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Helium – the simplest element

(electronically completely inert)

3He – arguably the simplest isotope of helium (does not even form 
diatomic molecules in free space!) (but does have nuclear spin ½)

And yet….  probably more different uses than any other isotope in 
periodic table!

e.g. gas phase:  lung NMR imaging, particle detectors, …
solid phase:  thermal vacancies, Pomeranchuk cooling.

nuclear magnetic phase transition…

liquid phase: this talk!
realized in bulk since ~1950  (68 years)
since 1972, superfluid (46 years)

This talk:

1. brief reminders re Cooper pairing in (classic) superconductors 
(BCS theory)

2. Cooper pairing in superfluid 3He

3. Some idiosyncrasies of uniform superfluid 3He: superfluid 
amplification  (mixture of old and new) 

4. A metallic cousin of superfluid 3He (SRO)

5. Some idiosyncracies of inhomogeneous 3He/SRO
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Electrons in Metals (BCS):

Fermions of spin ½,

 strongly degenerate at onset of superconductivity

Normal state: in principle described by Landau Fermi-liquid theory, but 
“Fermi-liquid” effects often small and generally very difficult to see.

BCS: model normal state as weakly interacting gas with weak “fixed” 
attractive interaction

Superconducting state: Cooper pairs form, i.e. :

2-particle density matrix has single macroscopic (~N) 
eigenvalue, with associated eigenfunction

“wave function of Cooper pairs”

in words: a sort of “Bose condensation of diatomic (quasi-) molecules” = 
a macroscopic number of pairs of atoms are all doing the same thing at 
the same time (“superfluid amplification”)
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STRUCTURE OF COOPER-PAIR WAVE FUNCTION
(in original BCS theory of superconductivity, for fixed R, 1, 2)

Energy gap
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________________________

In original BCS theory of superconductivity,

“Number of Cooper pairs” (No) = normalization of F(r)

spin singlet        orbital s-wave

 PAIRS HAVE NO “ORIENTATIONAL”
DEGREES OF FREEDOM

(stability of supercurrents, etc.)

   
 

2 2

2

2

0

2

4

1

1 0

0

1  


 
4contrast: in He

F

F F

Nd ~N /E ~

N /N~ %

N
E k

|F | r ~r

     21 1 2 1 2

1
2

FF :     rr



NW 6

HAS ORIENTATIONAL DEGREES OF FREEDOM!

THE FIRST ANISOTROPIC COOPER-PAIRED SYSTEM: 

SUPERFLUID 3HE

2-PARTICLE DENSITY MATRIX 2

still has one and only one  macroscopic 
(~N) eigenvalue
 can still define “pair wave 
function” F(R,r:s1s2 )
However, even when ,  F F R

 2 2F  r

(i.e. depends nontrivially on               .)1 2
ˆ  r,

A

B

N

solid



P

T 3mK

also fermions of spin ½

 again, strongly degenerate at onset of superfluidity, but
also strongly interacting.

 low-lying states (inc. effects of pairing) must be
described in terms of Landau quasiparticles. 
(and Fermi-liquid effects v. impt.)

3 31 , 10 / 10F c C FT K T K T T   

Standard identifications (from spin susceptibility, ultrasound absorption, 
NMR… plus theory):

In both A and B phases, Cooper pairs have 1S 
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A phase (“ABM”)

     1 1 2
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Spin triplet

char. “spin axis”
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Properties anisotropic in orbital and spin space separately,

e.g.

char. “orbital axis”

  nodes atK o
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violates both P and T!

or with different choice of axes.
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B phase (“BW”)

For any particular direction     (in real or k-space) can always 
choose spin axis s.t.

i.e.              :

n̂

   1 2 1 2 1 2

1
2

ˆF : ~ ˆ     n
d

 ˆ ˆ ˆd d n

Original “theoretical” state had                 i.e. spin of every pair

opposite to orbital angular momentum (3Po state).

  ˆ ˆ ˆ,d n n

Real-life B phase is 3Po state “spin-orbit rotated” by 104o.

Note: rotation (around axis      ) breaks P but not T

Orbital and spin behavior individually isotropic, but: properties involving 
spin-orbit correlations anisotropic!

̂

ext  field inversion time reversalo H

L=S=J=O    because of dipole force        cos-1(-1/4)=o



NW 9

SPIN-ORBIT : ORDERING MAY BE SUBTLE

NORMAL PHASE

A B

 ORDERED PHASE

= total spin of pair

= relative orbital
ang. momentum) S = L = 0

but L  S  0!
out of screen

S2  0 (but S=0), 
L 0 (        )

Dipole energy depends on relative angle of  and   determines
(A phase)  or     (B phase)ˆ ˆd  𝜃

𝜃
𝜃

d ||

𝜃
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How to “see” the exotic nature of the pairing?

Example*: Spontaneous violation of P- and T-symmetry in A phase
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(run  2)(run  1)

𝓵 in 𝓵 out

Intrinsic Magnus force:

(Somewhat) unexpected effect: magnetic field can orient 
𝓵 – vector “in” or “out”!
indicates coupling of 𝓵 to field, i.e. 3He is a weak orbital ferromagnet, 
with magnetic moment along ( ) 𝓵.

But…. 3He atoms are neutral! How can this be?

*H. Ikegami et al., Science 341, 59 (2013)
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Weak ferromagnetism in 3He – A*

Known effect in chemical physics†: rotation even of homonuclear
diatomic molecule gives rise to magnetic moment!



/

but:
Coulomb,
vdW

“chemical”
M = 0

neutral

neutral




Even in covalent homonuclear diatomic 
molecules, (e.g. 2C12) very tiny effect, 
moreover falls off exponentially with r:

r

     2     molr , r P r r dr

distribution of radial prob.

In free space, 2 3He atoms do not even form a 
bound state! For Cooper pair, vast bulk of

lies at 
2

P r F(r)
1 o Fr a ,k

*AJL, Nature 270, 585 (1977): Paulson & Wheatley, PRL 40, 557 (1978)
†GC Wick, Phys. Rev 73, 51 (1948)

Hence, for single Cooper pair calculate (lots of exotic chemical physics!)
(almost certainly immeasurably small). Certainly, in N phase 

completely unobservable.

What saves us is the principle of superfluid amplification – all Cooper 
pairs do same thing at same time! As a result, estimate effective equivalent 
field                                                      Paulson et al. find circumstantial 
evidence for spontaneous field of just this o. of m.

1110  
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More spectacular (but less direct) example of superfluid 
amplification: NMR
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One more proposed* (but so far unrealized!) example of superfluid 
amplification:

P-(but not T-) violating effects of neutral current part of weak 
interaction: 
For single elementary particle, by Wigner-Eckart theorem, any EDM    
must be of form

But for 3He – B, can form

const. d = J

𝑑

 violates T as well as P.

const. L S~ const. ˆd ~ 


violates P but not T.

Effect is tiny for single pair, but since all pairs have same value of
, is multiplied by factor of  ~10-23 L S

macroscopic P-violating effect?

(maybe in 10-20 years… )

Calculation involves factors similar to that of A-phase ferromagnetism 
(lots of even more exotic chemical physics!):

*AJL, PRL 39, 587 (1977)

S

L
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A putative metallic cousin of 3He-A: Sr2RuO4

(single layer strontium ruthenate, “SRO”)

-Strongly layered material, structure similar to 
cuprates with RuO2 planes replacing CuO2.

Side view
Ru O

Sr

-Normal state fairly conventional (unlike cuprates)
-Superconducting at ~1 · 5 𝐾, strongly type - II.

The $64K question:
What is symmetry of Cooper pairs in 𝑆 state?

Top viewRu  O
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-lots of (partially mutually inconsistent)
experimental information (sp. ht., ARPES, 𝜇𝑆𝑅,
Josephson…), but most plausible conclusion* is 

spin triplet, 𝑝 𝑖𝑝

If so, then prima facie analogous to A phase of 
superfluid 𝐻𝑒, but important differences:  

(1)  charged system

2 both 𝒅 and ℓ vectors can be pinned by
lattice.

Nevertheless, some important issues arising in 
3He-A have analogs in Sr2RuO4 which can be more 
easily addressed experimentally there. This mostly 
refers to inhomogeneous phenomena . . .

* C. Kallin, Reps. Prog. Phys. 75, 042501(2012)
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Some (nearly) unique features of spatially inhomogeneous 3He-A / SRO

Recall: pair wave function is spin triplet, so a more general form is

     
 
f fr r

Ordinary vortices                                                         well known to occur in 

both 3He-A and SRO (extreme type-II)

But can also contemplate half-quantum vortex

const., i.e. vortex in  spins, none in )

HQV’s            should be stable in 3He-A under appropriate conditions

(e.g. annular geom., rotation at                                                )

sought but not found: (in bulk: some recent evidence for 
3He in aerogel)

     
 

 f f x iyr r

      
 

f x iy , fr r


f

Ideally, would like 2D superconductor with pairing in triplet state.  
Does such exist?  Well, hopefully SRO…

does not need to be p+ip)

2  c / ,
22 c / mRћ
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So HQV’s intrinsically disadvantaged in Sr2RuO4.

Nevertheless Jang et al. (Budakian group, UIUC 2012) find 
strong evidence for single HQV’s!

Why not found in 3He-A?

Can we generate HQV’s in Sr2RuO4?

Problem:

in neutral system, both ordinary and HQ vortices have 1/r 
flow at ∞ ⇒HQV’s not specially disadvantaged. But in 
charged system (metallic superconductor), ordinary 
vortices have flow completely screened out for 𝑟 ≳ 𝜆 by 
Meissner effect. For HQV’s, this is not true:

London
penetration 
depth

L L
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More unique features of inhomogeneous 3He-A and 
SRO: 
(2) ang. momentum and surface currents. 

Recall: almost all experimental properties of a 
degenerate Fermi system, either 𝑁 or 𝑆, are determined 
by the states near the Fermi surface. In particular, in the 
𝑆 state they are determined by the form of the Cooper 
pair wave function 

𝐹 𝑹: 𝒓, 𝜎, 𝜎 ≡ 𝜓 𝑹 𝒓 , 𝜎 𝜓 𝑅 𝒓 2⁄ , 𝜎

For the 𝑆 state of both 𝐻𝑒 𝐴 and 𝑆𝑅𝑂, the form 
of 𝐹 which seems to give best agreement with 
experiment for homogeneous case  𝐹 𝐹 𝑅 is 

𝐹 𝒓: 𝜎𝜎 |⇈⟩ 𝑒 |⇊⟩ 𝑓 𝒓

𝑓 𝒓 𝒙 𝑖𝒚 𝑓 𝑟

or in Fourier-transformed form for 𝑝~𝑝

𝐹 𝑐𝑜𝑛𝑠𝑡. 𝑝 𝑖𝑝                𝑝 𝑖𝑝

This appears prima facie to correspond to an angular 
momentum of ℏ/Cooper pair. 
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However, to obtain the total angular momentum of 
the system we need the complete many-body wave 
function. What is this? For infinite system (unrealistic),

Standard answer: (ignore spin degree of function
and normalization) 

Ψ 𝐶 𝑎 𝑎   

/

|𝑣𝑎𝑐⟩.
𝑁 2⁄ pairs in 
vacuum

≡ 𝑘 𝑖𝑘
𝐶 �̂� 𝑘 exp 𝑖𝜑

This corresponds to total a.m. Nℏ 2,⁄ i.e. angular 
momentum ℏ 2⁄ per atom (states of all 𝑘 contribute, not 
just those within ~∆ of Fermi energy!) 

In real life, need to consider system in finite container 
(e.g. long thin cylinder). What is 𝑳 ? 

Theory:  45-year old chestnut! 𝑜 𝑁ℏ ,
𝑜𝑁ℏ ∆ 𝜖⁄ , 𝑜 𝑁ℏ Δ 𝜖⁄ , 0 …

Majority opinion is probably ~𝑁ℏ.
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What about experiment? 

As of now , no direct measurement of 𝐿 for either 
𝐻𝑒 𝐴 or 𝑆𝑅𝑂.

However, a somewhat related 
phenomenon is edge currents: as 
in ferromagnet, lack of 
compensation near surface 
should lead to observable 
current 

vacuum
𝑆𝑅𝑂

For 𝐻𝑒 𝐴 this would be a mass current ⟹
difficult to observe.  But for 𝑆𝑅𝑂, it is an electric 
current and should produce an observable magnetic field 
 𝐻 outside surface. 

Matsumoto & Sigrist ’99, and many subsequent 
authors: calculations based on BdG equations give 𝐻~ a 
few 𝐺.

Experiments (several groups): upper limit ~1 mG! ⟹
serious problem for “standard” description. 

Bogoliubov-de Gennes
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One possible approach: The Cooper-pair wave function 
may not uniquely determine the many-body wave function! 

e.g. to get 𝐹 𝑘 ≡ 𝑎 𝑎 ~const. exp 𝑖𝜑  for 𝑘~𝑘 , 
the “standard” ansatz  

Ψ ~ 𝑐 𝑎 𝑎 |𝑣𝑎𝑐⟩, 

may not be unique. Instead of creating ⁄ pairs on 
vacuum, how about starting from normal Fermi sea and 
kicking pairs from below Fermi surface to above over 
range ~∆≪∈ ?

This certainly gives same form of 𝐹 𝑘 as standard 
approach, but gives 𝐿 ~𝑁ℏ ∆ 𝐸⁄ ≪ 𝑂 𝑁ℏ .

The $64K question: does it yield same BdG
equations as standard approach?

𝑐 ~𝑒
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Then, mean-field (BdG) Hamiltonian is schematically of form

Bogoliubov-de Gennes

𝑑𝑟 𝐾 𝑟 𝜓 𝑟 𝜓 𝑟
1
2

𝑑𝑟 𝑑𝑟 Δ 𝒓, 𝒓 𝜓 𝑟 𝜓 𝑟 𝐻𝐶

bilinear in 𝜓 𝑟 , 𝜓 𝑟 :

(with a term 𝜇𝛿 included in 𝐾 𝑟 to fix average particle 
number 𝑁 .) 𝐻 does not conserve particle number, but does 
conserve particle number parity, so start from even-parity state.

 𝐻

More oddities of inhomogeneous 3He-A/SRO:
(3) Majorana fermions

In S state, introduce notion of spontaneously broken U(1) symmetry
⇒ particle number not conserved ⇒ (even-parity) GS of form

Ψ 𝐶 Ψ

⇒ quantities such as 𝜓 𝑟 𝜓 𝑟 can legitimately be nonzero.

SBU(1)S
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Interesting problem is to find simplest fermionic 
(odd-parity) states (“Bogoliubov quasiparticles”).  
For this purpose write schematically (ignoring 
(real) spin degree of freedom)

𝛾 𝑢 𝑟 𝜓 𝑟 𝜐 𝑟 𝜓 𝑟 𝑑𝑟 ≡
𝑢 𝑟
𝜐 𝑟 ←

“Nambu
spinor”

and determine the coefficients 𝑢 𝑟 , 𝜐 𝑟 by 
solving the Bogoliubov-de Gennes equations 

𝐻 , 𝛾 𝐸 𝛾

so that

𝐻 𝐸 𝛾 𝛾 const.
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(All this is standard textbook stuff…)

Note crucial point:   In mean-field treatment, fermionic 

quasiparticles are quantum superpositions of particle and 

hole ⇒ do not correspond to definite particle number 

(justified by appeal to SBU(1)S).  This “particle-hole 

mixing” is sometimes  regarded as analogous to the 

mixing of different bands in an insulator by spin-orbit 

coupling.  (hence, analogy: topological insulator  ⇄

“topological superconductor”.)
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Majoranas – basic element in topological quantum computer?

Recap: fermionic (Bogoliubov) quasiparticles created by 
operators

𝛾 𝑑𝑟 𝑢 𝑟 𝜓 𝑟 𝜐 𝑟 𝜓 𝑟

with the coefficients 𝑢 𝑟 , 𝜐 𝑟 given by solution of the BdG
equations

𝐻 , 𝛾 𝐸 𝛾

Question: Do there exist solutions of the BdG equations such 
that

𝛾 =𝛾 (and thus 𝐸 0)?

This requires (at least)

1. Spin structure of 𝑢 𝑟 , 𝜐 𝑟 the same ⇒ pairing of 
parallel spins (spinless or spin triplet, not BCS s-wave)

2. 𝑢 𝑟 𝜐∗ 𝑟

3. “interesting” structure of Δ 𝒓, 𝒓 ~𝐹 𝑟, 𝑟 , 𝜎, 𝜎 , 

e.g. “𝑝 𝑖𝑝” Δ 𝒓, 𝒓′ ≡ Δ 𝑹, 𝑝 ~Δ 𝑅 𝑝 𝑖𝑝
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* D. A. Ivanov, PRL 86, 268 (2001)
‡ Stone & Chung, Phys. Rev. B 73, 014505 (2006)

Case of particular interest: “half-quantum vortices” (HQV’s) in 3He-
A or Sr2RuO4 (widely believed to be 𝑝 𝑖𝑝 superconductor). In 
this case a M.F. predicted to occur in (say) ↑↑ component, (which 
sustains vortex), not in ↓↓ (which does not). Note that vortices 
always come in pairs (or second MF solution exists on boundary). 
Also, surfaces of 3He-B in certain geometrics.

Why the special interest for topological quantum computing?

(1) Because MF is exactly equal superposition of particle and 
hole, it should be undetectable by any local probe.

(2) MF’s should behave under braiding as Ising anyons*:
if 2 HQV’s, each carrying a M.F., interchanged, phase of 
MBWF changed by /2 (note not  as for real fermions!)

So in principle‡:

(1) create pairs of HQV’s with and without MF’s

(2) braid adiabatically

(3) recombine and “measure” result

⇓
(partially) topologically protected quantum computer!
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Comments on Majorana fermions (within the standard 
“mean-field” approach)

(1) What is a M.F. anyway?

Recall: it has energy exactly zero, that is its creation 
operator 𝛾 satisfies the equation

𝐻, 𝛾 0

But this equation has two possible interpretations:

(a) 𝛾 creates a fermionic quasiparticle with exactly zero 
energy (i.e. the odd- and even-number-parity GS’s are 
exactly degenerate)

(b) 𝛾 annihilates the (even-parity) groundstate (“pure 
annihilator”)

However, it is easy to show that in neither case do we have 
𝛾 𝛾 . To get this we must superpose the cases (a) and 
(b), i.e.

a Majarana fermion is simply a quantum superposition 
of a real Bogoliubov quasiparticle and a pure annihilator.
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𝛾 𝛾

HQV
1

HQV
2

Bog. qp. 𝛼 ≡ 𝛾 𝑖𝛾

The curious point: the extra fermion is “split” 
between two regions which may be arbitrarily far 
apart! (hence, usefulness for TQC) 

Thus, e.g. interchange of 2 vortices each carrying 
an MF ~ rotation of zero-energy fermion by . (note 
predicted behavior (phase change of /2) is 
“average” of usual symmetric (0) and antisymmetric 
() states)

But Majorana solutions always come in pairs ⇒ by 
superposing two MF’s we can make a real zero-energy 
fermionic quasiparticle
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An intuitive way of generating MF’s in the KQW:

Kitaev quantum wire

y g

X j

0 n − 1

↑ ↑
M F1 M F2

For this problem, fermionic excitations have form

𝛼 𝑎 𝑖𝑎 𝑎 𝑖𝑎

so localized on links not sites. Energy for link 𝑖, 𝑖 1 is 𝑋

𝑖 1𝑖
𝑋 → 0

𝑋
↑

X 0 → 0

0 n − 1

So far, circumstantial experimental evidence for MF’s in 3He-B: 
none in 3He-A or SRO. (Rather stronger evidence in artificial 
systems, e.g. InAs nanowire on Pb.)
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Majorana fermions: beyond the mean-field approach

Problem: The whole apparatus of mean-field theory rests 
fundamentally on the notion of  SBU(1)S  spontaneously 
broken U(1) gauge symmetry:

Ψ ~ 𝐶 Ψ 𝐶 ~ 𝐶 𝑒

Ψ ~ 𝑑𝑟 𝑢 𝑟 𝜓 𝑟 𝜐 𝑟 𝜓 𝑟 |Ψ ⟩ ≡ 𝛾 |Ψ ⟩

But in real life condensed-matter physics,

SB U(1)S IS A MYTH!!

This doesn’t matter for the even-parity GS, because of 
“Anderson trick”:

Ψ ~ Ψ 𝜑 exp 𝑖𝑁𝜑 𝑑𝜑

But for odd-parity states equation (  *  ) is fatal!  Examples:

(1) Galilean invariance

(2) NMR of surface MF in 3He-B 

*



NW 31

𝛾 𝑑𝑟 𝑢 𝑟 𝜓 𝑟 𝜐 𝑟 𝜓𝐶

This doesn’t matter, so long as Cooper pairs have no 
“interesting” properties (momentum, angular momentum, 
partial localization...)

But to generate MF’s, pairs must have “interesting” 
properties!

⇒ doesn’t change arguments about existence of MF’s, but 
completely changes arguments about their braiding, 
undetectability etc.

May need completely new approach!

creates extra Cooper pair
We must replace ( *  ) by


