Shanghai Jiao Tong University Lecture 6 2017

Anthony J. Leggett Department of Physics
University of Illinois at Urbana-Champaign, USA and
Director, Center for Complex Physics
Shanghai Jiao Tong University

BCS theory $(T=0)$

Model: same as in Cooper problem. i.e. Sommerfeld model plus weak attraction,

$$
\left.\mathrm{V}(r)=\mathrm{V}_{0} \delta(\boldsymbol{r}) \quad \text { (will be mostly interested in } \mathrm{V}_{0}<0\right)
$$

We keep the upper cutoff ϵ_{c} but now want to treat Fermi sea properly.

In Cooper problem, pair forms in spin singlet state with COM at rest, i.e. single-electron state $|\boldsymbol{k}, \uparrow\rangle$ is paired with $|-\boldsymbol{k}, \downarrow\rangle$. Let's assume this also holds in the realistic (many-body) case.

Crucial trick: work in terms not of behavior of individual electrons, but of occupation of states. Because of Pauli principle, the pair of states $(|\boldsymbol{k} \uparrow\rangle,|-\boldsymbol{k} \downarrow\rangle)$ has only four possible states of occupation: (4D Hilbert space)

$\|\mathbf{0}, \mathbf{0}\rangle_{k}$	$\|\mathbf{1}, \mathbf{1}\rangle_{k}$	$\|\mathbf{1}, \mathbf{0}\rangle_{k}$	$\|\mathbf{0}, \mathbf{1}\rangle_{k}$
\uparrow	\uparrow	\uparrow	\uparrow
both	both	$\boldsymbol{k} \uparrow$ occupied,	$\boldsymbol{k} \uparrow$ empty,
empty	occupied	$-\boldsymbol{k} \downarrow$ empty	$-\boldsymbol{k} \downarrow$ occupied

Guided by Cooper's solution, neglect for the moment $|1,0\rangle$ and $|0,1\rangle$. Then the wave function of the pair of states $|\boldsymbol{k} \uparrow,-\boldsymbol{k}, \downarrow\rangle$ is

$$
\Phi_{k}=u_{k}|00\rangle_{k}+v_{k}|11\rangle_{k} \quad \text { with } \quad\left|u_{k}\right|^{2}+\left|v_{k}\right|^{2}=1
$$

and the groundstate of the whole system is

$$
\Psi=\prod_{k} \Phi_{k}
$$

Note:
(a) The many-body wave function Ψ does not correspond to a definite total number of particles! In fact it is of the form

$$
\Psi=\sum_{N} C_{N} \Psi_{N}
$$

(However, possible to project off a definite $-N$ state if we need to).

In any case, we must choose the v_{k} 's so that

$$
\langle N\rangle=2 \sum_{k}\left|v_{k}\right|^{2}=N \quad \begin{aligned}
& \Leftarrow \text { actual number of } \\
& \text { electrons in system }
\end{aligned}
$$

(b) Normal GS is special case, with

$$
\begin{array}{ll}
u_{k}=0, v_{k}=1 & |\boldsymbol{k}|<k_{F} \\
u_{k}=1, v_{k}=0 & |\boldsymbol{k}|>k_{F}
\end{array} \quad \text { (in this case } N \text { is definite) }
$$

(c) Can always take u_{k} real without loss of generality.

A useful way of visualizing BCS GSWF:

Anderson "pseudospin" representation.

Consider specific pair of states $(\boldsymbol{k} \uparrow,-\boldsymbol{k} \downarrow) \equiv \boldsymbol{k}$ and think of states $|11\rangle$ and $|00\rangle$ as analogous to 2 states $\left(\sigma_{z}= \pm 1\right)$ of a spin-1/2 particle. Then the superposition $\Phi_{k} \equiv$ $\left|u_{k}\right\rangle|00\rangle+v_{k}|11\rangle$ corresponds to the "spin" being oriented (partially) in the xy-plane \Rightarrow described by angles θ_{k}, φ_{k}.

Quantitatively:

$$
\begin{aligned}
& \left\langle\sigma_{z k}\right\rangle=\left|v_{k}\right|^{2}-u_{k}^{2}=\cos \theta_{k} \\
& \left\langle\sigma_{x k}\right\rangle=2 \operatorname{Re}\left(u_{k} v_{k}^{*}\right)=\sin \theta_{k} \cos \varphi_{k} \\
& \left\langle\sigma_{y k}\right\rangle=2 \operatorname{Im}\left(u_{k} v_{k}^{*}\right)=\sin \theta_{k} \sin \varphi_{k}
\end{aligned}
$$

For simple BCS case in equilibrium, possible without loss of generality to choose all v_{k} as well as u_{k} real \Rightarrow "spins" lie in xz-plane. $\left(\left\langle\sigma_{x k}\right\rangle=\sin \theta_{k}\right)$

Q: what determines values of u_{k}, v_{k} for physical GS?
A: Energetics! Because N not definite, must minimize not $\langle\widehat{H}\rangle$ but

$$
\begin{gathered}
\langle\widehat{H}-\mu \widehat{N}\rangle \\
\uparrow
\end{gathered}
$$

with μ fixed either by leads or by condition $\langle\widehat{N}\rangle=N_{\text {true }}$
chemical potential

Kinetic energy contribution:

$$
\langle\hat{T}\rangle=2 \sum_{k}\left(\frac{\hbar^{2} k^{2}}{2 m}-\mu\right) \hat{n}_{k}=\sum_{k}\left(2 \epsilon_{k}\left|v_{k}\right|^{2}\right)
$$

ϵ_{k}
Potential energy: tricky!

Pauli principle \Rightarrow can only scatter into pair state \boldsymbol{k} if it is empty, i.e. $|0,0\rangle_{k}$, or out of it if it is full, $|1,1\rangle_{k}$. So for a given process $(\boldsymbol{k} \uparrow,-\boldsymbol{k} \downarrow) \Rightarrow\left|\boldsymbol{k}^{\prime} \uparrow,-\boldsymbol{k}^{\prime} \downarrow\right\rangle$ the contribution to $\langle\hat{V}\rangle$ is

$$
\begin{aligned}
\langle\widehat{V}\rangle_{k \rightarrow k^{\prime}}= & \left(\psi_{f}, \hat{V} \psi_{i n}\right)=V_{0} \times \text { amplitude for }\left(|1,1\rangle_{k} ;|0,0\rangle_{k^{\prime}}\right) \times \\
& \text { amplitude* for }\left(|0,0\rangle_{k} ;|1,1\rangle_{k^{\prime}}\right) \\
= & V_{0} v_{k} u_{k^{\prime}} \cdot u_{k} v_{k^{\prime}}^{*} \equiv V_{0}\left(u_{k} v_{k}\right) \cdot\left(u_{k^{\prime}} v_{k^{\prime}}^{*}\right)
\end{aligned}
$$

Hence

$$
\langle\widehat{H}-\mu \widehat{N}\rangle=\sum_{k} 2 \epsilon_{k}\left|v_{k}\right|^{2}+V_{0} \sum_{k k^{\prime}}\left(u_{k} v_{k}\right)\left(u_{k}, v_{k^{\prime}}^{*}\right)
$$

must minimize w.r.t. $\left\{u_{k} v_{k}\right\}$ subject to $\left|u_{k}\right|^{2}+\left|v_{k}\right|^{2}=1$.
In Anderson pseudospin representation,

$$
\begin{aligned}
& \qquad\left\langle\sigma_{z k}\right\rangle=2\left|v_{k}\right|^{2}-1,\left\langle\sigma_{x k}\right\rangle=2 u_{k} v_{k}^{*} \\
& \Rightarrow \text { apart from constant, }\left(\sum_{k} \epsilon_{k}\right) \\
& \langle\widehat{H}-\mu \widehat{N}\rangle=\sum_{k} \epsilon_{k}\left\langle\sigma_{z k}\right\rangle+\frac{1}{4} V_{0} \sum_{k k \prime}\left\langle\sigma_{x k}\right\rangle\left\langle\sigma_{x k \prime}\right\rangle
\end{aligned}
$$

Let's define a quantity

$$
\Delta \equiv V_{0} \sum_{k^{\prime}}\left\langle\sigma_{x k \prime}\right\rangle / 2
$$

then spin k sits in "magnetic field"

of magnitude

$$
E_{k} \equiv\left(\epsilon_{k}^{2}+|\Delta|^{2}\right)^{1 / 2}
$$

Since in equilibrium the spin points along the (total) field, this gives

$$
\begin{aligned}
& v_{k}^{2}-u_{k}^{2}=\cos \theta_{k}=-\epsilon_{k} / E_{k} \\
& \\
& u_{k} v_{k}=\frac{1}{2} \sin \theta_{k}=\Delta / 2 E_{k} \quad\left(\text { and } u_{k}^{2}+v_{k}^{2}=1\right)
\end{aligned}
$$

with the solution

$$
u_{k}=\left(\frac{1}{2}\left(1+\epsilon_{k} / E_{k}\right)\right)^{1 / 2} \quad v_{k}=\left(\frac{1}{2}\left(1-\epsilon_{k} / E_{k}\right)\right)^{1 / 2}
$$

We still have to fix Δ. Since $\left\langle\sigma_{x k^{\prime}}\right\rangle=\sin \theta_{k^{\prime}}=\Delta / E_{k^{\prime}}$, df. of Δ gives

$$
\Delta=-V_{0} \sum_{k^{\prime}} \Delta / 2 E_{k \prime}
$$

or in the more general case when matrix element for scattering $(k \uparrow,-k \downarrow) \rightarrow\left(k^{\prime} \uparrow,-k^{\prime} \downarrow\right)$ is $V_{k k^{\prime}}$,

$$
\begin{aligned}
\Delta_{k}=- & \sum_{k^{\prime}} V_{k k^{\prime}} \Delta_{k^{\prime}} / 2 E_{k^{\prime}} \quad\left(E_{k} \equiv \epsilon_{k}^{2}+\left|\Delta_{k}\right|^{2}\right)^{1 / 2} \\
& \mathrm{BCS} \text { gap equation }
\end{aligned}
$$

In original BCS model ($V_{k k^{\prime}}=V_{O}$, with cutoff $\pm \epsilon_{C}$), gap equation reduces to

$$
\left\lvert\,=-\frac{1}{2} V_{O} \sum_{k}\left(\epsilon_{k}^{2}+|\Delta|^{2}\right)^{-1}=-\frac{1}{4} V_{O} \frac{d n}{d \epsilon} \int_{-\epsilon_{C}}^{\epsilon_{c}} \frac{d \epsilon^{\prime}}{\left(\epsilon^{\prime 2}+|\Delta|^{2}\right)^{1 / 2}}\right.
$$

which has no solution for $V_{O}>0$ (repulsion). For $V_{O}<0$ (attraction)

$$
\begin{array}{r}
1=\frac{1}{2}\left|V_{O}\right| \frac{d n}{d \epsilon} \sinh ^{-1}\left(\epsilon_{c} / \Delta\right) \Longrightarrow \Delta=\epsilon_{c} / \sinh \left(\frac{1}{2}\left|V_{O}\right|\left(\frac{d n}{d \epsilon}\right)^{-1}\right. \\
\approx 2 \epsilon_{c} \exp -1 / \frac{1}{2}\left|V_{O}\right| \frac{d n}{d \epsilon} \quad \begin{array}{r}
\text { (often written } \\
\Delta=2 \epsilon_{c} \exp -
\end{array} \\
\hline 1 / N(0)|V| \\
\left.\uparrow \frac{1}{2} \frac{d n}{d \epsilon}\right)
\end{array}
$$

So: in S state at $T=O$, Anderson pseudospins are tilted away from z-axis over an energy range $\sim|\Delta|$ around Fermi energy:

i.e. state of pair $(k \uparrow,-k \downarrow)$ is a coherent quantum superposition of $|0,0\rangle_{k}$ and $|1,1\rangle_{k}$

Two important quantities:
(a) Occupation of single-electron states:

(note similarity to thermal smearing - but tails more extensive $\sim \epsilon^{-2}$)
(b) The quantity

$$
F_{k} \equiv u_{k} v_{k}^{*}=\frac{1}{2}\left\langle\sigma_{x k}\right\rangle=\Delta / 2 E_{k}
$$

$\longleftrightarrow \sim|\Delta|$

E_{F}

Significance of F_{k} (or its Fourier transform $F(\boldsymbol{r})$):
consider more general model, so that

$$
\langle V\rangle_{B C S}=\sum_{k k^{\prime}} V_{k k^{\prime}} F_{k} F_{k^{\prime}}^{*}
$$

If we define F.T. by

$$
F(\boldsymbol{r}) \equiv \frac{1}{\sqrt{V}} \sum_{k} F_{k} \exp i \boldsymbol{k} \cdot \boldsymbol{r}
$$

then

$$
\langle V\rangle_{B C S}=\int V(r)|F(\boldsymbol{r})|^{2} \boldsymbol{d r}
$$

Compare for problem of 2 particles in free space

$$
\langle V\rangle_{2 p}=\int V(r)|\psi(r)|^{2} d r
$$

Hence, at least for the purposes of considering effects of pairing

$$
F(\boldsymbol{r}) \text { plays role of Cooper-pair wave function }
$$

(and the quantity

$$
\int|F(r)|^{2} d r=\sum_{k}\left|F_{k}\right|^{2} \sim \frac{d n}{d \epsilon} \int d \epsilon|\Delta|^{2} /\left(\epsilon^{2}+|\Delta|^{2}\right) \sim N \Delta / E_{F}
$$

plays the role of "number of Cooper-pairs".)

General structure of $F(\boldsymbol{r})$:

$$
F(r) \sim \Delta \sum_{k}\left(2 E_{k}\right)^{-1} \exp i \boldsymbol{k} \cdot \boldsymbol{r}
$$

If we smooth the cutoff at $\pm \epsilon_{c}$, then for $r \gg k_{F}^{-1}, v_{F} / \epsilon_{c}$, the form of F is

$$
\begin{aligned}
& F(r) \cong \frac{1}{2} \Delta \frac{d n}{d \epsilon} \cdot \frac{\operatorname{sink}_{F} r}{k_{F} r} \exp -r / \xi^{\prime} \quad \quad \xi^{\prime} \equiv \frac{\hbar \mathrm{v}_{F}}{2^{1 / 2}|\Delta|} \\
& \text { I }
\end{aligned}
$$

wave function of 2 free
particles at Fermi energy

Thus, pair wave function is "bound" in coordinate space, with "radius" $\sim \hbar \mathrm{v}_{F} /|\Delta| \quad$ (thus exponentially large for $\left|\mathrm{V}_{0}\right| \rightarrow 0$)
in practice, $\xi^{\prime} \sim 10^{3}-10^{4} \dot{\AA}$ for "classical" superconductors hence, $\sim 10^{9}$ electrons within pair radius - strongly collective effect.

Condensation energy of BCS state ($T=0$):
using above formulae, can calculate for arbitrary Δ

$$
\begin{aligned}
& \langle\widehat{T}\rangle=N(0) \Delta^{2}\left(\ln \left(\frac{2 \epsilon_{c}}{\Delta}\right)-\frac{1}{2}\right) \\
& \langle\widehat{V}\rangle=-V_{0} N^{2}(0) \Delta^{2} \ell n^{2}\left(2 \epsilon_{c} / \Delta\right)
\end{aligned}\left(N(0) \equiv \frac{1}{2}\left(\frac{d n}{d \epsilon}\right)\right)
$$

Differentiation with respect to Δ of $\langle\hat{T}\rangle+\langle\hat{V}\rangle$ gives back gap equation, and substituting this value gives a condensation energy relative to the normal ground state of

$$
E_{\text {cond }}=-\frac{1}{2} N(0) \Delta^{2}
$$

Note this is a fraction $\sim\left(\Delta / E_{F}\right)^{2} \sim 10^{-8}$ of N ground state energy!

Alternative (handwaving) derivation: in S state, energies of Anderson pseudo spins perturbed by amount $\sim \Delta$ over an energy range itself $\sim \Delta$ around Fermi surface, which contains $\sim N(0) \Delta$ states. Hence, total $S-N$ energy difference $\sim N(0) \Delta^{2}$

II

Summary of lecture 6

In a Sommerfeld model with weak attraction $-\left|V_{0}\right| \delta(\boldsymbol{r})$ collective bound state formed, with "characteristic energy" $\Delta \sim \exp --1 / N\left(0\left|V_{0}\right|\right)$ and radius $\sim \hbar v_{F} / \Delta$. Most of the "disturbance" to the normal ground state is confined to an energy region of width $\sim \Delta$ around Fermi surface: Number of pairs occupying bound state is $\sim N\left(\Delta / E_{F}\right)$, and condensation energy is $\sim N(0) \Delta^{2} \sim N\left(\Delta^{2} / E_{F}\right)$.

