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QUANTUM SYSTEM(S) INTERACTING  

   WITH GENERAL ENVIRONMENT (E)  

(Note:  by definition of “E”, we are not interested  
in it in its own right but only for its effects on S) 

General prescription: 

eliminate environmental and coords  { 𝜉 } to  
find effective description of S. 
 
     Feynman & Vernon (1963): for linearly dissipative   
system, model E by bath of simple harmonic oscillators with 
coupling  linear in both oscillator and system coordinates, i.e.    
 

𝐻 𝑒  =  𝑝𝛼
2/2𝑚𝛼 + 

1

2
𝑚𝛼𝜔𝛼

2𝑥𝛼
2

𝛼

 − C. T.  

                                                                                              ↑ 
                                 counter term 

         𝐻 𝑆𝐸= −𝑞 𝐶𝛼𝑥𝛼
2

𝛼

 

    Note:  linear response of SHO identical in classical  
     + quantum mechanics!         can integrate  out  
     oscillators  exactly.  

𝐻 ≡ 𝐻 𝑠 + 𝐻 𝑒 +𝐻 𝑠𝑒  . Ψ ≡ Ψ(q, 𝜉  ) 

S E 
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        Γ𝑐ℓ  = 𝜔𝑐ℓ (𝜂) exp− 𝑉𝑂/𝑘𝐵𝑇         [Kramers, 1941] 
                  
           
       Γ𝑄𝑀   = 𝜔𝑄𝑀  𝜂 exp− 𝑆(𝜂)/ℏ          

                         WKB                     depends on 𝜂     
       S(𝜂)  = 𝑆𝑂 + ∆𝑆 𝜂  

      ∆𝑆 𝜂 ~𝜂∬ 𝑑𝑡𝑑𝑡′
𝑞 𝜏 −𝑞 𝑇′

𝜏−𝜏′

2
 

           q(t) = “instanton”  trajectory 
          

thus to order of magnitude 

Δ𝑆(𝜂)~𝜂(Δ𝑞) 2 ℏ  

ohmic dissipation always tends to suppress quantum 
Tunneling.  
 
Question : Why does dissipation affect only prefactor in 
thermal activation, but exponent in quantum tunnelling? 

∙- - - - > - - - - - > 

Δ𝑞 

Vo 

AO Caldeira and AJL (1981): Apply FV technique to 
problem of quantum tunnelling of macroscopic variable 
(e.g. phase of Josephson junction) out of metastable well 
 

V(q)  

𝑞  

problem:  how is escape rate affected by term - 𝜂𝑞  
in classical equation of motion? 
 

    To discuss this need to relate Ca’s in FV description to h: 
 

             𝐶𝛼
2/ 𝑚𝛼𝜔𝛼 𝛿𝛼  (𝜔 − 𝜔𝛼) ≡ 𝐽 𝜔 = 𝜂𝜔  

 

     Then find: 

“ohmic”  
dissipation 

Friction 
coeff 

depends on h  

independent of h 
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Why does ohmic dissipation (𝐹𝑓𝑟 ∝ 𝑞 ) affect only 

the prefactor of the Gibbs – Arrhenius (thermal) formula but  
the exponent of the WKB (quantum) formula? 
 
   Activation/tunnelling in many-dimensional 𝑞, 𝑥𝛼  space: 
 
 
 
 
 
 
 
 
 
 
(a) 𝜂 = 0⟹ 𝑐𝛼=0 : escape straight (b)  𝜂 ≠ O ⟹ 𝑐𝛼 ≠ O: 
      along q-axis, no effect of bath.                 escape through S 
 

Critical point:  in presence of coupling  −𝑞  𝐶𝛼𝑥𝛼𝛼 − 𝐶. 𝑇. , 
 
saddlepoint  S is shifted off q-axis, but occurs at same value 
of q and has same height as in absence of coupling.  Now, 
 

   Gibbs-Arrhenius exponent = VO/kBT,  i.e. function only of height 
of S. 

   WKB exponent =  2 𝑚𝑉 𝑥 𝑑𝑥/ℏ~ 𝑉𝑂ℓ ← length of path to S. 

  VO is unaffected by  𝜂, but ℓ is increased 
       ⟹GA exponent unchanged, WKB exponent increased! 
       (seems consistent with experiments on Josephson junctions) 

S 

O O 
q 

q 

S 
> 

X 
a 

X 
a 

⟹ 
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C L result can be applied to 
 current-biased Josephson junction 
(“phase qubit”) provided  
𝑞 → Δ𝜑         C. pair phase drop 
 and particle “mass” → capacitance C.  

 But some problems: 
(a) Is it legitimate to start from classical equation of motion of  
      Δ𝜑(𝑡) (whose whole meaning is quantum mechanical ) and  
    “re-quantize”? (“Can we quantize the equations of  
     mathemathical economics?”) 
(b) Not everyone happy about  insertion “by hand” of counter term. 
  ____________________ 
 

Ambegaokar, Eckern, Schön (1982):  
    Consider fully microscropic model of CBJ, with bulk and tunnelling 
Hamiltonians expressed in terms of fermion operators 𝜓(x). 
Use HS transformation to eliminate 𝜓’s in terms of gap (order) 
parameters Δ1, Δ2:  df Δ𝜑 ≡ arg(Δ1/∆2) ...  Then express extra term 
 in action in terms of Δ𝜑 𝑡 : 
 

                  ∆𝑆 ~∬𝑑𝜏 𝑑𝜏′𝛼 𝜏 − 𝜏′ 𝑠𝑖𝑛2 Δ 𝜑 𝜏 − ∆𝜑(𝜏′)  
 

                   𝛼(𝜏 − 𝜏′) ∝ (𝜏 − 𝜏′)−2  for |𝜏 − 𝜏′|  → ∞.    
 

For ∆𝜑 𝜏 → 0,  recover osciliator-bath result, but more general.  
(as it must be: Δ𝜑 is periodic with period 2𝜋) 
      
Suggests that in general may be necessary to generalize FV scheme 
by  
                            −𝑞 𝐶𝛼𝛼 𝑥𝛼 →  −𝑓(𝑞) 𝐶𝛼𝛼 𝑥𝛼 

S1 S2 

Δ𝜑 

C 

I 
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HOW GENERAL IS OSCILLATOR-BATH MODEL ? 
 
Any environment  E such that any one degree of freedom is only 
weakly perturbed by the motion of the system S can be mapped, at 
T=0 on to a set of SHO’s, simply by associating each DOF with a 
separate SHO.  Then quite generally  

          𝐻 𝑆  →  𝑝𝛼
2/2𝑚𝛼+

1

2
 𝑚𝛼𝜔𝛼

2𝑥𝛼
2

𝛼   

 
         𝐻 𝑆𝐸 →  𝑥𝛼𝐹𝛼 𝑞, 𝑝 + 𝑝𝛼𝐺𝛼 𝑞, 𝑝𝛼  
 
and can integrate out oscillators exactly to get  
         𝑆𝑒𝑓𝑓 ≡ 𝑆 𝑞, 𝑞: 𝐹𝛼 𝑞, 𝑞 , 𝐺𝛼 𝑞, 𝑞  

but resulting formula may be extremely messy and nonintuitive. 
Special case: adiabatic (Born-Oppenheimer) approximation. In this 
case, 

𝑆𝑒𝑓𝑓 ≡ 𝑆 𝑞, 𝑞: 𝐹𝛼 𝑞  

In this case, correction to uncoupled action is 
 

Δ𝑆 𝑞 𝜏 ~ 
𝐹𝛼 𝑞 𝜏 − 𝐹𝛼 𝑞 𝜏′

2

𝜏 − 𝜏′ 2
𝛼

 

 

while classical energy dissipation is 
 

𝑊 𝑞 𝜏 ~ 
𝜕𝐹𝛼
𝜕𝑞

2

𝛼

𝑞 2 𝜏  

 

Hence, the “naïve” formula (ΔS~ 𝜂 𝑞2/ ℏ) always   
overestimates the effect of friction on quantum effects  
(e.g. tunnelling out of metastable well). 
 

 :   justification for 𝐓 ≠ 𝟎 ? 
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A possibly-not-too-well-known consequence of the OB model: 
 

     FV approach with simple bilinear coupling, i.e. 

𝐻 =
𝑝2

2𝑚
+ 𝑉 𝑞 + 𝑆𝐻𝑂′𝑠 − 𝑞 𝐶𝛼𝑥𝑎 − 𝐶. 𝑇.

𝛼

 

Standard FV result for (real-time) influence functional : 
𝐼 𝑞 𝑡 , 𝑞′ 𝑡 = 
 

𝑒𝑥𝑝 −
1

ℏ
 𝑑𝑡
𝑡𝑓

𝑡𝑖

 𝑑𝑠
𝑡

𝑡𝑖

−𝑖𝐿1 𝑡 − 𝑠 𝑞 𝑡 − 𝑞′ 𝑡 ∙ 𝑞 𝑠 + 𝑞′ 𝑠  

 

+𝐿2 𝑡 − 𝑠 𝑞 𝑡 − 𝑞′ 𝑡 𝑞 𝑠 − 𝑞′ 𝑠  
 

𝐿1 𝑡 ≡  𝑑𝜔𝐽 𝜔 sin𝜔𝑡
∞

0

 

𝐿2 𝑡 ≡  𝑑𝜔𝐽 𝜔 cos𝜔𝑡
∞

0

 𝑐𝑜𝑡ℎ 𝛽𝑡𝑟𝜔/2 

For white noise 𝐽 𝜔 = 𝜂𝜔  this gives a transition amplitude in 
terms of 

𝑥 𝑡 ≡
1

2
𝑞 𝑡 + 𝑞 𝑡′  

 

𝑦 𝑡 ≡ 𝑞 𝑡 − 𝑞 𝑡′  
of the form 

𝐾 𝑞𝑖 → 𝑞𝑓

=  𝒟𝑥 𝑡  𝒟𝑦 𝑡 exp
𝑖

ℏ
 𝑆𝑜 𝑥 𝑡 +

1

2
𝑦 𝑡

− 𝑆𝑜 𝑥 𝑡 −
1

2
𝑦 𝑡 − 𝜂  𝑥 𝑡 𝑦 𝑡 𝑑𝑡

𝑒𝑓

𝑡𝑖

  

 

spectral density 
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Phase of integral stationary for 

𝑀𝑋 + 𝜂𝑋 + 𝜕𝑉/𝜕𝑥=0 classical damped 
equation of motion 

In high-temperature, semiclassical limit can integrate out 𝑦(𝑡) to 
obtain 

𝐾 𝑋 𝑡 ≡  𝒟𝑋 𝑡 𝑒𝑥𝑝 −  𝑀𝑋 + 𝜂𝑋 + 𝜕𝑉/𝜕𝑋
2
/𝜂𝑘𝐵𝑇 

Note no reference to ℏ!  Good starting point for classical 
Brownian motion. 
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THE AWKWARD CASE:  “SATURATION” OF ENVIRONMENTAL  
                           DECREES OF FREEDOM 
 
     If the condition that any one DOF of the environment E is  
only weakly excited breaks down, life may become more 
complicated. In some cases this situation can be handled by the 
Born-Oppenheimer technique, but we still have to make the 
assumption with respect to the BO basis.  What if  even that breaks 
down? 
 
      One clear case of such breakdown appears to be a single electron 
spin interacting with a small number of nuclear spins even in the BO 
basis the nuclear spins may be highly excited.  This specific case can 
be handled with apparent success by the “spin bath” technique of 
Prokofiev & Stamp (2000), but the latter appears to be much less 
generic than the oscillator –bath model.  So, some important 
questions: 
 
     (1) Does there exist a technique of full generality to treat an  
environment whose single DOF’s are strongly perturbed? 
     (2)  In the general case, does there exist an inequality   
relating the quantum effects of the environment to the classical  
dissipation?  In particular, 
     (3) In the general case, can we derive quantitative relations 
between decoherance  and dissipation as we can within the OB 
model? 
 

               (I wish I knew……) 
 
                                 Happy birthday, Uli !            
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