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Lecture 1. Reminders Re BCS Theory

References: Kuper, Schrieffer, Tinkham, De Gennes,
articles in Parks. AJL RMP 47, 331 (1975); AJL
Quantum Liquids ch. 5, sections 3-4.

Notations: &, = absolute value of kinetic energy for free
gas, i.e., h?k?/2m,
& = G — (1)

E, reserved for something special to BCS theory.

— 1/dn _ . .
NQO) = > (E)SF = density of states of one spin at

Fermi surface,
vp = Fermi velocity.

1. BCS model
N (= even) spin —1/2 fermions in free space
(=Sommerfeld model) with weak attraction.
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2. BCS wave function

Fundamental assumption: GSWF ground state wave function in
class

U(rioy...ryon) = A [¢p(r101;1202)d(r30s;r404) ... P(rN_10N_1;TNON)]

/

Antisymmetrizer. Note all pairs have the same ¢
Specialize to

(a) spin singlet pairing;

(b) orbital s-wave state;

(c) center of mass at rest.

Then
d(r1o1;1202) = 272 (T1]o — l112) X ¢(ry — 12)
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¢eveninr, —r,. ET.

$(r1 —r2) ZX (k)ekrir2) (k) = x([k|), so that x(—k) = x(k)
Then

$(ri01;T202) = % (T1l2 — L1T2) Zx(k)eik(“_”) -
k

1 ; :
E X(k) 1l ezk(ri—rz)_ lit ezk(ri—rg) -
. \/§ ( 142 112 )

= (k — —k in the second term) =

1

= > x(k) (& Da(—k D2 — (—k D)1k 1)2)

=

= Z akTa l(J’|veu:) Qf jvac)
k

The N-body wave function above is just

B N/2
Uy = (QT)Nﬁ]vac) = (E)((k)a,}afkl) lvac

Note: automatically eigenstate of N.
Note: normal ground state is special case! since

. N/2
Fermi statistics
L = I I aLTa"_k”vac) = ( E aLTat_kl) |vac)
k<kg k<kp

which is special case with y(k) = 0(kp — |k|).
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3.BCS method

Relax particle number conservation and minimize not H but H — ,u,N
(Bogoliubov, 1948). One obvious way:

(QT) —>e*<p§71r v(ﬂ*)N/z/(jV/Q)!
N/2=0

Thus up to normalization,

= exp { ZX akTa kl}|vac Hexp {x(k akTa kl} lvac)
or since(aLTaJr_kl )

Go over to representatlon in terms of occupation spaces of k, -k:
100>, 110>, 101>, 111>, Then

U = H D, D = |00>k + Xk‘11>k
k

To normalize multiply by (1 + Iy, [?)~12
Do = uk 00 + el 1 el + [0 =1, vie/ure =i (e vie =1/ V1 + [xacl?)

Normal GS i1s special case with u, = 0 and w =1 for k<kp and y = 1, =0
for k > kg. Thus, general form of N-nonconserving BCS wave function is,

Upcs = H (ule]O)k + 'Uk|]-]->k) = H (uk + fukaTkTaT_kl) ‘V&C)
k k
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Notes:
a)  very general (for spin singlet pairing), €. g. i, and
can be f(k).
b) u — w expi@Q, w—>w exp i@, has no physical
effect = choose all » to be real.
c) w—>w exp 1Y no physical effect
T
same for all k
d) hence, to obtain N-conserving MBWE,

1 pPx :
Uy = py / dop ¥pcs(¢p) exp —iNg /2
0

where

Upcs(¢) = H (uk + (vk exp i(b)aLTaf_k‘L) lvac)
k



TD-6
4. The ‘pair wave function’
Role of the relative wave function of a Cooper pair played at T=0, by
F k = UkVk

or its Fourier transform F(r) = X, F, exp iKr.

E.g. e.v. of potential energy <V> given by

il
(V)= 2 Z Vpp’q<G‘L+q/2,cra‘;r>’—q/2,afa’p’+q/2>0’ap—Q/2>‘7>

pp’ Cl
oo’

For BCS w.f. only 3 types of term contribute:

(1) Hartree terms: (q = 0).

1 1
(V) Hartree = 5 > Vop'o {Rpoiplo’) <= > Vo(N?) For V = V(r))

pp’
O'OJ

(2) Fock terms, corresponding to 6 = ¢’, p— p’. These give
1
<V>Fock — _§ Z Vppq <”p+q/2cfnp—q/20>
Pqo

Because of the uncorrelated nature of the BCS wave function we can
replace the right hand side by

2

I)l)(l vlp+(|/20np q/ ‘.0> == ppq ,Up+q,f’ llp q/2
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(3) The pairing terms: p + q/2 =— (p’ — q/2), 6’ = — 6. Writing for
convenience: p + q/2 =k’, p-q/2 =k, we have

1
(V> = 5 Z Vi <a;r<’aa1—k’—aa’—k—crako)
kk/c

where Vi = Vicpq/2x—q/2,k—k/¢ for a local potential V(r) this is just V(k — k')
where V' (k) is just the Fourier transform of V(r). Note this expression is N-
conserving!

Because of the factorizable nature of the BCS wave function this reduces (except
for the O(N~1) case of k = k') to the expression

1
(V)pa.ir - 5 Z Vi (aLraat_kr_,:,)(a—k—aaka)
kk’o

or using the spin singlet nature of the wave function
(Vipair = D Viaw <“L'T“1-k'1)(“—klak7)
kk’

[t remains to evaluate the quantity

(¥pcs|a—k akt| YBes)
= {¢kla—k|akt|dk) = ujvi(00|a_kjakt[11) = ujvi = ukvk

{(a—k|akt)

since uy taken real, and similarly (aL,Tat_k, l) = ugrvy,. Hence

<V>pajr — Z ka’FkF]:f , Fk = UKVk
kk’

In the case of a local potential V(r), we can write this in terms of the Fourier
transform F(r) = >, expikr Fi:

(V)pair = f dr V (r)|F(r)
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Compare for 2 particles in free spaceV(r) = fdr v (r) hy(r)l>.
Thus, for the paired degenerate Fermi system, F(r) essentially
plays the role of the relative wave function y(r). (at least for the
purpose of calculating 2-particle quantities). It is a much
simpler quantity to deal with than the quantity ¢ (r) which
appears in the N-conserving formalism. [Note however, that
F(r) 1s not normalized.]

We do not yet know the specific form of u’s and v’s in the
ground state, hence cannot calculate the form of F(r), but we
can anticipate the result that it will be bound in relative space
and that we will be able to define a ‘pair radius’ as by the

quantity E=(/r2|F\2dr/ [IF\? dr)V2.

Emphasize: everything above very general, true independently
of whether or not state we are considering is actually ground
state.
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5. Quantitative Development of BCS Theory
Ref: AJL, Quantum Liquids, ch. 5, sections 4 and 5.

Recap: ‘fully condensed’ BCS state described by N-nonconserving wave function:
U=]]®,  Px=u/00)k+ |11}k
k
fuk[? + ok [? = 1.
We need to determine the values of uy, up in the GS, i.e. the state which minimizes
(HY =T — uN +V}

In the following, we ignore the Fock term in (V') until further notice (we already saw
the Hartree term just contributes a constant, %VO(N )2). Then (V) is just the pairing
terms

(V) = ZVkR’FkFl:” Fyx = uvy.
kk’

Vi = matrix element for (k |,—~k 1) — (k' T,—k" |).
Now consider the term

T—pN =3 nol€c—p) = niok
ko ko

It is clear that |00}y is an eigenstate of ny, with eigenvalue 0, and |11)y with eigenvalue 1.
Hence, taking into account the > _,

(T— Ny =2 elvif?
k
(note: has finite negative energy in normal GS!)
and so:

(H) =2 Z ex|vk |2 + Z Vi (upvi ) (ukevge)
K kK’

and this must be minimized subject to constraint |uy|? + | ? = 1
One pretty way of visualizing problem:

uy (= real) = cos 6y /2, vk = sin(fy/2) - expigy

Then, apart from a constant,

(H) = Z(—ek cosby) + % Z Vik’ sin Oy sin Oy - cos(dk — dw)

k kk’
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Anderson pseudogpin representation of BCS Hamiltonian: use Pauli vectors oy such
that (‘classically’) |ox| = 1 and take 6k, ¢k to be polar angles, then (up to a constant

Dk k)

1
(H) = —?ekazk-l- ngkk’akj_‘ffku_ = —Zk:'?k - Hk

(ok1 = component of oy in xy= plane)
where pseudo-magnetic field ‘Hy given by
Hy = —e3 — Ay

1

(— sign introduced for convenience)

o L %
v/ ¥ A = — 3% Vik:Okry

v



TD-11

Rather than representing Ay and oy as vectors, it is actually very convenient to rep-
resent them as complex numbers Ag = Ay, + iAyy, 0k = Ok + i0ky. Evidently the
magnitude of the field Hy is

M| = (e + [Ak[*)? = Ex

and in the ground state the spin k lies along the field Hy, giving an energy —Ej. If spin
is reversed, this costs 2Ey (not Ey!). This reversal corresponds to

O — 7 — b, Pk = P+ T

and up to an irrelevant overall phase factor this corresponds to
uy = sin % exp —igk = vy
vy = — COS 5 = Uk

i.e., the excited state so generated is
P = vy |00) — uk[11)

which may be verified to be orthogonal to the GS & = uy|00) + v¢|11). (remember, we
take uy real)
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Since in the GS each spin k must point along the corresponding field, this gives a set
of self-consistent conditions for the Ay: since oy | = —Ays/Ejs, we have

Ag = - Z Vi A /2B | <— BCS gap eqn.
k.’

Note derivation is quite general, in particular never assumes s-state (though does
assume spin singlet pairing).

Alternative derivation of BCS gap equation: Simply parametrize ui and v by Ay
and By = (ef + |Ax[?)Y/?, as follows:

_ Ay _ By + ex
Vk = Uk =
(| Ak[? + (B + ex)?)1/2 (IAK + (B + ac)?)t/2

This clearly satisfies the normalization condition: |ui|? + |vk|*> = 1, and gives

i B

2 €k (5} 1 €k
2= — | o — =_|1—-= i
|uk| 9 [ Ek} ) |’Uk‘ 9 [ ] ;  UKUk 2 Ei

The BCS GS energy can therefore be written in the form

. Ak Af(/
(H) = ijek(l — a/Ex) + ;ﬁ S

The various Ay are independent variational parameters: varying them and using 8Fy /0Ak =
A} /Ex, we find an equation which can be written

A%,
¥ N e |

Cancelling the prefactor and taking the complex conjugate gives back the standard gap
equation.
[Assume s-state until further notice, i.e., Ax = function of only k||

‘i

Ey
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Behavior of (ny) and Fy in groundstate

Let’s anticipate the result that in most cases of interest, Ay will turn out to be ~ const =

A over a range > A itself near the F.S. Then we have (np) = |w/? = (1 — —=%
g ( k) | k| 2( m)

and Fk = UKV = 2—%;
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BCS theory at finite 7T

Obvious generalization of N-nonconserving GSWFE: many body density matrix p is prod-
uct over density matrices referring to occupation space of states k T, —k |:

p= H Pk
Kk
The space k is 4-dimensional, and can be spanned by states of the forms

Pgp = ug|00) + v|11), “ground pair”

$pp = 1y |00) — uy|11), “excited pair”

@gl), = |10}, @gl), = |01), “broken pair”
As regards the first two, they can again be parametrized by the Anderson variables
Ok, dk: the difference, now, is that there is a finite probability that a given “spin” k
will be reversed, i.e., the pair is in state ®gp rather than ®gp. There is also finite
probability that the pair in question will be a broken-pair state, in which case it clearly

will not contribute to (V') and thus not to the effective field. Thus, we can go through
the argument as above and derive the result.

1
Ag = = %: Vik (o 1kr)

but the {ox/) is now given by the expression
K’ K’
(o1} = —(Pp — Pip))Aw/ 2 Bye
and thus the gap equation becomes

A=~ Viae(P&) - PE)Aw /2B
k’

We therefore need to calculate the quantities ng, Pé'f,). (Since the states |10) and
|01) are fairly obviously degenerate, we clearly must have ng 3 ng)) + QPSg = 1).
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Since we are talking about different occupation states, there is no question of Fermi or
Bose statistics, and the probability of occupation of a given state is simply proportional
to exp—BE, (8 = 1/kgT) where E, is the energy of the state. Thus,

P : P . Y = exp—BEap : exp—pBErp : exp—BErp

we already know that Egp— Egp = 2Ek, (but Fx = Ex(T)!). What is Fgp— FEqp? Here
care is needed in accounting. If all (MB) energies are taken relative to the normal-state
Fermi sea, then evidently the energy of the “broken pair” states [01) or |10) is ) (which
can be negative!). In writing down the Anderson pseudospin Hamiltonian, however, we
omitted the constant term )", €. Hence the energy of the GP state relative to the
normal Fermi sea is not —Ey but ¢ — Fy. Hence, we have

Epp — Egp = Ex
Egp — Eqp = 2E)

Hence tempting to think of BP states [10) and |[01) as excitations of a “quasi-particle” and
the EP state as involving excitations of a 2 “quasiparticles.”

Anyway, this gives!
P(k) P(k) PS{)) =1:exp—BEy : exp—26Ey
and

1 i 4-3 Ek

k k
P - B = SE —m, = tanh(8Ei/2)

EP ™ 1 4+ 2e-
Therefore, the finite-T" BCS gap equation is:

Z"kk'

(Note: Also possible to derive by brute-force minimization of free energy as F(Ay), see
e.g. AJL QL app. 5D] This may or may not have (one or more) nontrivial solutions,
depending on form of Vi and value of T, see below.

Finite-T' values of (nx) and Fy: Fy (=(g,, }) is simply reduced by factor
tanh SEy /2. (nk) is given by a more complicated expression which correctly reduces to
the Fermi distribution for A — 0, T' non zero

Lanh BEy [2

'Note that in the normal state, where “GP” is simply |11} for ex < 0 and |00} for ex > 0, this gives
for ex > 0 (nk) = 2(Prp + Per) = 2/(e”* + 1), and similarly for ex < 0, i.e. the correct single-particle
Fermi statistics.
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(1) Independently of form of W, equation always has trivial solution Ay = 0 (N
state)

(2) If all Viqe positive, no solutions.

(3) for T'— o0, no solution.

[reduces to — > 1/ Viaw Al = kT Ak, and —Vjge must have maximum eigenvalue.]
Hence, if 4 nontrivial solution at 7" = 0, must d critical temperature 7, at which
this solution vanishes.

(4) Reduction to BCS form (Vi & —Vj = const with cutoff); see AJL, QL, appendix S5F

(5) Solution of BCS model:
Rewrite using 50, — N(0) fde  N(0) = 1(92)

A= = f bonh BB e R —N(0)Vp = —% (d—”> Vv (0)
0]

E

[Factor of 2 cancelled by [ de — 2 ;° d¢|
Obvious that no solution exists for V5 > 0. For V < 0:
Critical temperature: put 8 = 8., A — 0, hence E — |¢l:
€ tanh 2
AL o / SRl Pach &) e = Il
0

€

= kpT, = 1.14e,exp —A"' = 1.14e, exp —1/N(0)|Vp|

This expression is insensitive to arbitrary cutoff energy e, since |V| ~ const +1ne,,
i.e. cancels dependence. So, plausible to take value ¢, ~ wp, (as in original BCS
paper): since w, ~ M —1/2 predicts T, ~ M ~1/2 and helps to explain isotope effect.
Also, assures self-consistency since experimentally, 7, < w,. (w, = €./})

Zero-T solution:

-1 T de — ginh™ (e = In(2e
5= [Ty b/ A) 2 n(2e/AD)

= A(0) = 2¢,exp—1/A = 1.75T, (1.75 = 2/1.14)

Since A(0) measured in tunneling experiments, can compare with
experiment. Usually works quite well, but for “strong-coupling” superconductors
where T, /w, not very small, A(0)/kgT, usually somewhat > 1.75.
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At finite temperature, T" < T, gap equation can be written
/ {tanh BE(T)/E(T) — tanh Be/e} de = 0
0

and [ extended to oo (since it converges) = A(T) is of form

A(T)/AQ0) = f(T/T)
(Or equivalently A(T) = kT, f(T/T.)). Roughly,

A(T)/A0) = (1 — (T/To)")/2,

Near 7, exact results obtainable, cf. below:

= T - TITR sv N kel w3080 —T /T

(6) Back to the question of the Fock term

We earlier neglected the Fock term in the energy, namely,

1
(H — pN)Fock = —5 > Vide {nio Y {mico)
kk'o

equivalent to a shift in the single particle energy:

€k — B = Z ka: (nk/> = gk
kf

= to extent V,,, approx. constant over € » A, €,Same in S as in
N state
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(7) Generalizations of BCS

(a) Sommerfeld — Bloch: = A may be f(n), but qualitatively unchanged.

(b) Landau Fermi-liquid: to the extent >_, (nk) unchanged on going from N to
S, the “polarizations” which bring the molecular field terms into play do not
occur = only effect is m — m*: molecular-field terms do not affect the gap
equation. But they do affect the responses, just as in the normal state.

(¢) Coulomb long-range terms: have no effect on gap equation, do affect the
responses.

(d) Strong coupling: crudely speaking, effects which vanish for A /wp — 0. (e.g.
approximation of constant renormalized V not exact). Need much more com-
plicated treatment (Eliashberg). Generally speaking, this treatment provides
only fairly small corrections to “naive” BCS. (e.g. ratio A(0)/kgT,, 1.75 in
naive BCS, can be as large as 2.4 (Hg, Pb)).
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The pair wave function

Most important expectation value characterizing the S phase is the ‘pair wave function’

F(r) = (@ (r)y1(0)) = 5 Fxexpikr, Fx = (a_kjaky)-
We saw that

Fi = upv tanh ﬁEk/Q == (Ak/QEk) tanh ISEk/Q

and so

FEy= ta.nh( BEy/2)expikr

2B

In the case of s-wave pairing, Ay is not a function of k and we can write

ds? ink
Zexmkr = N(0) /dek fmll_k expikr = N(0) fdek Slz r
™ r

k

80
sinkr Ay

F(r) = F(r) = N(0) f da 27 K. tanh(8Ew/2)

2Ey

For the moment, no restrictions on [dey (though lower limit cannot be < u!). We will
assume in what follows

Tc << €F
and hence kpg& > 1 where ¢’ ~ Avp/A(0) (see below), as found experimentally.

Normalization: Consider the quantity:
A2
N= / IF(r)[*dr = —"ztanhg(ﬁEkﬂ)
Ey

[t is clear that the main contribution comes from |e| < A(T), kgT,, where we can ap-
proximate A(T) ~ A(0). Thus N = |A(T)[PN(0) f5° (de/4E?)tanh® BE/2. For T — 0,
this is ~ N(0)A(0) ~NAOVEg; for T — T, it is ~ N(O)|A(T)*/T ~NIAT)|/LE,
(Interpretation as ‘number of Cooper pairs’).
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General behavior of F(r)

A. Forr < kz!, some of above approximations break down, but
clear that F(r) o< @(1), relative wf of 2 interacting electrons in
free space with E~E.

B. For kz! « 1 « Aive/ A(0), can evaluate explicitly,

F(r) o< Q. (r). (w.I. of two freely moving particles w. zero
com mom. at Fermi energy)

C. Forr = hvg/A(0), F(r) falls off exponentially, F(r) o< e with
¢ ~hvg/A(0) and only weakly T-dependent.

The bottom line:

1. Cooper pair radius always ~ Avg/A(0), ind. of T
2. “number” of Cooper pairs ~ N(A(0)/Egp) atT=0, — 0 as
T—T..



