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TOPOLOGICAL QUANTUM COMPUTING/MEMORY

Qubit basis.      |  , |  

| = |   +  |  

To preserve, need (for “resting” qubit)

ˆˆ   1 H  in |  ,  |   basis

12 1 11 22 2
ˆ ˆ ˆ( 0 " ": const " ")H T H H T      

on the other hand, to perform (single-qubit) operations, need 
to impose nontrivial

 we must be able to do something Nature can’t.

(ex: trapped ions: we have laser, Nature doesn’t!) 

Topological protection:

would like to find d–(>1) dimensional Hilbert space within 
which (in absence of intervention)

ˆ .H

/ˆˆ 1( .) ( ) Lconst o eH  
size of
system

microscopic 
length

How to find degeneracy?

Suppose  two operators 1 2
ˆ ˆ, s.t. 

2

1 2 1

1 21

           

ˆ ˆ ˆ ˆ[ , ] [ , ] 0
but

ˆ ˆ(and ,  com

ˆ ˆ ˆ[ ,

mute with 

]  0      (and  | >  

b.c

0)

's)

  

H H



   

    

 

then Hilbert space at least 2-dimensional…
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EXAMPLE OF TOPOLOGICALLY PROTECTED STATE: 
FQH SYSTEM ON TORUS

(Wen and Niu, PR B 41, 9377 (1990))

Reminders regarding QHE:

2D system of electrons, B  plane

Area per flux quantum = (h/eB)  df.

1/2( / )M eB   “magnetic length”

( 100  for B = 10 T)M A 

( translations of all electrons through 
a(b)  appropriate phase factors). In general

ˆ ˆ( ), ( )x yT Ta b
ˆ ˆ[ ( ), ( )] 0x yT T a b

Argument for degeneracy: (does not need knowledge of w.f.)
can define operators of “magnetic translations”

“Filling fraction”  no. of electrons/flux quantum  

“FQH” when  = p/q incommensurate 
integers
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In particular, if we choose

1 2/ , /s sN N a L b L

1 2 2 1
ˆ ˆ ˆ ˆ exp 2T T T T i 

1 2
ˆ ˆ,T T

1 2

1 2

ˆ ˆ ˆ ˆ[ , ] [ , ] 0 (*)
ˆ ˆso since [ , ] 0

T H T H

T T

 


must  more than 1 GS (actually q). 

Corrections to (*): suppose typical range of (e.g.) 

external potential V(r) is o, then since |>’s oscillate 

on scale osc,

1 2
ˆ| | ~ exp / ~ exp /

ˆ(  const. 1)
o oscH L   



 

But the o. of m. of a and b is M·(M /L) º osc « M , 
and  0 for L¥. Hence to a very good approximation,

2 /M o  

then             commute with b.c.’s (?) and moreover

no. of flux quanta 
2

1 2 )( / 2 ML L  
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abelian if (ex: FQHE)

TOPOLOGICAL PROTECTION AND ANYONS

Anyons (df): exist only in 2D

(bosons:  = 1, fermions:  = ½)

12(1,2) exp(2 ) (2,1) ˆ (1,2)Ti     

12 23 23 12
ˆ ˆ ˆ ˆT T T T

nonabelian if                               ,   i.e. if                                12 23 23 12
ˆ ˆ ˆ ˆT T T T

1

2

3

1 2
("braiding statistics")

 

1 2
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Nonabelian statistics* is a sufficient condition for (partial) 
topological protection:

[not necessary, cf. 
FQHE on torus]

12 23

12 23

ˆ ˆ ˆ ˆ[ , ] [ , ] 0

ˆ ˆ[ , ] 0 

T H T H

T T

 



 space must be more than 1D.

(b) groundstate:

GS GS

create anyons annihilate anyons

annihilation process inverse of creation 

GS also degenerate. *plus gap for 
anyon creation

Nonabelian statistics may (depending on type) be adequate 
for (partially or wholly) topologically protected quantum 
computation

(a) state containing n anyons, n  3:
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SPECIFIC MODELS WITH TOPOLOGICAL PROTECTION

1. FQHE on torus

Obvious problems:

(a) QHE needs GaAs–AlGaAs or 
Si MOSFET: how to “bend”
into toroidal geometry?

QHE observed in (planar) graphene (but not obviously 
“fractional”!): bend C nanotubes?

(b) Magnetic field should everywhere have large compt  to 
surface: but div B = 0 (Maxwell)!

2. Spin Models (Kitaev et al.) (adv: exactly soluble)

(a) “Toric code” model

Particles of spin ½ on lattice

s

p

ˆˆ ˆ
p

p
s

s
H A B   

ˆ ˆˆ ˆ,s pj jj s
x z

j p
A B

 
    

ˆ ˆ(so [ , ] 0 in general)s pA B 
Problems:

(a) toroidal geometry required (as in FQHE)

(b) apparently v. difficult to generate Hamn physically
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subl. A
subl.

B

y        x

z

(b) Kitaev “honeycomb” model

Particles of spin ½ on
honeycomb lattice
(2 inequivalent sublattices,
A and B)

SPIN MODELS (cont.)

ˆ ˆ ˆ ˆ ˆ ˆ ˆx
yk

y links

yy
j k

sitesz linksx links

x z z
x j j kzH J J J     

 
         H

| | | | | |, | | | | | |,

| | | | | |       and 0
x y z y z x

z x y

J J J J J J

J J J

   
  H

nb: spin and space axes independent

Strongly frustrated model, but exactly soluble.*

Sustains nonabelian anyons with gap provided 

(in opposite case anyons are abelian + gapped)

Advantages for implementation:

(a) plane geometry (with boundaries) is OK

(b) bilinear in nearest-neighbor spins

(c) permits partially protected quantum computation.

Ĥ

* A. Yu Kitaev, Ann. Phys. 321, 2 (2006)
H-D. Chen and Z. Nussinov, cond-mat/070363 (2007)
(etc. …) 
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Can we Implement Kitaev Honeycomb Model?

in 2D, 3 counterpropagating beams at 120° can create honeycomb
lattice (suppress tunnelling along z by high barrier)

For atoms of given species (e.g. 87Rb) in optical lattice 2 
characteristic energies:

interwell tunnelling, t

intrawell atomic interaction (usu. repulsion)    U

For 1 atom per site on average:

if t » U, mobile (“superfluid”) phase

if t « U, “Mott-insulator”phase
(1 atom localized on each site)

If 2 hyperfine species (@ “spin –1/2” particle), weak 
intersite tunnelling  AF interaction

(irrespective of lattice symmetry).

So far, isotropic, so not Kitaev model. But …

0const. (~ )Ve

V0

2 2 2( ) (cos cos cos )oV V kx ky kz  r

(2/ laser wavelength)

2ˆ /i jAF
nn

H J J t U   

One proposal (Duan et al., PRL 91, 090492 (2003)): use optical 
lattice to trap ultracold atoms

Optical lattice:

3 counterpropagating pairs of laser beams create 
potential, e.g. of form
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If tunnelling is different for  and , then H’berg Hamiltonian is 
anisotropic: for fermions,

 if t», get Ising-type intn

We can control t and twith respect to an arbitrary “z” axis by 
appropriate polarization and tuning of (extra) laser pair. So, with 
3 extra laser pairs polarized in mutually orthogonal directions 
(+ appropriately directed) can implement

2 2
ˆ ˆ ˆ ˆ ˆ ˆ ˆ( )

2AF
y yz z x x

i j i j i j
nn nn

t t t t
H

U U
        


   

ˆ ˆ const. z z
AF i j

nn
H   

ˆ ˆ ˆ ˆ ˆ ˆ ˆy y

y bond
x

z z

z bon
y zi j i

x x

x bond
j

s d
i

ss
jH J J J     

 
    

Some potential problems with optical-lattice implementation:

(1) In real life, lattice sites are inequivalent because of background 
magnetic trap  region of Mott insulator limited, surrounded 
by “superfluid” phase.

(2) to avoid thermal excitation, need 

(3) Even if “T ” < 1pK, v. long “spin” relaxation times in ultracold
atomic gases  true groundstate possibly never reached.

Other possible implementations: e.g. Josephson circuits
(You et al., arXiv: 0809.0051)

121pK. (10 K)T 

 Kitaev honeycomb model
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If df. lm º(/eB)1/2 (“magnetic length”) then area per flux 

quantum h/e is          , so no. of flux quanta
(A º area of sample). If total no. of electrons is Ne, define

(“filling factor”)

QUANTUM HALL SYSTEMS

Reminder re QHE:

Occurs in (effectively) 2D electron system (“2DES”)
(e.g. inversion layer in GaAs – GaAlAs heterostructure) 
in strong perpendicular magnetic field, under conditions of 
high purity and low ( 250 mK) temperature.

22 ml
2/ 2 mA l

/ev N N

Nb: (1) Fig. shows IQHE 
only

(2) expts usually plot 

 

1
vs xyR B


  
 Sxx

SH

Sxy/(e2/h)

1

2

3

1

nh/eB 
2 3

QHE occurs at and around (a) integral values of  (integral 
QHE) and (b) fractional values p/q with fairly small ( 13) 
values of q (fractional QHE). At ’th step, Hall 
conductance Sxy quantized to e2/ and longitudinal 
conductance Sxx@ 0

so general pattern is same 
but details different
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 = 5/2 STATE:  THE “PFAFFIAN” ANSATZ

Consider the Laughlin ansatz formally corresponding to  = 1/2 
(or  = 5/2 with first 2 LC’s inert):

This cannot be correct as it is symmetric under i« j. So must 
multiply it by an antisymmetric function. On the other hand, do 
not want to “spoil” the exponent 2 in numerator, as this controls 
the relation between the LL states and the filling.

Inspired guess (Moore & Read, Greiter et al.): (N = even)

 ( ) 1

( ( )) (12) (34)... (1 (  Pfaffian)

    antisymmetric und

3) (24).... ....

              

er

  

 

 L
N N i jz z

Pf f ij f f f f

P

ij

f  

  

 

This state is the exact GS of a certain (not very realistic) 3-
body Hamiltonian, and appears (from numerical work) to be 
not a bad approximation to the GS of some relatively realistic 
Hamiltonians.

With this GS, a single quasihole is postulated to be 
created, just as in the Laughlin state, by the operation

 1 0( )N
i Niqh z     

It is routinely stated in the literature that “the charge of a 
quasihole is –e/4”, but this does not seem easy to 
demonstrate directly: the arguments are usually based on the 
BCS analogy (quasihold « h/2e vortex, extra factor of 2 
from usual Laughlin-like considerations) or from CFT.

conformal field theory

2 22( ) exp | | /4L
mi j i j i iN z z z l     ( iz = electron coord.)

These excitations are nonabelian (“Ising”) anyons.
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p-WAVE FERMI SUPERFLUIDS (in 2D)

Generically, particle-conserving wave function of a 
Fermi superfluid (Cooper-paired system) is of form

Consider the case of pairing in a spin triplet, p-wave state 
(e.g. 3He-A). If we neglect coherence between  and 
spins, can write

/ 2

,
( ) |N

N k k k
k

c a a vac 


 
   N

e.g. in BCS superconductor

/ 2( ) |N
N k k k

k
c a a vac 

    N

/ 2 , / 2 ,N N N    

Concentrate on               and redef. N 2N./ 2,N 

/ 2( ) |N
k k kN

c a a vac 
   N

suppress spin index
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What is ck?                                             

Standard choice:

How does ck behave for k0? 

For p-wave symmetry, |k| must µ k, so 

1/2
1 /

exp
1 /

k

k
k

k
k

k

E
c

E
i




 
   





“p+ip”

Real factor

 1/22 2| |k k  

1| |~ / | |~k F kc k 

1 1exp ,r i z  ∝

1 2( ..
1

. )
i j

N N Pf
z

z z
z

z
 
  




 
uninteresting factors

and the MBWF has the form   

Thus the (2D) Fournier transform of ck is

KE measured from µ
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possesses ang. momentum –N/2, no matter how weak 
the pairing!

Now: where are the nonabelian anyons in the p + ip
Fermi superfluid?

Read and Green (Phys. Rev. B 61, 10217(2000)):

Conclusion: apart from the “single-particle” factor 

MR ansatz for  = 5/2 QHE is identical

to the “standard” real-space MBWF of a (p + ip) 2D Fermi 

superfluid. Note one feature of the latter:

2
2

1
exp | | ,

4 j
j

z 


ˆ , | | expk k k k k kk
c a a c c i 

    

,
ˆ ˆ ˆ[ ]zL    

ˆconst. |N
N vac   

z-component of ang. momentum

so

then

if

nonabelian anyons are zero-energy fermions bound to 
cores of vortices.
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Consider for the moment a single-component 2D Fermi 
superfluid, with p + ip pairing. Just like a BCS (s-wave) 
superconductor, it can sustain vortices: near a vortex the pair 
wf, or equivalently the gap (R), is given by

bound states can exist in core.

In the s-wave case their energy is ~ |o|2 F,   0, so 
no zero-energy bound states.

What about the case of (p + ip) pairing? 

If we approximate 

COM of 
Cooper pairs( ) ( )  const. zz   R

2 2 1/2( ) ~ ( | ( ) | ) ,k kE   R R

( , ) ( ) ( )R    R  

 mode with u(r) = v*(r), E = 0

Since | (R)|2 0 for R  0, and (crudely) 

relative coord.
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Now, recall that in general within mean-field (BdG) 
theory,

zero-energy modes are their own antiparticles
(“Majorana modes”)

†ˆ ˆ*( ) υ( ),  then ( ) ( )! i.e.u r r Q r Q r 

† ˆˆ ˆ( ) ( ) ( ) υ( ) ( ) | term ( ) | term( )odd u r r r r Q r      r

This is true only for spinless particle/pairing of || 
spins (for pairing of anti || spins, particle and hole 
distinguished by spin).

:

* Ivanov, PRL 86, 268 (2001)

But, if 
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Consider two vortices i, j with attached Majorana modes 
with creation ops.

What happens if two vortices are
interchanged?*

Claim: when phase of C. pairs changes by 2, phase of 
Majorana mode changes by  (true for assumed form 
of u, v for single vortex). So

†.i i 

i j

j i

 

 





more generally, if  many vortices + w df as exchanging
i, i + 1, then for |i–j|>1

braid 
group!

îT

ˆ ˆ[ , ] 0,i jT T 

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ[ , ] 0, i j i j i j i jT T T T T T T T 


=

* Ivanov, PRL 86, 268 (2001)

for |i – j|=1,

but
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S N S

s-wave
supr.

The experimental situation

Sr2RuO4: so far, evidence for HQV’s, none for MF’s.

3He-A:  evidence if anything against HQV’s

3He-B: circumstantial evidence from ultrasound attenuation

Alternative proposed setup (very schematic)

MF1 MF2

Detection: ZBA in I-V characteristics

(Mourik et al., 2012, and several subsequent 
experiments)

dependence on magnetic field, s-wave gap, 
temperature... roughly right

“What else could it be?”

Answer: quite a few things!

zero-bias anomaly

induced supr.
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Second possibility: Josephson circuit involving induced 
(p-wave-like) supy.

Theoretical prediction: “4-periodicity” in current-phase 
relation.

Problem: parasitic one-particle effects can mimic.

One possible smoking gun: teleportation!

L

e

e

MF1 MF2

ΔT ≪ ிݒ/ܮ ?
Fermi velocity

Problem:  theorists can’t agree on whether teleportation 
is for real!
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Majorana fermions: beyond the mean-field approach

Problem: The whole apparatus of mean-field theory rests 
fundamentally on the notion of  SBU(1)S  spontaneously 
broken U(1) gauge symmetry:

Ψୣ୴ୣ୬~ ෍ ேܥ
ேୀ
ୣ୴ୣ୬

Ψே ~ேܥ ேܥ ݁௜ேఝ

Ψ୭ୢୢ
௖ ~න݀ݎ ݑ ݎ ෠߰ற ݎ ൅ ߭ ݎ ෠߰ ݎ |Ψୣ୴ୣ୬ۧ ≡ ො௜ߛ

ற|Ψୣ୴ୣ୬ۧ

But in real life condensed-matter physics,

SB U(1)S IS A MYTH!!

This doesn’t matter for the even-parity GS, because of 
“Anderson trick”:

Ψଶ୒~නΨୣ୴ୣ୬ ߮ expെ݅ܰ߮ ݀߮

But for odd-parity states equation ( * ) is fatal!  Examples:

(1) Galilean invariance

(2) NMR of surface MF in 3He-B 

*
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ො௜ߛ
ற ൌ න݀ݎ ݑ ݎ ෠߰ற ݎ ൅ ߭ ݎ ෠߰ܥற

This doesn’t matter, so long as Cooper pairs have no 
“interesting” properties (momentum, angular 
momentum, partial localization...)

But to generate MF’s, pairs must have “interesting” 
properties!

⇒ doesn’t change arguments about existence of 
MF’s, but completely changes arguments about their 
braiding, undetectability etc.

Need completely new approach!

creates extra Cooper pairs

We must replace ( * ) by


