Lecture 2 - Superfluid ${ }^{\mathbf{3}} \mathrm{He}$: Basic Description

Ref: AJL, Quantum Liquids, 6.1-2

${ }^{3} \mathrm{He}$: electronic state $(1 \mathrm{~s})^{2}{ }^{1} \mathrm{~S}_{\mathrm{o}}$, is very inert. Nuclear spin $1 / 2 \Rightarrow$ system of spin- $1 / 2$ fermions (like electrons in metals)

Liquid ${ }^{3} \mathrm{He}$: since $1950\left({ }^{3} \mathrm{H} \rightarrow{ }^{3} \mathrm{He}+\mathrm{e}+\bar{v}\right.$ in reactors, weapons) Below ~ 100 mK , behaves much like (very pure) textbook normal metal (Fermi gas)
viscosity
$\left(c_{\mathrm{V}} \propto T, \chi \propto\right.$ const $\left., \eta, D_{S} \propto T^{-2}, \kappa \propto T^{-1}\right)$
but interaction effects v. strong (e.g χ. ~ 20 times value for F.gas) Why?

Landau Fermi liquid theory:
TD 2.2
start from free Fermi gas, turn on interactions adiabatically
Assume GS evolves adiabatically (excludes superconductivity, ferromagnetism, crystallization...)

Then GS and low excited states labeled by quantities $\delta n(\boldsymbol{p} \sigma)$:

$$
\left.\begin{array}{cc}
\delta n(p \sigma)=0 \text { or } 1, & |\boldsymbol{p}|>p_{F} \\
\delta n(p \sigma)=0 \text { or }-1, & |\boldsymbol{p}|<p_{F}
\end{array}\right\} \leftarrow \text { Fermi statistics }
$$

Expand E of low-lying excited states in $\delta n(\boldsymbol{p} \sigma)$:

$$
E=E_{0}+\sum_{p \sigma} \epsilon(\boldsymbol{p} \sigma) \delta n(p \sigma)+\frac{1}{2} \sum_{\sigma \sigma^{\prime}}^{p p^{\prime}} f\left(\boldsymbol{p}^{\prime} \boldsymbol{\sigma} \boldsymbol{\sigma}^{\prime}\right) \delta n(\boldsymbol{p} \sigma) \delta n\left(\boldsymbol{p}^{\prime} \sigma\right)
$$

GSE

Symmetry \Rightarrow

$$
\begin{cases}\epsilon(\boldsymbol{p} \sigma)=\epsilon(|\boldsymbol{p}|) \cong \epsilon\left(p_{F}\right)+\mathrm{v}_{F}\left(|p|-p_{F}\right) \quad: d f m^{*} \equiv p_{F} / \mathrm{v}_{F} \\ \text { "true" DOS } \\ f\left(\boldsymbol{p} \boldsymbol{p}^{\prime} \boldsymbol{\sigma} \boldsymbol{\sigma}^{\prime}\right) \cong \sum_{\ell}\left(f_{\ell}^{s}+f_{\ell}^{a} \boldsymbol{\sigma} \cdot \boldsymbol{\sigma}^{\prime}\right) P_{\ell}\left(\hat{\boldsymbol{p}} \cdot \widehat{\boldsymbol{p}}^{\prime}\right) & \text { df } f_{\ell}=\left(\frac{d n}{d \epsilon}\right)^{-1} \Omega^{-1} F_{\ell}^{s}, \text { etc }\end{cases}
$$

Informal summary of Landau FL theory:
particles \rightarrow "quasiparticles", fermions with effective mass m* subject to molecular fields, with coeffs. prop. to $F_{\ell}^{s}, F_{\ell}^{a}$, generated by polarizations of the system (example follows)

For real liquid ${ }^{3} \mathrm{He}$.

$$
m^{*} / m \sim 3-6, F_{o}^{s} \sim 10-100, \text { other } \mathrm{F}^{\prime} \text { s mostly } \sim 1
$$

Molecular fields: example*
TD 2.3
(recap): $\left\{\begin{array}{c}E=E_{o}+\sum_{p \sigma} \epsilon(\boldsymbol{p} \sigma) \delta n(\boldsymbol{p} \sigma)+\frac{1}{2} \sum_{\substack{p p \prime \\ \sigma \sigma}} f\left(p p^{\prime} \boldsymbol{\sigma} \boldsymbol{\sigma}^{\prime}\right) \delta n(\boldsymbol{p} \boldsymbol{\sigma}) \delta n\left(\boldsymbol{p}^{\prime} \boldsymbol{\sigma}^{\prime}\right) \\ f\left(\boldsymbol{p} \boldsymbol{p}^{\prime} \boldsymbol{\sigma} \boldsymbol{\sigma}^{\prime}\right) \equiv\left(\frac{d n^{-1}}{d \epsilon}\right) \Omega^{-1} \sum_{\ell}\left(F_{\ell}^{s}+F_{\ell}^{a} \boldsymbol{\sigma} \cdot \boldsymbol{\sigma}^{\prime}\right) P_{\ell}\left(\widehat{\boldsymbol{p}} \cdot \widehat{\boldsymbol{p}}^{\prime}\right)\end{array}\right.$
Select term corr. F_{o}^{a} :

$$
E_{(a o)}=\frac{1}{2}(d n / d \epsilon)^{-1} \Omega^{-1} F_{o}^{a} \sum_{\substack{p p^{\prime} \\ \sigma \sigma^{\prime}}} \boldsymbol{\sigma} \cdot \boldsymbol{\sigma}^{\prime} \delta n(\boldsymbol{p} \boldsymbol{\sigma}) \delta n\left(\boldsymbol{p}^{\prime} \boldsymbol{\sigma}^{\prime}\right)
$$

But: $\quad \sum_{p \sigma} \boldsymbol{\sigma} \delta n(\boldsymbol{p} \sigma)=\boldsymbol{S} \leftarrow$ total spin

$$
E_{(a o)}=\frac{1}{2} \Omega^{-1}(d n / d \epsilon)^{-1} F_{o}^{a} \boldsymbol{S}^{2}
$$

Equivalent to molecular field

$$
\boldsymbol{U}_{\text {mol }}=-(d n / d \epsilon)^{-1} F_{o}^{a} \boldsymbol{S}
$$

Application: response to external field $\boldsymbol{H}_{\text {ext }}(\mathbf{k} ; \omega)$

$$
\begin{aligned}
& \left\{\begin{array}{c}
\boldsymbol{S}(\boldsymbol{k} \omega)=\chi_{o}^{s p}(\boldsymbol{k} \omega) \mathcal{\varkappa}_{t o t}(\boldsymbol{k} \omega) \\
\boldsymbol{H}_{t o t}(\boldsymbol{k} \omega) \equiv \varkappa_{e x t}(k \omega)+\mathcal{\varkappa}_{m o l}(k \omega) \quad \begin{array}{l}
\text { Spin response of } \\
\text { noninteracting F. } \\
\text { with mass m }
\end{array} \\
\boldsymbol{H}_{\text {mol }}(\boldsymbol{k} \omega)=-\left(\frac{d n}{d \epsilon}\right)^{-1} F_{o}^{a} \boldsymbol{S}^{2}(k \omega) \\
\Rightarrow \quad \chi_{\text {true }}(q \omega)=\frac{\chi_{o}^{s p}(q, \omega)}{1+(d n / d \epsilon)^{-1} F_{o}^{a} \chi_{o}^{s p}(q \omega)}
\end{array}\right. \\
&
\end{aligned}
$$

e.g. since static $\chi_{o}^{s p}=d n / d \epsilon$

$$
\chi=\frac{d n / d \epsilon}{1+F_{a}^{o}}
$$

*note spin, field in arbitrary units.
A. Enhanced low-energy spin fluctuations:

B. Coupling of atomic spins by exchange of virtual paramagnons (V.P's) Metals:
${ }^{3} \mathrm{He}$:

exchange of V.P's induces extra effective spin-spin interaction

$$
V_{e f f}(\boldsymbol{q}, w) \sim-\left(F_{o}^{a}\right)^{2} \chi_{s p}(q w) \boldsymbol{\sigma} \cdot \boldsymbol{\sigma}^{\prime}
$$

In limit $q, w \rightarrow 0 \chi_{s p}$ must bc + ve (stability!), hence in this limit VP-induced interaction always attractive in spin triplet state, repulsive in singlet.

Pairing interaction in liquid ${ }^{3} \mathrm{He}$:

(a)

$\mathrm{r}_{\mathrm{o}}(\sim 3 \AA)$

Hard core much stronger than for electrons in metals $\Rightarrow l=0$ disfavored
< "bare" atom-atom potential

Would like to have first max in radial prob. distrn. at $r \sim r_{0}$. But C. pairs formed from states near F. surface $\Rightarrow k \sim k_{F}$, hence first max. at $\mathrm{r} \sim l / \mathrm{k}_{\mathrm{F}}$.

$$
\Rightarrow l \sim \mathrm{k}_{\mathrm{F}} \mathrm{r}_{\mathrm{o}} \text { i.e. } l=1,2, \text { or } 3 .
$$ orig. favored by theory

(b) Spin-fluctuation exchange \Rightarrow extra term, attractive (repulsive) for $\mathrm{S}=1(\mathrm{~S}=0)$
(a) $+(\mathrm{b})+$ Pauli principle $\Rightarrow l=1$ may be favored.

Need to generalize BCS theory to $l \neq 0$ pairing.

1. (for orientation only): anisotropic singlet pairing (e.g. $l=2$)

BCS ansatz: $\Psi_{\mathrm{N}}=\left(\sum_{k} c_{k} \alpha_{k \uparrow}^{+} \alpha_{k \downarrow}^{+}\right)^{\mathrm{N} / 2} \mid \mathrm{Vac}>$, but now
quasiparticle operators
C_{k} can depend on direction of k on FS.
otherwise, all the BCS-based maneuvers go through...

Anisotropic singlet pairing (cont)
Recap: $\Psi_{\mathrm{N}}=\left(\Sigma c_{k} \alpha_{k \uparrow}^{+} \alpha_{-}^{+} \downarrow^{+}\right)^{\mathrm{N} / 2} \mid \mathrm{Vac}>$, c_{k} function of direction as well as magnitude of \boldsymbol{k}.
All subsequent operations just as in s-wave case, e.g. still have

$$
\mathrm{F}_{k}=\Delta_{k} / 2 E_{k}
$$

but $\mathrm{F}_{\boldsymbol{k}}$ (hence $\mathrm{F}(\mathbf{r})$) now depends on direction of $\boldsymbol{k}(\mathbf{r})$.
Gap equation: nontrivially dependent on $\operatorname{dir}^{\mathrm{n}}$. of $\mathbf{k}-\mathbf{k}^{\prime}$.

$$
\Delta_{k}=-\sum_{k} \mathrm{~V}_{k k^{\prime}}^{\swarrow} \frac{\Delta_{k \prime}}{2 E_{k \prime}} \tanh \left(E_{k^{\prime}} / 2 k_{B} \mathrm{~T}\right)
$$

Resolve V into spherical harmonic components: for $|k| \sim\left|\mathrm{k}^{\prime}\right| \sim \mathrm{k}_{\mathrm{F}}$.

$$
V_{\boldsymbol{k} \boldsymbol{k}^{\prime}}=\sum_{\boldsymbol{\ell}} V_{\boldsymbol{\ell}} P_{\ell}\left(\widehat{\boldsymbol{k}} \cdot \widehat{\boldsymbol{k}}^{\prime}\right)
$$

If for some $\boldsymbol{\ell}_{\mathbf{o}} \mathrm{V}_{\boldsymbol{\ell}}$ is appreciably larger than for other $\boldsymbol{\ell}$'s, than for $|k| \sim k_{\mathrm{F}}$

$$
\Delta_{\boldsymbol{k}} \cong \sum_{m} \Delta_{\ell m} \mathrm{Y}_{\ell(m}(\widehat{\boldsymbol{k}})
$$

To find coefficients $\Delta_{\ell m}$, minimize (free) energy with respect to possible choices (crudely: for given $\mid \overline{\left|\Delta^{2}\right|}$, minimize $\mid \overline{\left|\Delta^{4}\right|}$ $\left.\left(\bar{A} \equiv(4 \Omega)^{-1} \int A(\widehat{k}) d \Omega\right)\right)$
Note optimal solution may involve nontrivially complex $\Delta(\widehat{\boldsymbol{k}})$
\Rightarrow possible nonzero angular momentum of paired state.
More generally, since for $\boldsymbol{\ell}_{\mathrm{o}} \neq 0 \Delta(\widehat{\boldsymbol{k}})$ must be anisotropic, expect physical properties anisotropic

Digression: can an anisotropic Fermi superfluid have (large) angular momentum?
Recap: $\Psi_{\mathrm{N}}=\left(\sum_{k} c_{k} \alpha_{k}{ }^{+} \uparrow^{\alpha}{ }_{-}+{ }^{+} \downarrow^{\mathrm{N} / 2}\left|\mathrm{vac}>\equiv\left(\Omega^{+}\right)^{\mathrm{N} / 2}\right|\right.$ vac $>\quad *$ may be complex

Consider e.g. case

$$
c_{\mathrm{k}}=\mathrm{f}\left(|\mathrm{k}|, \theta_{\mathrm{k}}\right) \exp 2 i \varphi_{\mathrm{k}} \text { (d-wave) }
$$

Naïve approach (ignore boundaries, etc.):

θ_{k} $\hat{L}_{z}=$ generator of rotations around $z-(\ell-)$ axis [or explicit calc ${ }^{\mathrm{n}}$.]
\Downarrow

$$
\begin{aligned}
& {\left[\hat{L}_{z}, \widehat{\Omega}\right]=-i \hbar \frac{\partial c_{k}}{\partial \varphi_{k}} a_{k}^{+} \uparrow^{+} \cdot a_{-k \downarrow}^{+}=2 \hbar \widehat{\Omega}} \\
& \Rightarrow \hat{L}_{\mathrm{z}} \Psi_{\mathrm{N}}=\mathrm{N} \hbar \Psi_{\mathrm{N}}
\end{aligned}
$$

Generalization to nonzero T:
anisotropic F . superfluid has macroscopic $(\sim \mathrm{N})$ ang. momentum at any temperature below T_{c} !
Is this physically correct?
Alternative ansatz:
start with N ground state (F. sea), excite pairs from $|k|<k_{F}$ to $|k|>k_{F}$ (details: AJL QL appendix 6A)
This state has

$$
L_{z} \sim N \hbar\left(\Delta / E_{F}\right)^{2} \ll N \hbar
$$

Which is right? (expt.?)

Spin triplet pairing

Simplest case ("ESP) \leftarrow equal spin pairing

With suitable choice of spin axes, only parallel spins paired \Rightarrow $\Psi_{N}=\sum_{\boldsymbol{k}}\left(c_{\boldsymbol{k} \uparrow} a_{\boldsymbol{k} \uparrow}^{+} a_{-\boldsymbol{k} \uparrow}^{+}+c_{\boldsymbol{k} \downarrow} a_{\boldsymbol{k} \downarrow}^{+} a_{-\boldsymbol{k} \downarrow}^{+}\right)^{N / 2} \mathrm{Ivac}^{+}$
Pauli principle $\Rightarrow \mathrm{c}_{\mathrm{k} \sigma}=-\mathrm{c}_{-\mathbf{k} \sigma}$, but in general no particular wherever $c_{\mathbf{k} \uparrow}$ and $c_{\mathbf{k} \downarrow}$.

Note (?) is coherent superpos ${ }^{\mathrm{n}}$. of $\uparrow \uparrow$ and $\downarrow \downarrow$ pairs, not equivalent to

$$
\Psi_{N}{ }^{(F)}=\underset{k}{\left(\sum_{k \uparrow} c_{k \uparrow} a_{k \uparrow}^{+} a_{-k \uparrow}^{+}\right)^{N / 4}\left(\sum_{k} c_{k \downarrow} a_{k \downarrow}^{+} a_{-k \downarrow}^{+}\right)^{N / 4} \mid \mathrm{vac}>}
$$

"Fock" state
Analysis of energetics, etc. parallel to that for singlet pairing, but for spin-conserving potential, $\uparrow \uparrow$ and $\downarrow \downarrow$ gap equations decouple:

$$
\Delta_{k \sigma}=-\Sigma V_{k k^{\prime}} \Delta_{k^{\prime} \sigma} / 2 E_{k^{\prime} \sigma} \quad \tanh \frac{1}{2} \beta \varepsilon_{k \prime \sigma}
$$

Spin susceptibility of ESP state: in small field \mathcal{H}.

Field does not interfere with pair formation! $\chi_{\mathrm{ESP}} \cong \chi_{\mathrm{n}}$

Most general "BCS-like" triplet-paired state:

$$
\begin{aligned}
& \Psi_{N}=\left(\sum_{\boldsymbol{k} \alpha \beta} c_{\boldsymbol{k} \alpha \beta} a_{\boldsymbol{k} \alpha}^{+} a_{-\boldsymbol{k} \beta}^{+}\right)^{N^{2} / 2} \text { |vac> } \\
& \mathrm{c}_{\boldsymbol{k} \alpha \beta}=\mathrm{c}_{k \beta \alpha}=-\mathrm{c}_{-k \alpha \beta}, \text { otherwise arbitrary }
\end{aligned}
$$

Since for given $\boldsymbol{k} \mathrm{c}_{k \alpha \beta}$ is Hermitian, for given \boldsymbol{k} then always exists a choice of spin axes which makes diagonal ($\mathrm{c}_{\boldsymbol{k} \uparrow \downarrow}=\mathrm{c}_{\boldsymbol{k} \downarrow \uparrow}=0$)

not necessarily unique

In this set of axes can then define e.g.

$$
F_{k \sigma} \equiv \frac{c_{k \sigma}}{1+\left|c_{k \sigma}\right|^{2}}, \quad \text { etc. }
$$

But in general gap eqn. etc. is quite messy. Enormous simplification if state is unitary, df . by

$$
\left|c_{k \sigma}\right|^{2}=\text { ind. of } \sigma, \forall k
$$

Then can write in arbitrary spin axes

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{k}, \alpha \beta} \equiv \Delta_{\mathrm{k}, \alpha \beta} / 2 \mathrm{E}_{\mathrm{k},} \\
& \mathrm{E}_{\mathrm{k}} \equiv\left(\varepsilon_{\mathrm{k}}^{2}+\left|\Delta_{\mathrm{k}}\right|^{2}\right)^{1 / 2} \\
& \left|\Delta_{\mathrm{k}}\right|^{2} \equiv\left(\sum_{\beta}\left|\Delta_{\mathrm{k}, \alpha \beta}\right|^{2} \quad\right\} \text { ind. of } \alpha
\end{aligned}
$$

For spin-independent potential

$$
\langle\mathrm{V}\rangle=\sum_{\alpha \mathrm{kk}^{\prime}} \mathrm{V}_{\mathrm{kk}} \mathrm{~F}_{\mathrm{k} \alpha \beta} \mathrm{~F}_{\mathrm{k}^{\prime} \beta \alpha}
$$

\Rightarrow Gap eqn.: $\quad \Delta_{k \alpha \beta}=-\Sigma V_{k k^{\prime}} \frac{\Delta_{k^{\prime}} \alpha \beta}{2 E_{k^{\prime}} \uparrow}$
i.e. gap eqns. For different matrix element $\Delta_{\alpha \beta}$ decoupled

The d-vector notation (unitary states)

Consider e.g. the pair w.f. $F(r: \alpha \beta)$ or its FT $F_{k \alpha \beta}$. For any given \mathbf{k} can find choice of spin axes so that

$$
F_{\alpha \beta}(\boldsymbol{k})=F_{\uparrow \uparrow}(\boldsymbol{k})|\uparrow \uparrow\rangle+F_{\downarrow \downarrow}(\boldsymbol{k})|\downarrow \downarrow\rangle
$$

and from definition of unitary state.

$$
\left|F_{\uparrow \uparrow}(\boldsymbol{k})\right|=\left|F_{\downarrow \downarrow}(\boldsymbol{k})\right| \equiv\left|F_{k}\right|
$$

For 2 particles of $\operatorname{spin} 1 / 2$ state of this form is given by

$$
S=1, \quad \boldsymbol{S} \cdot \boldsymbol{d}=0
$$

$\mathbf{d}=$ real vector up to overall phase in xy-plane making $\angle \frac{1}{2} \arg \left(F_{\uparrow} / F_{\downarrow}\right)$ with y-axis, with magnitude equal to $\left|F_{k}\right|$

$$
\text { i.e. } \boldsymbol{d} \times \boldsymbol{d} *=0
$$

Generalizing to arbitrary reference frame, any unitary phase described by specifying for each $\mathbf{k} \boldsymbol{d}(\boldsymbol{k})$ s.t. $d(\boldsymbol{k}) \times \boldsymbol{d} *(\boldsymbol{k})=0$ Technically, in an arb. reference frame

$$
\boldsymbol{d}(\boldsymbol{k}) \equiv-i \sum_{i=1}^{3} \sum_{\alpha \beta} \quad\left(\sigma_{2} \sigma_{i}\right)_{\beta \alpha} F_{\alpha \beta}(\boldsymbol{k})
$$

In BCS case $\mathbf{d}(\mathbf{k})$ is usually a function only of $\widehat{\boldsymbol{n}}=\boldsymbol{k} /|k| \cong \mathbf{k} / k_{F}$.

