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Concentrate on 2 main topics:
1. Macroscopic quantum tunnelling (MQT) and 

Macroscopic quantum coherence (MQC)

2. Symmetry of the superconducting order parameter



DF ‐ 2

Part 1. Squids (and current-biassed junctions) as test-beds for 
macroscopic quantum behavior (NOT just “many particles/pairs doing 
the same thing” – that is already exemplified by liquid 
helium/superconductors/lasers…)

We would like to see
QUANTUM-MECHANICAL BEHAVIOR OF A 

MACROSCOPIC VARIABLE
e.g. flux  trapped in a SQUID ring (“flux qubit”) or phase drop 
across current-biassed Josephson junction (“CBJ”).
Classical Lagrangian:
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 V Φ

Φ
Δq
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MACROSCOPIC QUANTUM 
TUNNELLING (flux qubit or 
CBJ)

MACROSCOPIC QUANTUM 
COHERENCE (flux qubit only)

(also quantized energy levels, etc.)

Theoretical predictions for isolated systems (near lability):

Escape rate by tunnelling:

cf:

NH3-type oscillation rate:
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 *
p BT T ћω / 7 2k   

0
0

ρ

V16
Δ ω exp

3 ћω

 
    

 

pω~

 V Φ

Φ

pω 0V



DF ‐ 4

First theoretical predictions of MQT (in CBJ): Ivanchenko and 
Zil’berman 1968 (6 years from Josephson!)

Experimental non-observation of MQT: Fulton and 
Dunkelberger 1974

First explicit claim of experimental observation of MQT: 
Den Boer and de Bruyn Ouboter 1980

Some doubts re MQT in early 80’s:

Experimental:
(1) crucial role played by junction capacitance C, which in 

some experiments is unknown
(2) main evidence for MQT flattening of (T), but this could be 

due to decoupling of macroscopic degree of freedom from 
thermometer

Theoretical:
(1) is “naïve” quantization of classical equations of motion 

legitimate? (N.D. Mermin: “can you quantize the equations 
of mathematical economics?”)

(2) effects of (external) decoherence and (internal) dissipation.
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     estMq t V q q F t/     QM 0Γ = const. exp. B

and one which classically satisfies dissipative eqn. of motion of form

       extMq t + + V q q F tηq t /   

Answer (near lability):

   2

0 0B B η B + Aη Δq / ћ 

distance under barrier


A.O. Caldeira and AJL 1981: what is difference between tunnelling 
escape rate of system which classically satisfies conservative eqn. 
of motion

Microscopic confirmation: Ambegaokar et al. 1982.  

How to understand intuitively?

Describe environment which gives rise to dissipation by Feynman-

Vernon (oscillator-bath) technique, but MUST supplement the linear 

coupling                                                                         by a 

“counterterm”                                       then energy contours look like
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A.  Zero dissipation  αη 0 all c 0   
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saddlepoint

saddlepoint

Height of saddlepoint unchanged, distance to it increased!
In thermal activation, exponent of rate th sensitive only to barrier 
height  unaffected by dissipation (Kramers)
In quantum tunnelling, exponent of QM is affected by both height

of barrier and distance to it                             reduced by 
dissipation.

 B ~ V dx / ћ
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Meanwhile, in the Clarke group at Berkeley, including DVH:
detailed consideration of the voltage noise in SQUIDs due to a parallel 
resistor

Koch, Van Harlingen, Clarke 1980

VIth International Conference on Noise in Physical Systems,
Gaithersburg, Md. April 6-10, 1981

(AJL paper, p. 355: Koch et al. paper, p. 359)

Early ’80s: several experiments (Voss & Webb, Jackel…)  on MQT in 
CBJ’s

better control over junction capacitance, but “noise temperature” 
problem persists

Two milestone papers in Oct. 1985:
Martinis, Devoret, Clarke: energy-level quantization in zero-voltage 

state of a CBJ
Devoret, Martinis, Clarke: MQT out of zero-voltage state: all 

relevant parameters of junction measured in situ
(3rd International Conference on SQUIDs, West Berlin, June ’85)

1985 – 2000: much theoretical work on effects of dissipation on MQC 
(e.g. AJL et al. 1987). Also, blueprints for MQC experiment 
(Tesche, Rome group) culminating in: 

2000: first generally accepted observation of MQC in SQUIDs 
(Stony Brook, Delft)

but in the meantime…

 R CL's η :1 
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Cuprates (high-Tc) superconductors 1986

early 1990’s:

What is structure of OP

as function of relative coord.                  (or F.T. k)?

     F :σσ ψ σ ψ σˆ ˆr,r r r   

r r  

early experiments: 0 in superconducting phase  spin singlet
 even parity in  ( = 0,2,…)

2 main contenders:

A. s-wave (phonons, van Hove singularities,
Anderson ILT model ….)

B. d-wave, and particularly          
(spin fluctuation theories, …) 
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favor            symmetry of OP (Scalapino, Moriya, Pines…)?2 2x -y

d

In cuprate phase diagram, superconductivity occurs next to AF state:












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 



AF wave vector kAF

Generally, pairing energy given by 

     eff eff
σσ FS FS

V d d V  spins F  spins F  spins
*

*k k  k k , k, k ,


     
In phonon case, Veff ~ ind. of (kk, spins) and (mostly) attractive, so  
F(k,) ~ const.(k)  spin singlet (BCS). What about cuprates?

Low-energy spin waves AF, and attraction due to their exchange 
mostly around kAF ~ connects antinodes of F. So what should be 
relative sign of F on antinodes so connected?

Prima facie, should be +  s-wave. However,
need to consider spin structure of interaction induced by 

exchange of AF spin waves! (e.g. transverse case: +, +) 
introduces extra  sign, hence: sign of F(k) should be opposite to that 
of F(k) , i.e.          .

Early ’90’s: various experiments, mostly to investigate presence 
of absence of gap nodes. No unique conclusion (cf Annett et al. 1990)

Question: could one determine relative sign of nodes?

2 2x -y
d

~kAF
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Wollman et al. 1993 (inc. DVH, AJL)

total phase drop around circuit


   c totI Φ 2I  cos Δφc

ttot e nxt iΔφ Δφ Δφ ext 0Δφ 2πΦ /Φ

 2 2

int 0

0x -y

Δφ 0 for s I  max. at Φ = n Φ

1π for d " Φ = n + Φ2

c      

                            

 



Conclusion: OP is
(Tsuei et al., Mathai et al., …) 
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1994 Superconductivity in SRO at ~ 1K
Rice-Sigrist, Baskaran: (in analogy with 3HeA):

OP  F(k) is (kx+iky)  triplet spin state


“chiral”

1998 Knight-shift experiments appear to show   const. in sup. 
state

triplet spin state ⇒ odd parity

2000-2019 : many experiments, including some at Illinois, consistent 
with chiral state

in particular,
Kidwingira et al. (DVH group) 2006  (kx+iky) ⇄ (kxiky)

fluctuations
Jang et al. (Budakian group) 2011  “half-quantum” vortices. 

In parallel, phase interference experiments similar to Wollman et al. (as 
originally suggested by Geshkenbein et al. 1987): Nelson et al. (Liu 
group, PSU) 2004.

One important difference: 
for single-junction tunnelling between singlet and singlet, simple 

“scalar” (Bardeen-Josephson) tunnelling gives nonzero result.
for tunnelling between singlet and triplet (s⇄p) need to invoke 

SOI (Geshkenbein & Larkin 1986) ⇒ experiments even more 
informative

⇧: does SOI need to be in junction itself ?
___________

Cat thrown among pigeons (UCLA 2019): Knight-shift seems to drop
towards 0 in sup phase!

Current unknowns:
do experiments measure the true ?
can spin singlet be reconciled with odd-parity orbital state?

The Strontium ruthenate (SRO) saga
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HAPPY RETIREMENT DALE!


