
Lecture 2 – Superfluid 3He:  Basic Description
Ref:  AJL, Quantum Liquids, 6.1-2

3He:  electronic state (1s)2 1So, is very inert.  Nuclear spin ½ ⇒

system of spin-� �⁄ fermions (like electrons in metals)

Atom-atom
Interaction:

ro

“hard-core” repulsion

vdW attraction

V(r) ↑

(~3Å)

Liquid 3He:  since 1950 (3H →3He + e + �̅ in reactors, weapons)

Below ~ 100 mK, behaves much like (very pure) textbook normal 

metal (Fermi gas)

but interaction effects v. strong (e.g χ.~ 20 times value for F.gas)
Why?
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Landau Fermi liquid theory:

start from free Fermi gas, turn on interactions adiabatically

Assume GS evolves adiabatically (excludes superconductivity,

ferromagnetism, crystallization…)

Then GS and low excited states labeled by quantities �� �� :�� �� = 0 or 1,        � > 	��								�� �� = 0 or -1,        � < 	�� ← Fermi	statistics}
Expand E of low-lying excited states in �� �� :( = (* +			∑ ϵ �� 	�� �� +	�� 			∑ . ��/00/ �� �� �� �′�22/33/23

↑
GSE

Symmetry ⇒

4 5 �� = 	5 � 	≅ 	5 �� +	v� � − �� 							 ∶ 9.	:∗ ≡ ��/v� 																																																										"true"	�@A. ��/00/ ≅ ∑ .ℓ� +	.ℓC	0 ∙ 0/ℓ Eℓ �F ∙ �F′ 												9.	.ℓ = GHGI �� Ω��Kℓ�, L��
Informal summary of Landau FL theory:

particles → “quasiparticles”, fermions with effective mass m*

subject to molecular fields, with coeffs. prop. to Kℓ�, KℓC	,
generated by polarizations of the system (example follows)

For real liquid  3He.

:∗	/:	~	3	 − 6,		KP�	~	10	 − 100, other		F′s	mostly	~	1.

↑
volume
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Molecular fields:  example*

(recap): 	( = 	(P +	X5	 �� �� �� +	12	X. ��/00′ 	�� �0 ��	 �′0′22/3323
. ��′00′ 	≡ 	 9�95�� 	Z�� 		X Kℓ� +	KℓC		0 ∙ 0′ℓ Eℓ �F ∙ �F′

Select term corr. KPC:( CP 	 =	12	 9�/95 ��	Ω��	KPC 	X0 ∙ 0/�� �022/33/
	�� �′0′ 			

But: ∑ 0�� �� = [	 ← total	spin23
( CP 	 =	12	Ω�� 9�/95 ��	KPC	[�

Equivalent to molecular field^ _P` = − 9�/95 ��	KPC[
Application:  response to external field abcd	(k;e)[ fe = 	�P�2	 fe g dPd fe	

 adPd fe 	≡ g bcd he +	g _P` he	a_P` fe = −	 9�95 ��	 KPC	[�	 he
Spin response of 
noninteracting F. gas 
with mass m*

⇒								 �jklm		 ne = 		 �P�2	(n, e)1 +	 9�/95 ��		KPC		�P�2	(ne)		
e.g. since static �P�2 = 9�/95	� = 	 GH/GI�q	�rs
*note spin, field in arbitrary units.    
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Some effects of (spin) molecular field in 3He:

A.  Enhanced low-energy spin fluctuations:

recap :									��2	 nt = 							 �P�2	 nt1 +	KPC 	 9�95 �� 	�P�2	 nt

B.  Coupling of atomic spins by exchange of virtual paramagnons

exchange of V.P’s induces extra effective spin-spin interactionubvv	 w, t 	~	− KPC �	��2 nt 0 ∙ 0′
In limit n, t	 → 0		��2 must bc + ve (stability!), hence in this limit

VP-induced interaction always attractive in spin triplet state,
repulsive in singlet.

Metals:

F. liquid                         F. gas
↓ �

Im�P�2 	⟶

w/q��⟶										↑1	

KPC		~ 	− 0.7 		⇒ ← Im		��2	 nt

					t/n	�� → 1
↑

“paramagnon”
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Pairing interaction in liquid 3He:

(a)
Hard core much stronger than 
for electrons in metals ⇒ l = 0 
disfavored

Would like to have first max in radial prob. distrn. at r ~ ro.
But C. pairs formed from states near F. surface ⇒ k ~ kF., 
hence first max. at r ~ l/kF.

⇒ l ~ kF ro i.e. l = 1,2, or 3.
↑

orig. favored by theory

(b) Spin-fluctuation exchange ⇒ extra term, attractive (repulsive)
for S = 1 (S = 0)         

(a) + (b) + Pauli principle  ⇒ l =  1  may be favored.

Need to generalize BCS theory to l ≠ 0 pairing.

1. (for orientation only): anisotropic singlet pairing (e.g. l  = 2)

BCS ansatz: ΨN = (Σck	~ +h ↑	~ +h↓)N/2  |vac>, but now

Ck can depend on direction of k on FS.
otherwise, all the BCS-based maneuvers go through…

k
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“bare” atom-atom potential

V(r) ↑

ro(~3Å)

r

quasiparticle operators



Anisotropic singlet pairing (cont)

Recap:  ΨN = (Σck	~ +h ↑~ +_h↓)N/2  |vac>,

All subsequent operations just as in s-wave case, e.g. still have

F
k

= ∆
k

/2E
k

but F
k

(hence F(r)) now depends on direction of k (r).

Gap equation:              nontrivially dependent on dirn. of k-k'.

Resolve V into spherical harmonic components: for |k|~ |k'|~kF.
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c
k

function of direction as
well as magnitude of k.

k
∆

k
= - Σ V

kk'
������� tanh (Ek'/2kBT)

Legendre polynomial

If for some lo Vl is appreciably larger than for other l’s, than for |k| ~ kF

V
kk' = ΣlVlPl f� ∙ f�′

l

∆
k

≅ Σ∆lmYlm (f�)
m

spherical harmonic

To find coefficients ∆lm, minimize (free) energy with respect to 
possible choices (crudely: for given | Δ� , minimize | Δ��̅ ≡ 4Ω �� �� h� 9Ω)
Note optimal solution may involve nontrivially complex Δ f�
⇒ possible nonzero angular momentum of paired state.

More generally, since for lo≠ 0 ∆ f� must be anisotropic, expect
physical properties anisotropic
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k

Digression: can an anisotropic Fermi superfluid have (large) 
angular momentum?

Recap: ΨN = (Σck	~ +h ↑~ +_h↓)N/2  |vac> ≡ (Ω+)N/2|vac>     * 

may be complex

Consider e.g. case
ck = f(|k|,θk) exp 2iϕk (d-wave)

Naïve approach (ignore boundaries, etc.):��� = generator of rotations around z-(l-) axis [or explicit calcn.]

���, Ω� = −�ℏ ∂��
∂�� � +	h ↑ ∙ � +	−h ↓ = 2ℏΩ�⇓⇓⇓⇓

⇒��zΨN = NħΨN

Generalization to nonzero T:
anisotropic F. superfluid has macroscopic (~N) ang. momentum
at any temperature below Tc!

Is this physically correct?
Alternative ansatz:
start with N ground state (F. sea), excite
pairs from |k| < kF to |k| > kF

(details: AJL QL appendix 6A)
This state has

Lz ~ Nħ(∆ / EF)2 « Nħ

Which is right? (expt.?)

>

l
ϕk

k

θk

h�
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Spin triplet pairing

Simplest case (“ESP) ← equal spin pairing

With suitable choice of spin axes, only parallel spins paired ⇒Ψ� = ∑ �f↑�+		f ↑� +		−f ↑ + �f↓�+		f ↓� +		−f ↓f �/2 |vac>              (3)

Analysis of energetics, etc. parallel to that for singlet pairing, but for 
spin-conserving potential, ↑↑ and ↓↓ gap equations decouple:Δ�3 = −Σu���Δ��3/2(��3

Pauli principle ⇒ ckσ = -c-kσ, but in general no particular
wherever ck↑↑↑↑ and ck↓.

Note (?) is coherent superposn. of ↑↑ and ↓↓ pairs, 
not equivalent toΨ� � = 	 ∑ ��↑ �q�↑�q��↑ �/� ∑��↓ �q�↓�q��↓ �/� |vac>

↑ ↑
“Fock” state

h h

tanh12���/3
Spin susceptibility of ESP state: in small field ℋ.

•kF•
↑↑↑↑, ↓↓↓↓

⇒ ↓↓↓↓
↓↓↓↓

↑↑↑↑

↑↑↑↑

kF↓

kF↑

Field does not interfere with pair 
formation! χESP ≅ χn N-state χ



Spin triplet pairing: the general case

Most general “BCS-like” triplet-paired state:Ψ� = 		∑ 			�k�β 	�+		fα 		� +		−f� �/2 |vac>    
kαβ

c
kαβ = ckβα = -c-kαβ , otherwise arbitrary

Since for given k c
kαβ is Hermitian, for given k then always exists 

a choice of spin axes which makes diagonal (c
k↑↓ = c

k↓↑ = 0)

not necessarily unique

In this set of axes can then define e.g.K�3 ≡ ����q ���   ,    etc.

But in general gap eqn. etc. is quite messy. Enormous 
simplification if state is unitary, df. by��3 � = ind. of σ , ∀ k.

Then can write in arbitrary spin axes

Fk,αβ ≡ ∆k,αβ/2Ek,

Ek ≡ (εk
2 + |∆k|2)1/2

|∆k|2 ≡ (Σ |∆k,αβ|2
β

} ind. of α

For spin-independent potential

<V> = ∑ 	kk′¢£ Vkk' Fkαβ Fk'βα

⇒ Gap eqn.: h′~�Δ�¢£ = −Σ	u��/ ∆2(�/↑↑↑↑ ↑↑↑↑

i.e. gap eqns. For different matrix element ∆αβ decoupled
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The  d-vector notation (unitary states)

Consider e.g. the pair w.f. K ¤: ~� 	 or its FT K�¢£.		For any given 

k can find choice of spin axes so that 

K¢£	 f = 	K↑↑	 f 	 ↑↑ 	〉	 + 		K↓↓	 f 	 ↓↓ 〉
and from definition of unitary state.

K↑↑ f = 	 K↓↓	 f 	≡ 	 K� 	
A = 1, 	[ ∙ ¥ = 0

�. L. 	¥	 × ¥ ∗	= 0

¥ f 	≡ −	�		X 	§
¨©� X	¢£ 					 ���¨ £¢		K¢£		 f

For 2 particles of spin � �⁄ 	state	of	this	form	is	given	by
d = real vector up to overall phase in xy-plane making∠	 �� arg	 K↑/K↓
with y-axis,                                        with magnitude equal to K�
Generalizing to arbitrary reference frame, any unitary phase described 
by specifying for each k   ¥ f 	s.t. 		9 f 	× ¥ ∗ f = 0
Technically, in an arb. reference frame

In BCS case d(k) is usually a function only of ®F = f/ h ≅ k/h�.
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