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PHOTON POLARIZATION—
THE ULTIMATE 

“QUANTUM 2-STATE SYSTEM”

| ↑ۧ | →ۧ | ↗ۧ | ↘ۧ

“|Vۧ”       “|Hۧ”          “| ൅ۧ”       “| െۧ”

unpolarized 
light 

(classical)

“V/H” setting

| ൅ۧ

| െۧ
“+/-” setting

| ↑ۧ

| →ۧ
D2

Some possible polarization states of light 
(photons) propagating towards screen:

Polarizer:

D2
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| ↑ۧ

| →ۧ
single 
photon “V/H” setting

click

click

D2

What happens at quantum level?

D1
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Classically, resolve | ൅ۧ into |Hۧ and |Vۧ
components:

Eା ൌ
ଵ

ଶ
ሺEୌ ൅ E୚ሻ

EV is transmitted, EH is reflected, so

Iଵ ൌ Iଶ ൌ
1
2
	I୭

D1

| ൅ۧ

I0

“V/H” setting

electric field

?

output of D1 output of D2

(Malus’s law)

D2

But what if
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But what happens at the quantum level?

“A single photon cannot be split!”, so for each photon

either D1 clicks (“photon is |Vۧ”)
or D2 clicks (“photon is |Hۧ”)

P1 = P2 = ½ 

So: is each individual photon indeed either |Vۧ or |Hۧ ?
(ensemble is “mixture” of |Vۧ and |Hۧ)

prob. of  click 
in D1

prob. of click 
in D2

(quantum version of 
Malus’s law)

(experimentally 
observed)


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Is the original | ൅ۧ beam a “mixture” of 
|Vۧ and |Hۧ?

(i.e. is each individual photon either |Vۧ or
|Hۧ?)

If so: 
by symmetry

D1

|Vۧ

“+/-” settingsingle 
photon

output of D1 output of D2

D2

P1 = P2 = ½ 



LED 50.6

Similarly for |Hۧ. So Pሺെ|Vሻ	= Pሺെ|Hሻ = ½ . 

But | ൅ۧ is mixture of |Vۧ and |Hۧ, so 

P(െ|+) = ½

i.e.

P1 = P2 = ½

D1

| ൅ۧ

“+/-” setting
single 
photon

superposition 
principle

D2

in contradiction to experiment!

Conclusion:

| ൅ۧ is a quantum superposition 
of|Vۧ and |Hۧ, and this is not 
equivalent to a mixture: 
each | ൅ۧ photon is not
“either” |Vۧ “or” |Hۧ
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POLARIZATION OF PHOTON PAIRS

For photon propagating into page, denote 
states of circular polarization by

| ↻ۧ ≡ |Rۧ
| ↺ۧ ≡ |Lۧ

The conservation of total angular momentum 
is consistent with either 
|RۧଵRۧଶ or |LۧଵLۧଶ

1

2

O+

O+

parity

spin

right‐circularly polarized
left‐circularly polarized

(“product” states)
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But if we don’t know (and can’t find out!) which if these 
occurred, must describe polarization state of photons by 
quantum superposition:

Ψ௒ ൌ
1

2
ሺ|RۧଵRۧଶ ൅ e୧ம|LۧଵLۧଶሻ

(actually, parity conservation ⇒ e୧ம ൌ 1 so (not obvious!) 

can equally well write Ψ௒ ൌ
ଵ

ଶ
ሺ|HۧଵHۧଶ ൅ |VۧଵVൿଶሻ). This 

is not equivalent to a “classical mixture” of |RۧଵRۧଶ and 
|LۧଵLۧଶ! In fact, (Bell, 1964):

If we assume local causality and the standard “arrow 
of time,” then the experimental predictions of Ψ௒ are 
inconsistent with the assignation of any properties (not just 
polarization) to the individual photons 1 and 2! (and 
subsequent experiment unambiguously favors predictions 
of Ψ௒).

Ψ௒ is an entangled state – a quantum superposition of 
product states of more than one system. Quantum 
information exploits (inter alia) the bizarre properties of 
entangled states.
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ENTANGLEMENT AS A RESOURCE

The state of a 2-state system (e.g. photon 
polarization) is uniquely specified by (<) 2 
complex numbers (e.g. the amplitudes for |Hۧ
and |Vۧ). So if we have N 2-state systems in a 
product state, we need ~2N complex numbers. 
However, to specify a general entangled state 
of N systems we need not ~2N but 2N complex 
numbers! e.g. for N = 4, we need to specify 
separately amplitudes for 

|HHHHۧ, |HHHVۧ, |HHVHۧ, |HHVVۧ …

(16 = 24 states in all).

Thus, possibility of massively parallel 
processing … (“quantum computing”)

Alas, a snag: measurement will “reveal” 
only one of the 2N states ⇒ we lose all 
information on the 2N െ1 others.
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Solution (Deutsch 1984, Shor 1995): 
devise algorithm such that at end system is in 
just one of the 2N states, the particular one 
depending one the answer to our problem.

Application: prime-factoring of large 
numbers (Shor 1995). (For N binary digits, 
time taken by classical computer exponential 
in N, for quantum computer polynomial in N). 
Interesting primarily for application to 
(classical) cryptography.

Practical difficulties in building quantum 
computer:

“ideal” 2-state system
scalability
decoherence …

Systems: nuclear spins, trapped ions, 
superconducting devices …

at present, not practically competitive with 
classical computing, but …
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QUANTUM CRYPTOGRAPHY
(Bennett + Brassard 1984, Ekert 1990)

“Key distribution problem”:

In classical (and quantum) cryptography, Alice 
and Bob can’t prevent Eve from listening in. But 
can they tell whether she is listening in? In 
classical cryptography, no (as far as as known); 
Eve can intercept message and pass it on without 
detection.

Quantum cryptography: exploits no-cloning 
theorem (direct consequence of superposition 
principle):/ it is impossible to build a device 
guaranteed to detect and pass on unaltered a 
photon of arbitrary (unknown) polarization./

A B

E

Info (code)
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Protocol:

↑ → ↗	 ↘
“|Vۧ”           “|Hۧ”           “| ൅ۧ” “| െۧ”

A emits photons at random, 50% of the time 
either |Hۧ or |Vۧ and 50% of the time either | ൅ۧ
or | െۧ. Bob also measures at random, 50% of the 
time with setting H/V, 50% with +/-. At end of 
(say) 10,000 runs, Alice and Bob compare notes 
(they can use a classical (insecure) phone line) on 
“settings,” throw away those runs for which they 
have used different settings and compare notes on 
the rest.

If Eve is not listening in, then whenever Alice 
sent |Hۧ (|Vۧ) Bob should detect |Hۧ (|Vۧ): 
similarly for | ൅ۧ (| െۧ).

If Eve is listening in on each run, she has to 
decide how to set her polarizer! But Eve does not 
know whether Alice emitted (|Hۧ or |Vۧ) or rather 
(| ൅ۧ or | െۧ).
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QUANTUM CRYPTOGRAPHY (continued)

Suppose e.g. she chooses a +/െ setting. Then if 
Alice in fact emitted | ൅ۧ or | െۧ, she can measure 
it and pass it on undetected. But what if Alice 
emitted |Hۧ or |Vۧ? Then she (Eve) has 50% 
chance if passing it on wrong, and Alice and Bob 
will fail to agree and thus detect her 
eavesdropping.


