SUPERFLUID ³HE: SOME PRE-HISTORY

⁴He: below 2K, superfluid

Particles of spin $\frac{1}{2}$ \Rightarrow Fermi statistics

Landau (1957): interactions don't change picture qualitatively (in "normal" phase) ("degenerate Fermi liquid")

$$T_F \sim 10^4 - 10^5 \, \mathrm{K}$$
 $T_F \sim 5 \, \mathrm{K}$ at $T \lesssim 20 \, \mathrm{K}$. at $T \lesssim 10^{-3} \, \mathrm{K}$. superconductivity (in some metals)

MORE PREHISTORY

Theory of superconductivity:

(a) phenomenological (V. L. Ginzburg, A. A. Abrikosov, et al., 1950-1955):

macroscopic wave function

(b) microscopic (Bardeen et al., 1957): temp., $\lesssim 20 \mathrm{K}$ electrons in energy shell of width $\sim k_B T_C$ around Fermi energy form Cooper pairs

critical

Crucial feature of BCS theory: ALL COOPER PAIRS MUST BEHAVE IN EXACTLY THE SAME WAY!

(GL "macroscopic wave function" is just the **common** center-of-mass wave function of all the pairs)

In BCS theory, "internal" wave function of pairs trivial: (" ¹S_o")

$$\psi \text{ } (\underline{r}_1\underline{r}_2 : \sigma_1\sigma_2) \sim \frac{1}{\sqrt{2}} \text{ } (\uparrow_1 \downarrow_2 - \downarrow_1 \uparrow_2) \text{ } f \text{ } (|\underline{r}_1 - \underline{r}_2|)$$
 spherically symmetric spin singlet
$$(\ell = 0)$$

NO INTERNAL ("ORIENTATIONAL") DEGREES OF FREEDOM

EARLY THEORETICAL WORK ON POSSIBLE COOPER PAIRING IN LIQUID ³HE

$$r \sim r_0, \ p \sim p_F \ (\equiv \sqrt{2mk_BT_F} \)$$

 \Rightarrow relative angular momentum
 $\ell \equiv (p_F r_0 / \ \hbar) \neq 0$
(prob. 1 or 2)

Pauli principle:
$$\begin{cases} \ell = 0, 2, 4... & S = 0 \text{ (singlet)} \\ \ell = 1, 3, 5... & S = 1 \text{ (triplet)} \end{cases}$$

in general, $\ell \neq 0 \Rightarrow$ relative (internal) wave function of pair has orientational degree(s) of freedom! "equal spin pairing"

Anderson & Morel (1961): explore in detail case $\ell = 2$, and a special case of $\ell = 1$: only $\uparrow \uparrow$ and $\downarrow \downarrow$ pairs form, and have the same orbital ang. momentum in direction $\hat{\ell}$ ("ABM" state) Physical properties anisotropic.

Vdovin
Balian & Werthamer (1963): in $\ell = 1$ case all spin components

($\uparrow \uparrow, \downarrow \downarrow, \frac{1}{\sqrt{2}} \uparrow \downarrow + \downarrow \uparrow$)) can form: in fact for any given pair, $L = -S \Rightarrow J = 0$.

("BW" state). All physical properties isotropic. More stable than any ESP state.

Theoretical expectation c. 1964:

Liquid ³He may form Cooper pairs, either with ℓ = even (spin singlet) or with ℓ = odd (BW state). In either case, χ reduced and all magnetic properties isotropic. T_c difficult to predict.

THE EXPERIMENTS OF 1971-72 (D. D. Osheroff, R. C. Richardson, D. M. Lee...(Nobel prize 1996)):

Mixture of liquid and solid 3 He, T < 3 mK. (so only temperature varied).

In N state:

χ independent of temperature, value as expected for degenerate Fermi liquid

Absⁿ shows v. sharp peak at free-atom Larmor frequency: $\omega_{res} = \gamma H_{ext}$ gyromagnetic ratio of free ³He atom, ~ 3000 Hz/G

NMR in the new phases:

Not necessarily mysterious: e.g. A phase could be an ESP state (only $\uparrow\uparrow,\downarrow\downarrow$ pairs \Rightarrow no reduction in χ), B could be singlet or BW (some $\uparrow\downarrow$ pairs, so χ reduced) [but: why is ESP ever stable?] -

But: what about the resonance frequency?

IS THIS THE FIRST INDICATION OF A RADICAL BREAKDOWN OF QUANTUM MECHANICS?

WHAT CAN BE INFERRED FROM SUM RULES?

IF a single sharp resonance is observed (as in expt.) then:

But
$$\partial^2 \langle H_D \rangle / \partial \theta^2 \sim \langle H_D \rangle$$
:
So, exptl. value of ω_0^2 (T) \Rightarrow

$$\langle H_D \rangle$$
 (T) ~ K(1 - T/T_A), K ~ 10⁻³ ergs/cm³

HOW CAN THIS BE?

$$\begin{cases} \uparrow \text{ ("bad")} & \uparrow \\ \rightarrow \text{ ("good")} & \rightarrow \end{cases}$$

$$\Delta E \lesssim \frac{\mu_o \mu_n^2}{\frac{3}{r_o^2}} \sim 10^{-7} \text{ K } \ll k_B T$$

So, prima facie, preference for "good" orientation over "bad" is at most

$$\sim \Delta E/k_BT \sim 10^{-4}$$
 [actually, $\sim \Delta E/k_BT_F \sim 10^{-7}$]

⇒ expectation value of dipole energy much too small!

SPONTANEOUSLY BROKEN SPIN-ORBIT SYMMETRY

Ferromagnetic analogy:

FERROMAGNET

$$\stackrel{\wedge}{H}=\stackrel{\wedge}{H_o}+\stackrel{\wedge}{H_z}$$

1

invariant under simult. rotation of all spins

extl. field
$$\hat{H}_z = -\mu_B \mathcal{H} \sum_i S_{zi}$$
 breaks spin-rot. symmetry

Paramagnetic phase (T > T_c): spins behave independently, kT competes with $\mu_B \mathcal{H} \Rightarrow$ polarization $\sim \mu_B \mathcal{H}/kT \ll 1 \Rightarrow$ $<H_z> \sim N(\mu_B \mathcal{H})^2/kT$

Ferromagnetic phase (T < Tc): \dot{H}_o forces all spins to lie parallel $\Rightarrow k_B T$ competes with $N\mu_B \mathcal{H}$ $\Rightarrow \langle S_z \rangle \sim 1 \Rightarrow \langle H_z \rangle \sim N\mu_B \mathcal{H}$

LIQUID 3HE

$$\overset{\,\,{}_{}}{H}=\overset{\,\,{}_{}}{\overset{\,\,{}_{}}{H}}{}_{o}+\overset{\,\,{}_{}}{H}{}_{D}$$

invariant under <u>relative</u> rotation of spin + orbital coordinate systems

$$= \mu_o \mu_n^2 / r_o^3$$

$$\hat{H}_D = g_D \sum_{ij} \left(\frac{g_i \cdot g_j - 3g_i \cdot \hat{\underline{r}}_{ij} g_j \cdot \hat{\underline{r}}_{ij}}{(r_{ij}^3 / r_o^3)} \right)$$

breaks relative spin-orbit rot." symmetry

Normal phase $(T > T_A)$:

pairs of spins behave

independently \Rightarrow polarization $\sim g_D/kT \ll 1 \Rightarrow$ $< H_D > \sim N g_D^2/kT$

Ordered phase $(T < T_A)$: H_o forces all pairs to

behave similarly \Rightarrow kT competes with Ng_D $\Rightarrow <H_D> \sim Ng_D$ $\sim 10^{-3} \text{ ergs/cm}^{3}$!

SBSOS: ORDERING MAY BE SUBTLE

LIQUID 3HE **FERROMAGNET NORMAL PHASE** ORDERED **PHASE** (\nearrow = total spin of pair = relative orbital ang. momentum) $\langle S \rangle = \langle L \rangle = 0$ $\langle \mathbf{S} \rangle \neq 0$ but $\langle L \times S \rangle \neq 0!$

RESOLUTION OF THE PARADOX OF TWO NEW PHASES.

(Anderson & Brinkman, Phys. Rev. Letters 30, 1108 (1973))

In BCS (weak-coupling) theory for $\ell=1$, BW phase is always stable, independently of pressure and temperature.

Crucial difference between Cooper pairing in superconductors and ³He

⇒ "feedback" effects: Over most of the phase diagram, BW state stable as in BCS theory. But at high temperature and pressure, feedback effects uniquely favor ABM phase.

major qualitative leap beyond BCS!

MICROSCOPIC SPIN DYNAMICS (SCHEMATIC)

Basic variables:

Total spin S (a)

(b)

$$\label{eq:continuous} \text{Orientation } \underbrace{\emptyset} \text{ of spin of Cooper pairs} \qquad \left\{ \begin{aligned} [S_i,\,\theta_j] &= i\delta_{ij} \end{aligned} \right.$$

$$\hat{\mathbf{H}} = \hat{\mathbf{H}}_{o}(\mathbf{S}) + \hat{\mathbf{H}}_{D}(\mathbf{\theta})$$

$$\uparrow$$

hydrodynamic (Born-Oppenheimer) approximation

Semiclassical equations of motion:

dipole torque

$$\frac{d \underbrace{\theta}}{dt} = \frac{\partial < \dot{H}_o>}{\partial \underbrace{S}} = \mathcal{H}_{ext} - \chi^{-1} \underbrace{S}, \qquad \frac{d \underbrace{S}}{dt} = \underbrace{S} \times \mathcal{H}_{ext} - \frac{\partial < \dot{H}_o>}{\partial \underbrace{\theta}}$$

⇒ linear NMR behavior completely determined by eigenvalues of quantity

$$\Omega_{ij}^2 \equiv \partial^2 \langle H_D \rangle / \partial \theta_i \partial \theta_j$$
 So, can Tingerprint A and B phases by

so, can "fingerprint" NMR!

ABM: single resonance line

axial: split resonance

BW: original BW state is $\underline{L} = -\underline{S}$, i.e. J = 0. But dipole torque rotates S relative to L by $\angle \cos^{-1}(-1/4) = 104^{\circ}$ around axis $\hat{\omega}$ whose "best" choice is $\mathcal{H}_{\rm ext}$.

Result: no shift in transverse resonance, but finite-frequency longitudinal resonance! \mathcal{H}_{ext} (also in ABM phase)

CONCLUSION (by summer of 1973):

Both a priori stability considerations and NMR experimental data are consistent with hypothesis that both new phases are Cooper-paired ("superfluid") phases. Specifically,

```
A phase = ABM
B phase = BW
```

What is superfluid ³He good for?

- (a) most sophisticated physical system of which we can claim detailed quantitative understanding. E.g. textures, orientational dynamics, topological singularities...
- (b) analogies with systems in particle physics, cosmology... (G. E. Volovik)
- (c) studies of (some aspects of) turbulence
- (d) Amplification of ultra-weak effects (cf NMR): Example: P- (but not T-) violating effects of neutral current part of weak interaction:

For single elementary particle, any EDM d must be of form

$$\underline{d} = \text{const. } \underline{J} \leftarrow \text{violates T as well as P.}$$

violates P but not T.

Effect is tiny for single pair, but since all pairs have same value of $\mathbb{L} \times \mathbb{S}$, is multiplied by factor of $\sim 10^{23} \Rightarrow$

macroscopic P-violating effect?