\infty} d^{d}q \operatorname{Im} \left\{ \frac{1}{1 + V_{q}\chi_{o}(q\omega)} \right\}$$

$$\operatorname{In} 3D, V_{q} \sim q^{-2},$$

$$1 + V_{q}\chi_{o}(q\omega) \equiv \varepsilon_{\parallel}(q\omega), \text{ so}$$

$$\langle V \rangle \sim \int q^{2}dq \int d\omega \left\{ -Im\frac{1}{\varepsilon_{\parallel}(q\omega)} \right\} \quad \leftarrow \text{ loss function}$$

$$\operatorname{so} \text{``small'' q strongly suppressed in integral}$$

$$\operatorname{In} 2D, V_{q} \sim q^{-1}, \qquad \text{interplane spacing}$$

$$V_{q}\chi_{o}(q\omega) \sim q \frac{d}{2} \left(\varepsilon_{3D}(q\omega) - 1 \right)$$

$$\langle V \rangle \sim \int q \, dq \, \left\{ -\operatorname{Im} \, \frac{1}{1 + q \frac{d}{2}(\varepsilon_{3D}(q\omega) - 1)} \right\}$$

$$(qd \geq 1)$$

$$\sim \frac{1}{d} \int dq \, \left\{ -\operatorname{Im} \, \frac{1}{\varepsilon_{3D}(q\omega)} \right\} \quad (\uparrow: \text{at given } \omega)$$

at least at first sight, small q as important as large q. Hence, \$64K question:

In 2D-like HTS (cuprates, ferropnictides, organics...) is saving of Coulomb energy mainly at small *q*? (might explain insensitivity to band structure, OP symmetry...)

CONSTRAINTS ON SAVING OF COULOMB ENERGY AT SMALL q*

$$\langle V \rangle_q = V_q \langle \rho_q \rho_{-q} \rangle = V_q \cdot \frac{1}{2\pi} \int_o^\infty \operatorname{Im} \chi(q\omega) d\omega$$

Sum rules for "full" density response $\chi(q\omega)$ (any d)

$$J_{-1} \equiv \frac{2}{\pi} \int_{o}^{\infty} \frac{\operatorname{Im} \chi(q\omega)}{\omega} d\omega = \chi(qo) \qquad \text{KK}$$
$$J_{1} \equiv \frac{2}{\pi} \int_{o}^{\infty} \omega \operatorname{Im} \chi(q\omega) d\omega = \frac{nq^{2}}{m} \qquad \text{f-sum}$$
$$J_{3} \equiv \frac{2}{\pi} \int_{o}^{\infty} \omega^{3} \operatorname{Im} \chi(q\omega) d\omega = \frac{q^{2}}{m^{2}} \langle A \rangle + q^{4} \frac{n^{2}}{m^{2}} V_{q} + o(q^{4})$$

(generalized Mihara-Puff)

where:

$$\langle A \rangle \equiv -\frac{1}{\pi} \sum_{\kappa} (\hat{\kappa} \cdot \hat{q})^2 U_{-\kappa} \rho_{\kappa} > 0$$

reciprocal lattice vector

Note in 2D, term in $\langle A \rangle$ is dominant at small q. General CS inequalities (any d):

 $\frac{1}{2} \left(V_q^2 J_{-1} J_1 \right)^{\frac{1}{2}} \ge \langle V \rangle_q \ge \frac{1}{2} \left(V_q^2 J_1^3 / J_3 \right)^{\frac{1}{2}}$

or

*M. Turlakov and AJL, Phys. Rev. B **67**, 94517 (2003) (do <u>not</u> go via band theory!)

$$\frac{\hbar\omega_{p}}{2} + o\left(q^{2}\right) \ge \left\langle V \right\rangle_{q} \ge \frac{\hbar\omega_{p}}{2} \frac{1}{\left(1 + \left\langle A \right\rangle / nm\omega_{p}^{2}\right)^{1/2}} + o\left(q^{2}\right)^{CML-8}$$

notional "plasma frequency,"

$$\left(nq^2V_q / m\right)^{1/2}$$

Implications for saving of Coulomb energy at small q by N \rightarrow S transition:

- (a) order of magnitude of $\langle V_c \rangle_q$ is $\hbar \omega_p(q)$.
- (b) for $\langle A \rangle \rightarrow 0$ ("jellium" model), no saving (for any d). Lattice is crucial! ("umklapp") \uparrow dimension
- (c) in 3D $(\omega_p^2 \sim const.)$ can save at most a fraction of N-state Coulomb energy, while in 2D $(\omega_p^2 \sim q)$ can in principle save all of it.
- (d) Thus, total contribution from $q < q_0 (\ll k_F)$: 3D: q_0^3 , of which only part can be saved 2D: $q_0^{5/2}$, of which all can be saved
- (e) "other things being equal", lower limit $\propto n^{5/2} \Rightarrow$ might favor low e^- density
 - Q: How much needs to be saved?

A: Not much! (~1K/CuO₂ unit for Tl 2201, for Tl-2223 ~2.5K/ CuO₂ unit)

TO TEST MIR SCENARIO:

Ideally, would like to measure Changes in loss function

 $\leftarrow -Im\frac{1}{\varepsilon_{\parallel}(q\omega)}$

across superconducting transition, for 100 meV < ω <2eV, and ALL q < d⁻¹ ($\approx 0 \cdot 3 \text{ Å}^{-1}$)

NB: for $q > d^{-1}$, no simple relation between quantity $-\text{Im} (1 + V_q \chi_o (q\omega))^{-1}$ and loss function.

Possible Probes:

"transverse," arb. ω but q \ll 0 \cdot 3 Å⁻¹ 1) Optics (ellipsometry)_

- _ "long'l," arb. q, ω 2) Transmission EELS
- 3) RIX

Existing experiment:

Optics*: small ($\sim 1 - 2\%$) change on crossing T_c in loss function integrated across MIR region: positive in underdoped regime, negative in overdoped regime.

*Levallois et al. (van der Marel group) (inc. AJL), Phys. Rev. X 6, 031027 (2016)

The S-N difference of the **q**-integrated Coulomb energy $\Delta E_{\rm C}^{\rm mir}$, together with the total energy difference $-E_{\rm cond}$ and band-energy difference ΔK .

EELS*

On N phase only, but wide range of q and ω . Most striking result:

```
loss function mostly featureless as f(\omega) for \omega \lesssim 1 ev, (but c.f. below)
```

```
virtually independent of q except for q^2 scale factor
(suggests changes in N\rightarrowS transition may also be
independent of q)
```

Confirms gain of spectral weight at low ω for $p \lesssim 0.18$

<u>loss</u> of spectral weight at low ω for p > 0.18

```
but this is for T considerably > T_c!
```

RIXS[†]

Concentrates on d-d exciton peak: probably qualitatively consistent with optics and EELS

Badly needed

- (1) extension of EELS (or RIXS) experiments on cuprates
- to $T < T_c$.

(2) EELS/optics experiments on other quasi-2D high- T_c

superconductors.

* Husain et al., PRX **9**, 041062 (2019) † Barantani, et al., PRX 12, 021068 (2022)