Topological Quantum Computing:

Some Possibly Relevant Physical Systems

A. J. Leggett
Department of Physics
University of Illinois at Urbana-Champaign

Joint IAS-ICTP School on Quantum Information Processing

Nanyang Technological University, 20 January 2016

TOPOLOGICAL QUANTUM COMPUTING/MEMORY

Qubit basis. $\quad|\uparrow\rangle,|\downarrow\rangle$

$$
|\Psi\rangle=\alpha|\uparrow\rangle+\beta|\downarrow\rangle
$$

To preserve, need (for "resting" qubit)

$$
\hat{H} \propto \hat{1} \quad \text { in }|\uparrow\rangle,|\downarrow\rangle \text { basis }
$$

$$
\left(\hat{H}_{12}=0 \Rightarrow " T_{1} \rightarrow \infty ": \hat{H}_{11}-\hat{H}_{22}=\mathrm{const} \Rightarrow " T_{2} \rightarrow \infty "\right)
$$

on the other hand, to perform (single-qubit) operations, need to impose nontrivial \hat{H}.
\Rightarrow we must be able to do something Nature can't.
(ex: trapped ions: we have laser, Nature doesn't!)
Topological protection:
would like to find d-(>1) dimensional Hilbert space within which (in absence of intervention)

$$
\hat{H}=(\text { const. }) \cdot \hat{1}+o\left(e^{-L / \xi}\right)
$$

microscopic length

How to find degeneracy?
Suppose \exists two operators $\hat{\Omega}_{1}, \hat{\Omega}_{2}$ s.t.
$\left[\hat{H}, \hat{\Omega}_{1}\right]=\left[\hat{H}, \hat{\Omega}_{2}\right]=0 \quad$ (and $\hat{\Omega}_{1}, \hat{\Omega}_{2}$ commute with b.c's)
but
$\left[\hat{\Omega}_{1}, \hat{\Omega}_{2}\right] \neq 0 \quad\left(\right.$ and $\left.\hat{\Omega}_{1} \mid \psi>\neq 0\right)$ then Hilbert space at least 2-dimensional...

EXAMPLE OF TOPOLOGICALLY PROTECTED STATE: FQH SYSTEM ON TORUS

(Wen and Niu, PR B 41, 9377 (1990))

Reminders regarding QHE:
2D system of electrons, $B \perp$ plane

Area per flux quantum $=(h / e B) \Rightarrow d f$.

$$
\begin{aligned}
& \quad \ell_{M} \equiv(\hbar / e B)^{1 / 2} \leftarrow \text { "magnetic length" } \\
& \left(\ell_{M} \sim 100 \dot{A} \text { for } \mathrm{B}=10 \mathrm{~T}\right)
\end{aligned}
$$

"Filling fraction" \equiv no. of electrons/flux quantum $\equiv v$

$$
\text { "FQH" when } v=\begin{array}{r}
\text { p/q } \\
\\
\\
\text { incommensurate } \\
\text { integers }
\end{array}
$$

Argument for degeneracy: (does not need knowledge of w.f.) can define operators of "magnetic translations"
$\hat{T}_{x}(\boldsymbol{a}), \hat{T}_{y}(\boldsymbol{b}) \quad(\equiv$ translations of all electrons through
$\mathbf{a}(\mathbf{b}) \times$ appropriate phase factors). In general $\left[\hat{T}_{x}(\boldsymbol{a}), \hat{T}_{y}(\boldsymbol{b})\right] \neq 0$

In particular, if we choose

$$
\text { no. of flux quanta }\left(=L_{1} L_{2} / 2 \pi \ell_{M}^{2}\right)
$$

$$
\boldsymbol{a}=\boldsymbol{L}_{1} / N_{s}, \boldsymbol{b}=\boldsymbol{L}_{2} / N_{s}
$$

then \hat{T}_{1}, \hat{T}_{2} commute with b.c.'s (?) and moreover

$$
\hat{T}_{1} \hat{T}_{2}=\hat{T}_{2} \hat{T}_{1} \exp -2 \pi i v
$$

But the o. of m. of \boldsymbol{a} and \boldsymbol{b} is $\ell_{\mathrm{M}} \cdot\left(\ell_{\mathrm{M}} / \mathrm{L}\right) \equiv \ell_{\text {osc }}{ }^{«} \ell_{\mathrm{M}}$, and $\Rightarrow 0$ for $\mathrm{L} \rightarrow \infty$. Hence to a very good approximation,

$$
\begin{aligned}
& {\left[\hat{T}_{1}, \hat{H}\right]=\left[\hat{T}_{2}, \hat{H}\right]=0} \\
& \text { so since }\left[\hat{T}_{1}, \hat{T}_{2}\right] \neq 0
\end{aligned}
$$

must \exists more than 1 GS (actually q).

Corrections to $\left(^{*}\right.$): suppose typical range of (e.g.) external potential $\mathrm{V}(\mathbf{r})$ is ℓ_{0}, then since $\mid \psi>$'s oscillate on scale $\ell_{\text {osc }}$,

$$
\begin{aligned}
& \left\langle\psi_{1}\right| \hat{H}\left|\psi_{2}\right\rangle \sim \exp -\ell_{o} / \ell_{\text {oSC }} \sim \exp -L / \xi \\
& \text { (+ const. } \hat{1}) \\
& \equiv \ell_{M}^{2} / \ell_{o}
\end{aligned}
$$

TOPOLOGICAL PROTECTION AND ANYONS

Anyons (df): exist only in 2D

$$
\Psi(1,2)=\exp (2 \pi i \alpha) \Psi(2,1) \equiv \hat{T}_{12} \Psi(1,2)
$$

(bosons: $\alpha=1$, fermions: $\alpha=1 / 2$)
abelian if $\hat{T}_{12} \hat{T}_{23}=\hat{T}_{23} \hat{T}_{12}$ (ex: FQHE)
nonabelian if $\hat{T}_{12} \hat{T}_{23} \neq \hat{T}_{23} \hat{T}_{12}$, i.e. if

$\psi_{1} \neq \psi_{2}$
("braiding statistics")

Nonabelian statistics* is a sufficient condition for (partial) topological protection:

> [not necessary, cf. FQHE on torus]
(a) state containing n anyons, $n \geq 3$:

$$
\begin{aligned}
& {\left[\hat{T}_{12}, \hat{H}\right]=\left[\hat{T}_{23}, \hat{H}\right]=0} \\
& {\left[\hat{T}_{12}, \hat{T}_{23}\right] \neq 0}
\end{aligned}
$$

\Rightarrow space must be more than 1D.
(b) groundstate:

annihilation process inverse of creation \Rightarrow
GS also degenerate.
*plus gap for anyon creation

Nonabelian statistics may (depending on type) be adequate for (partially or wholly) topologically protected quantum computation

Specific Models with Topological Protection

1. FQHE on torus

Obvious problems:
(a) QHE needs GaAs-AlGaAs or Si MOSFET: how to "bend"
 into toroidal geometry?

QHE observed in (planar) graphene (but not obviously "fractional"!): bend C nanotubes?
(b) Magnetic field should everywhere have large comp ${ }^{\mathrm{t}} \perp$ to surface: but div $\mathbf{B}=0$ (Maxwell)!
2. Spin Models (Kitaev et al.) (adv: exactly soluble)
(a) "Toric code" model

Particles of spin $1 / 2$ on lattice
$\hat{H}=-\sum_{S} \hat{A}_{S}-\sum_{p} \hat{B}_{p}$
$\hat{A}_{s} \equiv \prod_{j \varepsilon s} \hat{\sigma}_{j}^{X}, \quad \hat{B}_{p} \equiv \prod_{j \varepsilon p} \hat{\sigma}_{j}^{Z}$
(so $\left[\hat{A}_{s}, \hat{B}_{p}\right] \neq 0$ in general)
Problems:
(a) toroidal geometry required (as in FQHE)
(b) apparently v. difficult to generate $\mathrm{Ham}^{\mathrm{n}}$ physically

Spin Models (cont.)

(b) Kitaev "honeycomb" model

Particles of $\operatorname{spin} 1 / 2$ on honeycomb lattice
(2 inequivalent sublattices, A and B)
subl. A

$\hat{H}=-J_{x} \sum_{x-\text { links }} \hat{\sigma}_{j}^{x} \hat{\sigma}_{k}^{x}-J_{y} \sum_{y-\text { links }} \hat{\sigma}_{j}^{y} \hat{\sigma}_{k}^{y}-J_{z} \sum_{z-\text { links }} \hat{\sigma}_{j}^{z} \hat{\sigma}_{k}^{z}-\mathscr{H} \cdot \sum_{\text {sites }} \sigma$
nb : spin and space axes independent
Strongly frustrated model, but exactly soluble.*
Sustains nonabelian anyons with gap provided

$$
\begin{gathered}
\left|J_{x}\right| \leq\left|J_{y}\right|+\left|J_{z}\right|,\left|J_{y}\right| \leq\left|J_{z}\right|+\left|J_{x}\right|, \\
\left|J_{z}\right| \leq\left|J_{x}\right|+\left|J_{y}\right| \quad \text { and } \mathscr{H} \neq 0
\end{gathered}
$$

(in opposite case anyons are abelian + gapped)
Advantages for implementation:
(a) plane geometry (with boundaries) is OK
(b) \hat{H} bilinear in nearest-neighbor spins
(c) permits partially protected quantum computation.

* A. Yu Kitaev, Ann. Phys. 321, 2 (2006)

H-D. Chen and Z. Nussinov, cond-mat/070363 (2007) (etc. ...)

Can we Implement Kitaev Honeycomb Model?

One proposal (Duan et al., PRL 91, 090492 (2003)): use optical lattice to trap ultracold atoms

Optical lattice:
3 counterpropagating pairs of laser beams create potential, e.g. of form

$$
V(\boldsymbol{r})=V_{o}\left(\cos ^{2} k x+\cos ^{2} k y+\cos ^{2} k z\right)
$$

in 2D, 3 counterpropagating beams at 120° can create honeycomb lattice (suppress tunnelling along z by high barrier)

For atoms of given species (e.g. ${ }^{87} \mathrm{Rb}$) in optical lattice 2 characteristic energies:
interwell tunnelling, $\mathrm{t}\left(\sim e^{- \text {const. } \sqrt{V_{0}}}\right)$ intrawell atomic interaction (usu. repulsion) U

For 1 atom per site on average:
ift » U, mobile ("superfluid") phase if t « U , "Mott-insulator" phase
(1 atom localized on each site)
If 2 hyperfine species (\cong "spin $-1 / 2$ " particle), weak intersite tunnelling $\Rightarrow \mathrm{AF}$ interaction

$$
\hat{H}_{A F}=\sum_{n n} J \sigma_{i} \sigma_{j} \quad J=t^{2} / U
$$

(irrespective of lattice symmetry).
So far, isotropic, so not Kitaev model. But ...

If tunnelling is different for \uparrow and \downarrow, then H’berg Hamiltonian is anisotropic: for fermions,

$$
\hat{H}_{A F}=\frac{t_{\uparrow}^{2}+t_{\downarrow}^{2}}{2 U} \sum_{n n} \hat{\sigma}_{i}^{Z} \hat{\sigma}_{j}^{Z}+\frac{t_{\uparrow} t_{\downarrow}}{U} \sum_{n n}\left(\hat{\sigma}_{i}^{x} \hat{\sigma}_{j}^{X}+\hat{\sigma}_{i}^{y} \hat{\sigma}_{j}^{y}\right)
$$

\Rightarrow if $\mathrm{t}_{\uparrow}>_{\downarrow}$, get Ising-type int ${ }^{\mathrm{n}}$

$$
H_{A F}=\text { const. } \sum_{n n} \hat{\sigma}_{i}^{Z} \hat{\sigma}_{j}^{Z}
$$

We can control t_{\uparrow} and t_{\downarrow} with respect to an arbitrary " z " axis by appropriate polarization and tuning of (extra) laser pair. So, with 3 extra laser pairs polarized in mutually orthogonal directions (+ appropriately directed) can implement

$$
\begin{aligned}
& \hat{H}=J_{x} \sum_{x-b o n d s} \hat{\sigma}_{i}^{x} \hat{\sigma}_{j}^{x}+J_{y} \sum_{y-\text { bonds }} \hat{\sigma}_{i}^{y} \hat{\sigma}_{j}^{y}+J_{z} \sum_{z-\text { bonds }} \hat{\sigma}_{i}^{z} \hat{\sigma}_{j}^{z} \\
& \equiv \text { Kitaev honeycomb model }
\end{aligned}
$$

Some potential problems with optical-lattice implementation:
(1) In real life, lattice sites are inequivalent because of background magnetic trap \Rightarrow region of Mott insulator limited, surrounded by "superfluid" phase.
(2) to avoid thermal excitation, need $T \lesssim=1 \mathrm{pK} \cdot\left(10^{-12} \mathrm{~K}\right)$
(3) Even if " T " $<1 \mathrm{pK}$, v. long "spin" relaxation times in ultracold atomic gases \Rightarrow true groundstate possibly never reached.

- - - - - - - - -

Other possible implementations: e.g. Josephson circuits (You et al., arXiv: 0809.0051)

QUANTUM HALL SYSTEMS

Reminder re QHE:
Occurs in (effectively) 2D electron system ("2DES") (e.g. inversion layer in GaAs - GaAlAs heterostructure) in strong perpendicular magnetic field, under conditions of high purity and low ($\lesssim 250 \mathrm{mK}$) temperature.

If df. $l_{m} \equiv(\hbar / e B)^{1 / 2}$ ("magnetic length") then area per flux quantum h / e is $2 \pi l_{m}^{2}$, so no. of flux quanta $=A / 2 \pi l_{m}^{2}$ ($A \equiv$ area of sample). If total no. of electrons is N_{e}, define

$$
v \equiv N_{e} / N_{\Phi} \quad \text { ("filling factor") }
$$

QHE occurs at and around (a) integral values of v (integral QHE) and (b) fractional values p / q with fairly small $(\lesssim 13)$ values of q (fractional QHE). At v'th step, Hall conductance Σ_{xy} quantized to $\mathrm{ve}^{2 / \hbar}$ and longitudinal conductance $\Sigma_{x x} \cong 0$

Nb : (1) Fig. shows IQHE
only
(2) expts usually plot

$$
R_{x y} \text { vs } B\left(\propto \frac{1}{v}\right)
$$

so general pattern is same but details different
nh/eB \rightarrow

$\underline{v}=5 / 2$ State: The "Pfaffian" Ansatz

Consider the Laughlin ansatz formally corresponding to $v=1 / 2$ (or $v=5 / 2$ with first 2 LC's inert):
$\psi_{N}^{L}=\Pi_{i<j}\left(z_{i}-z_{j}\right)^{2} \exp -\Sigma_{i}\left|z_{i}\right|^{2} / 4 l_{m}^{2}\left(z_{i}=\underline{\text { electron coord. })}\right.$
This cannot be correct as it is symmetric under $i \leftrightarrow j$. So must multiply it by an antisymmetric function. On the other hand, do not want to "spoil" the exponent 2 in numerator, as this controls the relation between the LL states and the filling.

Inspired guess (Moore \& Read, Greiter et al.): ($\mathrm{N}=$ even)

$$
\begin{aligned}
& \psi_{N}=\psi_{N}^{(L)} \times \operatorname{Pf}\left(\frac{1}{z_{i}-Z_{j}}\right) \\
& \operatorname{Pf}(f(i j)) \equiv f(12) f(34) \ldots-f(13) f(24) \ldots+\ldots .(\equiv \text { Pfaffian }) \\
& \text { antisymmetric under } i j
\end{aligned}
$$

This state is the exact GS of a certain (not very realistic) 3body Hamiltonian, and appears (from numerical work) to be not a bad approximation to the GS of some relatively realistic Hamiltonians.

With this GS, a single quasihole is postulated to be created, just as in the Laughlin state, by the operation

$$
\psi_{q h}=\left(\Pi_{i=1}^{N}\left(z_{i}-\eta_{0}\right)\right) \cdot \psi_{N}
$$

It is routinely stated in the literature that "the charge of a quasihole is $-e / 4$ ", but this does not seem easy to demonstrate directly: the arguments are usually based on the BCS analogy (quasihold $\leftrightarrow h / 2 e$ vortex, extra factor of 2 from usual Laughlin-like considerations) or from CFT.

These excitations are nonabelian ("Ising") anyons.

p-WAVE FERMI Superfluids (in 2D)

Generically, particle-conserving wave function of a Fermi superfluid (Cooper-paired system) is of form

$$
\Psi_{N}=\mathscr{N} \cdot\left(\sum_{k, \alpha \beta} c_{k} a_{k \alpha}^{+} a_{-k \beta}^{+}\right)^{N / 2}|v a c\rangle
$$

e.g. in BCS superconductor

$$
\left.\Psi_{N}=\mathscr{N}\left(\sum_{k} c_{k} a_{k \uparrow}^{+} a_{-k \downarrow}^{+}\right)^{N / 2} \mid \text { vac }\right\rangle-
$$

Consider the case of pairing in a spin triplet, p -wave state (e.g. $3 \mathrm{He}-\mathrm{A}$). If we neglect coherence between \uparrow and \downarrow spins, can write

$$
\Psi_{N}=\Psi_{N / 2, \uparrow} \Psi_{N / 2, \downarrow}
$$

Concentrate on $\Psi_{N / 2, \uparrow}$ and redef. $\mathrm{N} \rightarrow 2 \mathrm{~N}$.

$$
\Psi_{N \uparrow}=\mathscr{N}\left(\sum c_{k} a_{k}^{+} a_{-k}^{+}\right)^{N / 2}|v a c\rangle
$$

suppress spin index

What is c_{k} ?
Standard choice:

$$
c_{k}=\exp -i \phi_{k}\left(\frac{1-\varepsilon_{k} / E_{k}}{1+\varepsilon_{k} / E_{k}}\right)^{1 / 2} \text { Re measured from } \mu
$$

How does c_{k} behave for $\mathrm{k} \rightarrow 0$?
For p -wave symmetry, $\left|\Delta_{\mathrm{k}}\right|$ must $\propto \mathrm{k}$, so

$$
\left|C_{k}\right| \sim \varepsilon_{F} /\left|\Delta_{k}\right| \sim k^{-1}
$$

Thus the (2D) Fournier transform of c_{k} is

$$
\propto r^{-1} \exp -i \varphi \equiv z^{-1}
$$

and the MBWF has the form

$$
\Psi_{N}\left(Z_{1} Z_{2} \ldots Z_{N}\right)=P f\left(\frac{1}{Z_{i}-Z_{j}}\right) \times \text { uninteresting factors }
$$

Conclusion: apart from the "single-particle" factor
$\exp -\frac{1}{4 \ell^{2}} \sum_{j}\left|z_{j}\right|^{2}, \mathrm{MR}$ ansatz for $v=5 / 2$ QHE is identical to the "standard" real-space MBWF of a $(p+i p)$ 2D Fermi superfluid. Note one feature of the latter:
if $\quad \hat{\Omega} \equiv \sum_{k} c_{k} a_{k}^{+} a_{-k}^{+}, \quad C_{k}=\left|c_{k}\right| \exp -i \varphi_{k}$
then $\left[\hat{L}_{z,} \hat{\Omega}\right]=-\hbar \hat{\Omega}$
z-component of ang. momentum
so $\quad \Psi_{N} \equiv \mathrm{const} . \hat{\Omega}^{N}|v a c\rangle$
possesses ang. momentum $-\mathrm{N} \hbar / 2$, no matter how weak the pairing!

Now: where are the nonabelian anyons in the $p+i p$ Fermi superfluid?

Read and Green (Phys. Rev. B 61, 10217(2000)): nonabelian anyons are zero-energy fermions bound to cores of vortices.

Consider for the moment a single-component 2D Fermi superfluid, with $p+i p$ pairing. Just like a BCS (s-wave) superconductor, it can sustain vortices: near a vortex the pair wf, or equivalently the gap $\Delta(\mathbf{R})$, is given by

$$
\Delta(\boldsymbol{R}) \equiv \Delta(z)=\text { const. } z
$$

Cooper pairs

Since $|\Delta(\mathbf{R})|^{2} \rightarrow 0$ for $\mathbf{R} \rightarrow 0$, and (crudely)
$E_{k}(\boldsymbol{R}) \sim\left(\varepsilon_{k}^{2}+|\Delta(\boldsymbol{R})|^{2}\right)^{1 / 2}$, bound states can exist in core.
In the s-wave case their energy is $\sim \eta\left|\Delta_{\mathrm{O}}\right|^{2} \varepsilon_{\mathrm{F}}, \eta \neq 0$, so no zero-energy bound states.

$$
\text { What about the case of }(p+i p) \text { pairing? }
$$

If we approximate

$$
\Delta(\boldsymbol{R}, \boldsymbol{\rho})=\Delta(R) \partial_{\rho} \delta(\rho)
$$

relative coord.
\exists mode with $u(\mathbf{r})=v^{*}(\mathbf{r}), \mathrm{E}=0$

Now, recall that in general within mean-field (BdG) theory,

$$
\left.\left.\psi_{\text {odd }}(\boldsymbol{r})=\left(u(r) \hat{\psi}^{\dagger}(r)+v(r) \hat{\psi}(r)\right) \mid \text { term }\right\rangle \equiv \hat{Q}(r) \mid \text { term }\right\rangle
$$

But, if $u^{*}(r)=v(r)$, then $\hat{Q}^{\dagger}(r) \equiv \hat{Q}(r)$! i.e.
zero-energy modes are their own antiparticles ("Majorana modes")

A: This is true only for spinless particle/pairing of \|| spins (for pairing of anti || spins, particle and hole distinguished by spin).

Consider two vortices i, j with attached Majorana modes with creation ops. $\gamma_{i} \equiv \gamma_{i}^{\dagger}$.

What happens if two vortices are interchanged?*

Claim: when phase of C. pairs changes by 2π, phase of Majorana mode changes by π (true for assumed form of u, v for single vortex). So

$$
\begin{aligned}
& \gamma_{i} \rightarrow \gamma_{j} \\
& \gamma_{j} \rightarrow-\gamma_{i}
\end{aligned}
$$

more generally, if \exists many vortices +w df \hat{T}_{i} as exchanging $i, i+1$, then for $|i-j|>1$

$$
\left[\hat{T}_{i}, \hat{T}_{j}\right]=0, \text { but }
$$

for $|i-j|=1, \quad\left[\hat{T}_{i}, \hat{T}_{j}\right] \neq 0, \quad \hat{T}_{i} \hat{T}_{j} \hat{T}_{i}=\hat{T}_{j} \hat{T}_{i} \hat{T}_{j}$

The experimental situation

$\mathrm{Sr}_{2} \mathrm{RuO}_{4}$: so far, evidence for HQV's, none for MF's.
${ }^{3} \mathrm{He}-\mathrm{A}$: evidence if anything against HQV's
${ }^{3} \mathrm{He}-\mathrm{B}$: circumstantial evidence from ultrasound attenuation
Alternative proposed setup (very schematic)

\& zero-bias anomaly
Detection: ZBA in I-V characteristics
(Mourik et al., 2012, and several subsequent experiments)
dependence on magnetic field, s-wave gap, temperature... roughly right
"What else could it be?"

Answer: quite a few things!

Second possibility: Josephson circuit involving induced (p-wave-like) supy.

Theoretical prediction: " 4π-periodicity" in current-phase relation.

Problem: parasitic one-particle effects can mimic.

One possible smoking gun: teleportation!

$$
\Delta \mathrm{T} \ll L / v_{F} \underset{\sim}{?}
$$

Problem: theorists can't agree on whether teleportation is for real!

Majorana fermions: beyond the mean-field approach

Problem: The whole apparatus of mean-field theory rests fundamentally on the notion of $\operatorname{SBU}(1) \mathrm{S} \leftarrow$ spontaneously broken $\mathrm{U}(1)$ gauge symmetry:

$$
\begin{gathered}
\Psi_{\text {even }} \sim \sum_{\substack{N=\\
\text { even }}} C_{N} \Psi_{N} \quad\left(C_{N} \sim\left|C_{N}\right| e^{i N \varphi}\right) \\
\Psi_{\mathrm{odd}}^{(c)} \sim \int d r\left\{u(r) \hat{\psi}^{\dagger}(r)+v(r) \hat{\psi}(r)\right\}\left|\Psi_{\text {even }}\right\rangle\left(\equiv \hat{\gamma}_{i}^{\dagger}\left|\Psi_{\text {even }}\right\rangle\right)^{*}
\end{gathered}
$$

But in real life condensed-matter physics,

SB U(1)S IS A MYTH!!

This doesn't matter for the even-parity GS, because of "Anderson trick":

$$
\Psi_{2 N} \sim \int \Psi_{\text {even }}(\varphi) \exp -i N \varphi d \varphi
$$

But for odd-parity states equation (*) is fatal! Examples:
(1) Galilean invariance
(2) NMR of surface MF in ${ }^{3} \mathrm{He}-\mathrm{B}$

We must replace (*) by

$$
\hat{\gamma}_{i}^{\dagger}=\int d r\left\{u(r) \hat{\psi}^{\dagger}(r)+v(r) \hat{\psi} C^{\dagger}\right\}
$$

This doesn't matter, so long as Cooper pairs have no "interesting" properties (momentum, angular momentum, partial localization...)

But to generate MF's, pairs must have "interesting" properties!
\Rightarrow doesn't change arguments about existence of MF's, but completely changes arguments about their braiding, undetectability etc.

Need completely new approach!

