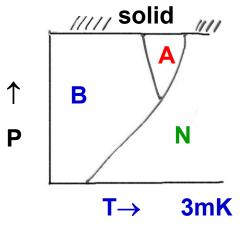
WHAT MAKES SUPERFLUID ³HE SPECIAL?

Anthony J. Leggett University of Illinois at Urbana-Champaign Department of Physics

> 29th International Conference on Low-Temperature Physics

Sapporo, Japan (by zoom) 18 August, 2022

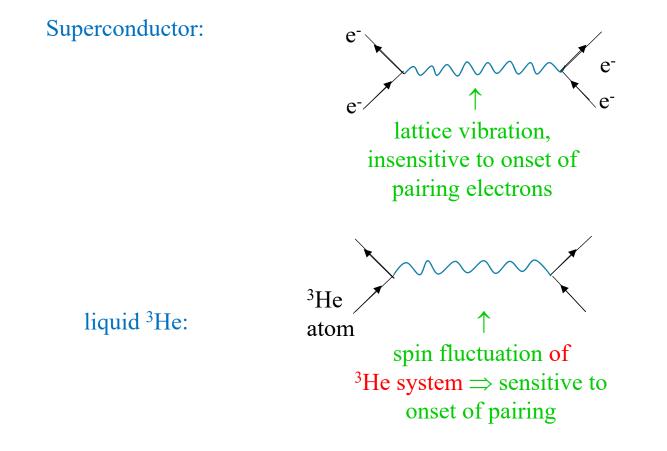


SOME EARLY THEORETICAL WORK ON POSSIBLE COOPER PAIRING IN LIQUID ³HE

_"equal spin pairing"

Theoretical expectation c. 1964:

Liquid ³He may form Cooper pairs, either ℓ = even (spin singlet) or with ℓ = odd (BW state). In either case, χ reduced and all magnetic properties isotropic. T_c difficult to predict.


In the event, see <u>both</u> ABM and BW phases! How come?

RESOLUTION OF THE PARADOX OF TWO NEW PHASES. (Anderson & Brinkman, Phys. Rev. Letters **30**, 1108 (1973))

In BCS (weak-coupling) theory for $\ell=1$, BW phase is always stable, independently of pressure and temperature.

Crucial difference between Cooper pairing in superconductors and ³He:

 \Rightarrow "feedback" effects: Over most of the phase diagram, BW state stable as in BCS theory. But at high temperature and pressure, feedback effects uniquely favor ABM phase.

major qualitative leap beyond BCS!

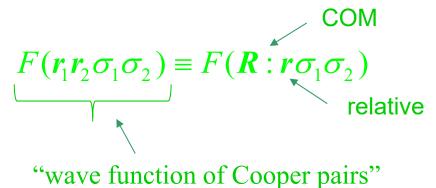
CONCLUSION (by summer of 1973):

Both a priori stability considerations and NMR experimental data are consistent with hypothesis that both new phases are Cooper-paired ("superfluid") phases. Specifically,

> A phase = ABM B phase = BW

What has superfluid ³He been good for (1972-2022)?

What may it be (2022-...)?


- (a) most sophisticated physical system of which we can claim detailed quantitative understanding. E.g. textures, orientational dynamics, topological singularities...
- (b) analogies with systems in particle physics, cosmology...(G. E. Volovik)
- (c) studies of (some aspects of) turbulence
- (d) A phase is "topological superfluid" ⇒ if can form in sufficiently thin slab and create "half-quantum" vortices (HQV's), expect to see (in)famous Majorana fermions.
 (Unfortunately, HQV's so far not seen in bulk ³He-A)
- (e) The combination of
 - 1) "Superfluid amplification"
 - 2) exotic pairing
 - 3) no lattice pinning

main subject of this talk

(1) Superfluid amplification

<u>Superconducting state of metal: Cooper pairs form, i.e. :</u>

2-particle density matrix ρ_2 has single macroscopic (~N) eigenvalue, with associated eigenfunction

$$\left(= \left\langle \psi^{\dagger} \left(\mathbf{R} + \mathbf{r} / 2 : \sigma \right) \psi^{\dagger} \left(\mathbf{R} - \mathbf{r} / 2 : \sigma' \right) \right\rangle \right)$$

in words: a sort of "Bose condensation of diatomic (quasi-) molecules" = a macroscopic number of pairs of atoms are all doing the same thing at the same time ("superfluid amplification")

but in metals, <u>internal</u> state of pairs usually boring ($\ell = S = 0$) (and anyway, any anisotropy pinned by crystal lattice)

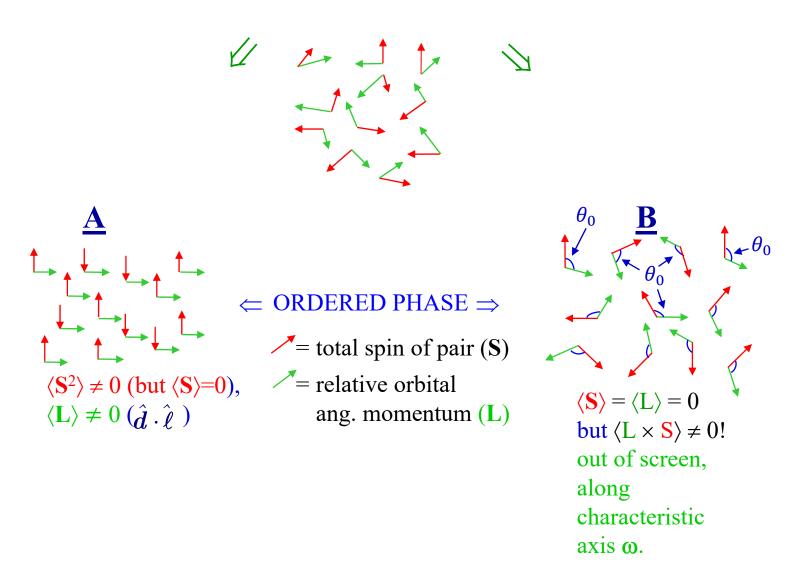
<u>THE FIRST ANISOTROPIC COOPER-PAIRED SYSTEM:</u> <u>SUPERFLUID ³HE</u>

as in metals, fermions of spin $\frac{1}{2}$ $T_F \sim 1K$, $T_c \sim 10^{-3} K \Longrightarrow T_C / T_F \sim 10^{-3}$

- \Rightarrow and, strongly degenerate at onset of superfluidity, but also strongly interacting.
- ⇒ low-lying states (inc. effects of pairing) must be described in terms of Landau quasiparticles. (and Fermi-liquid effects v. impt.)

2-PARTICLE DENSITY MATRIX $\hat{\rho}_2$ still has one and only one macroscopic (~N) eigenvalue \Rightarrow can still define "pair wave function" $F(\mathbf{R}, \mathbf{r}: \sigma_1 \sigma_2)$ However, even when $F \neq F(\mathbf{R})$,

(2) $F(r\sigma_1\sigma_2)$ has orientational degrees of freedom!


(i.e. depends nontrivially on $\hat{r}, \sigma_1 \sigma_2$.)

Standard identifications (from spin susceptibility, ultrasound absorption, NMR... plus theory):

In both A and B phases, Cooper pairs have $\ell = S = 1$

SPIN-ORBIT : ORDERING MAY BE SUBTLE

NORMAL PHASE

Dipole energy depends on relative angle of \uparrow and $\uparrow \Rightarrow$ determines $\hat{d} \cdot \hat{\ell}$ (A phase) or θ_o (B phase)

(3) No (strong) pinning of ℓ , d, or ω in bulk

How to "see" the exotic nature of the pairing? Use superfluid amplification!

Example*: Spontaneous violation of P- and T-symmetry in A phase

(Somewhat) unexpected effect: magnetic field can orient ℓ – vector "in" or "out"! indicates coupling of ℓ to field, i.e. ³He is a weak orbital ferromagnet, with magnetic moment along (\pm) ℓ .

But....³He atoms are neutral! How can this be?

*H. Ikegami et al., Science **341**, 59 (2013)

Weak ferromagnetism in ${}^{3}\text{He} - \text{A}^{*}$

Known effect in chemical physics[†]: rotation even of homonuclear diatomic molecule gives rise to magnetic moment!

Hence, for single Cooper pair calculate (lots of exotic chemical physics!) $\mu_{CP} \sim 10^{-11} \mu_{B}$. (almost certainly immeasurably small). Certainly, in N phase completely unobservable.

What saves us is the principle of superfluid amplification – all Cooper pairs do same thing at same time! As a result, estimate effective equivalent field $H_{eq} = n_{cp} \mu_{CB} / \chi \sim 10 - 20 m G$. Paulson et al. find circumstantial evidence for spontaneous field of just this o. of m.

*AJL, Nature **270**, 585 (1977): Paulson & Wheatley, PRL 40, 557 (1978) †GC Wick, Phys. Rev **73**, 51 (1948) More spectacular (but less direct) example of superfluid amplification: NMR

Recall: dipole energy depends on angle between \uparrow and \uparrow

dipole energy

$$\frac{dS}{dt} = S \times H_{o} + \frac{\delta E_{D}}{\delta \theta}$$

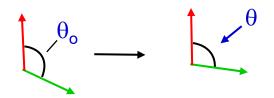
$$\swarrow$$

$$\therefore$$

$$\angle \text{ of rotation about rf field direction $\hat{\mathcal{H}}_{rf}$ (long) (L)

$$\mathcal{H}_{rf}(\text{transverse}) \text{ (T)}$$$$

For A phase, dipole energy locks $d \parallel \ell$ in equilibrium, and usually $d \perp H_{o} \Rightarrow$ both T and L fields move d away from $\ell \Rightarrow$ T frequency shift + L resonance $(\sqrt{})$


 $(H_{rf} \text{ into screen})$

For B phase:

in transverse resonance, rotation around $\hat{\mathscr{H}}_{rf}$ equiv. rotation of $\hat{\omega}$ with θ_{o} unchanged \Rightarrow no dipole torque, \Rightarrow no resonance shift. ($\sqrt{}$)

$$\int \mathfrak{O}_0$$

In longitudinal resonance, rotation changes θ away from θ_0

One more proposed* (but so far unrealized!) example of superfluid amplification:

P-(but not T-) violating effects of neutral current part of weak interaction:

For single elementary particle, by Wigner-Eckart theorem, any EDM d must be of form

 $d = \text{const. } J \leftarrow \text{violates T as well as P.}$

But for ${}^{3}\text{He} - \text{B}$, can form

$$d \sim \text{const. L} \times \text{S} \sim \text{const. } \hat{\omega}$$

 \uparrow $\text{ violates P but not T. }$

Calculation involves factors similar to that of A-phase ferromagnetism (lots of even more exotic chemical physics!):

Effect is tiny for single pair, but since all pairs have same value of L×S, is multiplied by factor of $\sim 10^{23} \Rightarrow$

macroscopic P-violating effect?

(maybe in 10-20 years...)

