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General principle of topological quantum computing (TQC):
within relevant Hilbert space,

1. relevant quantum states indistinguishable by any 
“natural” operation 

2. Can perform necessary unitary transformations by 
“unnatural” operations (which should be robust)

 ˆ ˆ
natH 

Proposal:  in 2D (p + ip) Fermi superfluids, perform TQC by 
braiding vortices containing Majorana fermions

2D p + ip Fermi superfluids (thin slabs of 3HeA, Sr2RuO4, UC Fermi 
gases…): order parameter in uniform case has form (p near Fermi 
surface)

   O x yp ip   p

Note: (a) in 2D,

(b) breaks time-reversal symmetry

(c) Pauli principle  parallel spins, e.g. 

  const.p 

 
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Textbook approach to fermionic excitations in superconductors 
(Fermi superfluid):

invoke spontaneous braking of U(1) symmetry (SBU(1)S):

2 2even N N

N

C  

then simplest fermionic excitation is quantum superposition 
of extra particle and extra hole (Bogoliubov quasiparticle) 

e.g. for uniform case,

In general case (nonuniform gap) creation operator of 
Bogoliubov quasiparticle is

k k k k ku a a  

  υ

 ˆ ˆ( ) ( ) ( ) ( )i dr u r r r r    
† υ


Extra particle


Extra hole

with                        solution of Bogoliubov-de Gennes equations ( ), ( )u r rυ

,BdG i i iH E      i.e.

* *

ˆ ( )( ) ( ) ( )
ˆ

ˆ( ) ( ) ( )( )

O

BdG

O

H ru r u r u r
H E

r r rr H

      
               υ υ υ

gap

Single-particle energy

 Not eigenstate of particle no.
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Solution to BdG with properties

(1)                         localized in space
(2)  E = 0
(3)  

( ), ( )u r rυ

*( ) ( ) i iu r r   υ (Majorana, 1937)

Because of (3), Majoranas undetectable by any local probe 
(condition (1)). Moreover, under braiding (robust procedure) 
form representation of braid group (condition (2)).

In (p + ip) superfluids, a (half-quantum) vortex/antivortex
admits exactly one Majorana solution  MF solutions always 
come in pairs.

Proposal*:
(1) create vortex-antivortex pair   without Bog. qp/

with Bog. qp
(2) braid (permute) vortices and antivortices
(3) recombine, read off presence/absence of Bog. qp’s.

No MF’s
MF on each

should realize (Ising) TQC. 
Simplest case: exchange of 2 vortices
Prediction for Berry phase B (Ivanov):

for no MF’s, B = 0
for 2 MF”s, B = /2

i.e.

exch /2

1 0ˆ
0 ie 

 
  
 

U

(note not usual fermionic !)

*Ivanov, PRL 86, 268 (2001): Stone & Chung, PRB 73, 14505 (2006)
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single fermion 
shared

Digression:   what exactly is a Majorana fermion?

By definition, it is a solution of the BdG equations

with E = 0, i iH E    
† †

But this has two possible interpretations when acting on the even-
parity groundstate:

(a)       creates an extra Bogoliubov quasiparticle with zero energy

(b)       simply annihilates the groundstate (“pure annihilator”)

But in neither case can       be equal to         To ensure this we must 
superpose (a) and (b) with equal weight, i.e.

𝛾𝑖
†

𝛾𝑖
†

𝛾𝑖
†

A Majorana fermion is a quantum superposition of a zero-
energy fermion and a pure annihilator

The physically real object is the E = 0 fermion, which is a 
quantum superposition of two Majoranas:

2i i    † †
(always possible since MF’s come in pairs)

If e.g.              refer to 2 vortices in a (p + ip) superfluid, the zero-
energy fermion is strongly delocalized (“split”)

1 2, † †

(  teleportation?  Controversial!)

(So far, in some sense well-known…)

!i
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SBU(1)S   IS   A   MYTH!

(The states of real systems are always either eigenstates of 
particle number    , or incoherent mixtures thereof)

Suppose we start (say) in the even-no.-parity groundstate
Then “textbook” prescription for Bogoliubov quasiparticle 
operator         gives 

N̂

2 ,0 .N

k


 2 2 1, 2 1,k N k k k k k ku a a u N k N k  

      υ υ



not number-conserving
So, we need to write instead

ˆ
k k k k kCu a a  

  †υ  Cooper-pair creation operator

Q: How come we (mostly*) got away with ignoring this for  50 years?

A: As long as Cooper pairs carry no interesting quantum numbers, 
doesn’t matter! However, once they have nonzero COM, spin…, this 
becomes crucial and standard “mean-field” ideas may fail.

Examples:  
(a) NMR in 3He-B         (C. pairs have nonzero spin)
(b) Galilean invariance  (C. pairs have nonzero COM momentum)

Now:  in a p + ip superfluid, C. pairs have “internal” angular 
momentum!

So: are standard mean-field ideas adequate for quantum-information 
purposes (in particular, TQC)?

*But cf. e.g. Blonder at al., PRB 25, 4515 (1982)
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SOME SIMPLE CONSEQUENCES OF COOPER PAIR ANGULAR MOMENTUM

1. Why does a vortex in a p + ip superfluid, but not in an s-wave 
one, carry Majoranas?

0
ˆˆ ˆ( ) ( ) ( ) ( )u r r r r C   † † υ

*( ) ( ) uu r r    υυ

Suppose “local” angular momentum of Cooper pair is
then conservation of total angular momentum  

( ) ,loc

c

( ) ( ) 2 even.loc loc

u c c u     υ

𝓁𝑐 has contribution from COM (vortex) and possibly intrinsic 
angular momentum. 
In s-wave, MF’s cannot exist.
In p + ip, MF’s may exist.
(need further argument to show that they do).

vort int( )1, 0 oddloc

c     

vort int( )1, 0 oddloc

c     

2. Exchange of two vortices with/without MF’s:
recall: acc. Ivanov, relative Berry phase = /2

Consider encirclement of one by another

Theorem (YRL): In this situation, 
encirclement Berry phase 



expectation value of total
angular momentum

2

1

single-valued  characterized by angular momentum 
QNS

( ), ( )u r rυ
, 0, 1, 2...u   υ

2 L 



LPK 7

Recap:
( ) 2 .ene

B L 

1. No MF’s:

integralc cL N  

 encirclement phase
 exchange phase          (or     , but exclude on physical grounds)

2 0mod 2n  

= 0 𝜋

2. MF’s on vortices 1 and 2 (i.e. E = 0 fermion “split” between 1 and 2).
What is extra Berry phase?  i.e. what is  ?L

(a) “standard” approach:
Angular momentum of M.F.’s themselves  0
no change in Cooper pair state

  ⟨L⟩ = 0  encirclement phase = 0  exchange phase = 0 or 
(not adequate for TQC) 

(otherwise locally 
detectable!)

( ),rυ

(b) Number–conserving approach:
One extra Cooper pair is added in conjunction with           i.e. 

exactly half the time. Hence
where 𝓁c is global C. pair angular momentum1

2
cL 

But for 2 vortices (or an even number)
𝓁c, vort = even, 𝓁int =  1

 𝓁c  odd  encirclement phase = (2n + 1)
 Exchange phase is /2 (mod. )

– the Ivanov result!

Yet… Ivanov’s argument on exchange never invokes p-wave 
nature of OP!
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Two $64 questions beyond the mean-field scenarios
(1) Is the “extra” Cooper pair exactly the same as the pre-

existing ones?  e.g.

add one up-spin Bogoliubov or quasiparticle:
everyone agrees Sloc  1.
What about Nloc ?
Mean-field answer: Nloc = 0
but is “0”   1/Ntot or   1/Ntrap? 

(2) The BdG equations relate (the simplest) even– and odd–
number parity many-body states. i.e. if we have (e.g.) the 
even-parity and odd-parity groundstates, then

odd 0 even   

 0 0 ( ) ( ) ( ) ( )u r r r r dr    
† υ

solution of BdG equations.( ( ), ( ))u r rυ

Question: IS  THE  CONVERSE  TRUE?

i.e. does the existence of a solution                to the BdG
equations imply that there exist even– and odd–parity states 
connected by it?

0 0( , )u υ

Zeeman trap


 ℋ(z)

z

(In latter case, may be 
inadequate for TQC)


