SHANGHAI JIAO TONG UNIVERSITY LECTURE 2 2017

Anthony J. Leggett

Department of Physics
University of Illinois at Urbana-Champaign, USA
and

Director, Center for Complex Physics Shanghai Jiao Tong University

Reminder: the vector potential A(rt) in classical mechanics

The equation of motion of a charged particle in an electric field **E** and magnetic field **B**:

$$m\frac{d\mathbf{v}}{dt} = e(\mathbf{E} + \mathbf{v} \times \mathbf{B})(+\mathbf{F}_{\text{non-em}})$$

How to find H(r, p) s.t.

$$\frac{d\mathbf{r}}{dt} = \frac{\partial H}{\partial \mathbf{p}} , \qquad \frac{d\mathbf{p}}{dt} = -\frac{\partial H}{\partial \mathbf{r}} ?$$

Solution: define $A(\mathbf{r}, t)$ s.t.

$$m{E}(m{r},t) = -rac{\partial m{A}(rt)}{\partial m{t}}$$
 , $m{B}(m{r},t) = m{
abla} imes m{A}(rt)$ (hence $m{
abla} imes m{E} = \partial m{B}/\partial t$) and put

$$H(\mathbf{r}, \mathbf{p}) = (\mathbf{p} - e\mathbf{A}(rt))^{2}/2m \quad (+V_{non-em})$$

This works! [Recall:

$$\frac{dA(rt)}{dt} = \frac{\partial A(rt)}{\partial t} + \boldsymbol{v} \cdot \nabla A, \quad (\boldsymbol{v} \times (\nabla \times A))_{i} = \boldsymbol{v}_{j} \partial_{i} A_{j} - (\boldsymbol{v} \cdot \nabla) A_{i}]$$

$$\text{note:} \quad \boldsymbol{v} \equiv \frac{d\boldsymbol{r}}{dt} = \frac{\partial H}{\partial \boldsymbol{p}} = \frac{1}{\boldsymbol{m}} (\boldsymbol{p} - \boldsymbol{e} A(rt)) \qquad (\neq \boldsymbol{p}/m)$$

so $H(\mathbf{r}, \mathbf{p}) = \frac{1}{2}m\mathbf{v}^2 = \text{kinetic energy (only)! (but expressed in terms of } \mathbf{p} \text{ and } \mathbf{A}).$

Quantum mechanics:

$$p \rightarrow -i\hbar \nabla$$
 so KE is

$$\widehat{\boldsymbol{H}}_{\boldsymbol{K}} = (-i\hbar \boldsymbol{\nabla} - e\boldsymbol{A})^2 / 2m$$

and so, including possible $V_{non-em} \equiv V(r)$,

$$\widehat{H} = \frac{1}{2m} \left(-i\hbar \nabla - eA(rt) \right)^2 + V(r)$$

In CM (classical mechanics), all effects obtainable from A(rt) are equally derivable only from E(rt) and $B(rt) \Rightarrow$ vector potential redundant. In QM (quantum mechanics) this is not true: A(rt) has a "life of its own"!

 $\odot B$

If field **B** through ring is uniform, can take

$$\mathbf{A} \equiv A_{\theta} \widehat{\boldsymbol{\theta}}$$
 , $A_{\theta} \equiv \frac{1}{2} BR$

then flux Φ through ring is

$$\Phi \equiv \pi R^2 B \Rightarrow A_\theta = \Phi/2\pi R$$

TISE for $\psi \equiv \psi(\theta)$ is

$$\widehat{H}\psi(\theta) \equiv \frac{1}{2m} \left(-i\hbar \nabla - e\mathbf{A}(\mathbf{r}) \right)^2 \psi(\theta) = E\psi(\theta)$$

only nonzero component of ${m
abla}$ is ${m
abla}_{m heta} = rac{1}{R} rac{\partial}{\partial heta}$

and only component of A is A_{θ} , so

$$\frac{\hbar^2}{2mR^2} \left(-i \frac{\partial}{\partial \theta} - \frac{e}{\hbar} A_{\theta} R \right)^2 \psi(\theta) = E \psi(\theta)$$

or putting $A_{\theta}=\Phi/2\pi R$ and defining $\Phi_{o}^{sp}\equiv h/e$

(single-particle) flux quantum θ)

$$\frac{\hbar^2}{2mR^2} \left(-i \frac{\partial}{\partial \theta} - \Phi / \Phi_o^{sp} \right)^2 \psi(\theta) = E \psi(\theta)$$

 $=\hat{L}_z$ (angular momentum in units of \hbar)

Formal solution is

$$\psi(\theta)=\exp{ik\theta}$$
 , (k arbitrary), $E=rac{\hbar^2}{2mR^2}ig(k-\Phi/\Phi_o^{Sp}ig)^2$

However, crucial point:

$$\psi(\theta)$$
 must be single-valued, i.e. $\psi(\theta+2n\pi)=\psi(\theta)$ (SVBC) single-valuedness boundary condition

Hence, only allowed values of k are integers $\ell=0,\pm 1,\pm 2...$

(i.e. angular momentum \widehat{L}_z is quantized in units of \hbar)

Thus,

$$\begin{split} \psi_\ell(\theta) &= \exp{i\ell\theta} \;,\; \ell=0,\pm 1,\pm 2 \;,\\ E_\ell &= \frac{\hbar^2}{2mR^2} \big(\ell - \Phi/\Phi_o^{sp}\big)^2 \\ j_\ell &= \frac{e\hbar}{m/R} \big(\ell - \Phi/\Phi_o^{sp}\big) \end{split}$$
 For $\Phi < \Phi_o^{sp}/2 \;,$ GS has $\ell=0 \Rightarrow p_\theta \equiv L_z/R = \ell\hbar/R = 0$

However, recall:

$$\mathbf{v} = (\mathbf{p} - \mathbf{e}\mathbf{A})/m \Rightarrow \mathbf{v}_{\theta} = -e\mathbf{A}_{\theta}/m$$

 \Rightarrow $\mathbf{j}_{\theta} \equiv e \mathbf{v}_{\theta} = -(e^2/m) A_o \neq 0$ in general, in sense to produce magnetic field opposite to $\mathbf{B} \Rightarrow \mathsf{GS}$ is diamagnetic,

$$\mathbf{j}_{\theta} = -(e^2/m)A_{\theta} \neq 0$$

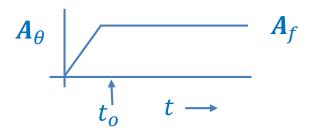
Single charged particle on ring: two notes

1. What is the situation in classical mechanics?

We can still formally introduce $\ell \equiv L_z/\hbar$ and write

$$E(\ell) = \frac{\hbar^2}{2mR^2} \left(\ell - \Phi/\Phi_o^{Sp}\right)^2$$

but now there is no restriction on ℓ (SVBC is meaningless since no wave function!) so now GS always corresponds to $\ell = \Phi/\Phi_o^{sp}$, equivalent to $\mathbf{j}_\theta = 0$ (no diamagnetism).



However, consider time-dependent problem: since motion is restricted to ring, Lorenz force $\mathbf{v} \times \mathbf{B}$ is irrelevant and we have by Newton II

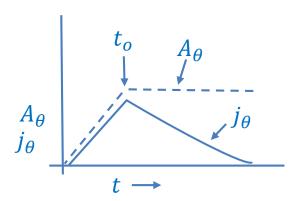
$$m\frac{d\mathbf{v}}{dt} = \mathbf{E}(t) = -\frac{\partial \mathbf{A}}{\partial t}$$

or

$$m\frac{d\mathbf{v}_{\theta}}{dt} = -\frac{dA_{\theta}}{dt}$$

If at t = 0 $v_{\theta} = 0$, solution is simply

$$\mathbf{v}_{\theta}(t) = -(e/m)A_{\theta}(t)$$

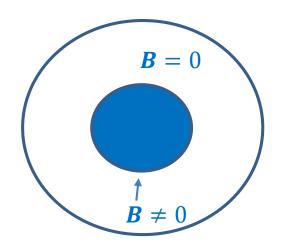


and in particular for $t=t_o$ $v_\theta=-(e/m)A_f\Rightarrow j_\theta=-(e^2/m)A_f$ as in Quantum Mechanics case. However, this is not the lowest-energy state, so scattering by walls, etc. will reduce j_θ to zero.

2. Aharonov-Bohm effect

note induced diamagnetic current depends only on

total trapped flux Φ , not on details of how it is produced. Hence in particular can get nonzero effect even when $\mathbf{B} = 0$ everywhere on ring! (e.g. \mathbf{B} produced by "Helmholtz coil")



Atomic diamagnetism

To the extent that argument applies, velocity of electrons at radius r given by

$$\mathbf{v}(r) = -eA(r)/m)$$

but electric current density $j(r) = n(r)e\mathbf{v}(r)$, hence

$$\mathbf{j}(\mathbf{r}) = \frac{-n(r)e^2}{m}A(r)$$

Circulating current produces magnetic field ΔB opposite to original one.

Estimate order of magnitude: take

$$A \sim BR_{at}$$
, $J \sim R_{at}^2 j$

$$\sim R_{at}^2 ne^2 A/m \sim (Ne^2/mR_{at})A \sim (Ne^2/m)B$$
,

$$\Delta B \sim \frac{\mu_o J}{R_{at}} \sim \left(\frac{Ne^2 \mu_o}{mR_{at}}\right) B$$
:

 $(Ne^2\mu_o/mR_{at})\sim 10^{-6}$, so effect very small.

Superconductors: London phenomenology

Basic postulate: as in atomic diamagnetism,

$$\mathbf{j}(\mathbf{r}) = \frac{-ne^2}{m}A(\mathbf{r})$$

Combine with Maxwell's equation

$$\mathbf{j} = \mathbf{\nabla} \times \mathbf{H} \equiv \frac{1}{\mu_o} \mathbf{\nabla} \times \mathbf{B} = \frac{1}{\mu_o} \mathbf{\nabla} \times (\mathbf{\nabla} \times \mathbf{A}) = -\frac{1}{\mu_o} \nabla^2 \mathbf{A}$$
 (div $\mathbf{A} = 0$)

gives

$$\nabla^2 A = +\frac{ne^2}{m}\mu_0 A$$

or taking curl.

$$\nabla^2 \mathbf{B} = \frac{ne^2 \mu_O}{m} \mathbf{B} \equiv \lambda_L^{-2} \mathbf{B}$$

London penetration depth

Hence, both in atomic diamagnets and in superconductors,

$$B \sim B_o \exp{-z/\lambda_L}$$
 (n(r), hence λ_L , comparable in two cases)

Qualitative difference: in both cases $\lambda_L \sim 10^{-5}$ cm, but: in atomic diamagnets, $\lambda_L \gg$ atomic size \Rightarrow effect very small in superconductors, $\lambda_L \ll$ size of sample \Rightarrow effect spectacular: magnetic field totally excluded from bulk (Meissner effect)

Problems with London phenomenology

- A. Meissner effect is thermodynamically stable phenomenon, circulating supercurrents on metastable. Hence London argument does not explain stability of supercurrents! (↑: beware misleading statements in literature)
- B. No explanation of vanishing Peltier coefficient.
- C. Why do not all metals show Meissner effect?

Let's turn question C around: when does Meissner effect not occur?

1. Classical systems:

no restriction on $v_{\theta} \equiv (p_{\theta} - eA_{\theta})/m$, and by Maxwellian statistical mechanics $P(v_{\theta}) \propto \exp{\frac{1}{2}mv_{\theta}^2/kT}$, hence from symmetry $\bar{v} = 0 \Rightarrow$ no circulating current \Rightarrow no diamagnetism (Bohr-van Leeuwen theorem)

2. Quantum Mechanics, but noninteracting particles obeying classical statistics: now p (or angular momentum L) is quantized

$$L=\ell\hbar\;,\qquad \ell=\;...-2,-1,0,1,2\;...$$
 and energy $\propto \left(\ell-\Phi/\Phi_o^{sp}\right)^2\,\hbar^2/2mR^2\quad \Phi_o^{sp}\equiv h/e$

SO

$$P(\ell) \propto \exp{-\left\{\left(\ell - \Phi/\Phi_o^{sp}\right)^2 \cdot \hbar^2/2mR^2k_BT\right\}} \quad \left(\Phi \lesssim \Phi_o^{sp}\right)$$

Crucial point: under normal circumstances $k_BT\gg\hbar^2/2mR^2$, so can effectively replace discrete values of ℓ by continuum \Rightarrow back to classical mechanics.*

3. So, will only get Meissner effect if for some reason all or most particles forced to be in same state. Then the probability of angular momentum ℓ for this state is

$$P(\ell) \propto \exp{-N_o(\ell - \Phi/\Phi_o)^2 \hbar^2/2mR^2k_BT}$$

Number of particles in same state

and provided k_BT , though $\gg \hbar^2/2mR^2$, is $\ll N\hbar^2/2mR^2$, can get results similar to atomic diamagnetism.

Does this ever happen? Yes, e.g. for noninteracting gas of bosons!

*Doesn't work for atomic diamagnetism because $\hbar^2/2mR^2$ is $\sim eV$, hence $\gg k_BT$.

Summary of lecture 2:

(1) In presence of electromagnetic vector potential $\boldsymbol{A}(\boldsymbol{r})$, Hamiltonian for single particle of charge e is

$$\widehat{H} = p \left(\frac{-i\hbar \nabla - eA(r)}{2m} \right)^2 + V(r)$$

- (2) For single particle on ring, in flux $\Phi < \frac{1}{2}h/e$, this leads in ground state to $j_{\theta} = -(e^2/m)A_{\theta}$
- (3) For a closed-shell atom, similar argument leads to

$$j(\mathbf{r}) = \frac{-n (r)}{m} e^2 A(\mathbf{r})$$
 (diamagnetism) (*)

(4) London phenomenology: assume (*) also describes superconductor

⇒ Meissner effect

- (5) Difficulty: doesn't work for classical systems (Bohr van Leeuwen theorem) nor (for $kT \gtrsim \hbar^2/mR^2$) for quantum systems obeying Maxwell-Boltzmann statistics
- (6) Difficulty can be overcome if for some reason all particles forced to behave in same way.

