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SJTU 6.1

BCS theory 𝑇 = 0

Model: same as in Cooper problem. i.e. Sommerfeld
model plus weak attraction,

V 𝑟 = V0𝛿 𝒓 (will be mostly interested in V0 < 0) 

We keep the upper cutoff 𝜖𝑐 but now want to treat Fermi 
sea properly.

In Cooper problem, pair forms in spin singlet state with 
COM at rest, i.e. single-electron state ۧ|𝒌, ↑ is paired with  

ۧ| − 𝒌, ↓ . Let’s assume this also holds in the realistic 
(many-body) case.

Crucial trick: work in terms not of behavior of individual 
electrons, but of occupation of states.  Because of Pauli 
principle, the pair of states ۧ|𝒌 ↑ , ۧ| − 𝒌 ↓ has only four 
possible states of occupation: (4D Hilbert space)

ۧ|𝟎, 𝟎 𝑘 ۧ|𝟏, 𝟏 𝑘 ۧ|𝟏, 𝟎 𝑘 ۧ|𝟎, 𝟏 𝑘


both 
empty



both 
occupied



𝒌 ↑ occupied,
−𝒌 ↓ empty



𝒌 ↑ empty,
−𝒌 ↓ occupied

Guided by Cooper’s solution, neglect for the moment ۧ|1,0
and ۧ|0,1 . Then the wave function of the pair of states 

ۧ|𝒌 ↑, −𝒌, ↓ is

Φ𝑘 = 𝑢𝑘 ۧ|00 𝑘 + 𝑣𝑘 ۧ|11 𝑘 with 𝑢𝑘
2 + 𝜐𝑘

2 = 1



normalization
and the groundstate of the whole system is

Ψ = ෑ

𝑘

Φ𝑘



SJTU 6.2

Note:

(a) The many-body wave function Ψ does not 
correspond to a definite total number of particles! In 
fact it is of the form

Ψ = ෍

𝑁

𝐶𝑁 Ψ𝑁

(However, possible to project off a definite−𝑁 state 
if we need to).

In any case, we must choose the 𝑣𝑘’s so that 

𝑁 = 2 ෍

𝑘

𝜐𝑘
2 = 𝑁 ⇐ actual number of 

electrons in system

(b) Normal GS is special case, with 

𝑢𝑘 = 0, 𝜐𝑘 = 1 𝒌 < 𝑘𝐹

𝑢𝑘 = 1, 𝜐𝑘 = 0 𝒌 > 𝑘𝐹

(in this case 𝑁 is definite) 

(c) Can always take 𝑢𝑘 real without loss of generality. 
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A useful way of visualizing BCS GSWF: 
Anderson “pseudospin” representation.

Consider specific pair of states 𝒌 ↑, −𝒌 ↓ ≡ 𝒌 and think 
of states ۧ|11 and  ۧ|00 as analogous to 2 states 𝜎𝑧 = ±1
of a spin-1/2 particle. Then the superposition Φ𝑘 ≡

ۧ|𝑢𝑘 ۧ|00 + 𝜐𝑘| ۧ11 corresponds to the “spin” being oriented 
(partially) in the xy-plane ⇒ described by angles 𝜃𝑘 , 𝜑𝑘.

Quantitatively:

𝜎𝑧𝑘 = 𝜐𝑘
2 − 𝑢𝑘

2 = cos 𝜃𝑘

𝜎𝑥𝑘 = 2𝑅𝑒 𝑢𝑘𝜐𝑘
∗ = sin 𝜃𝑘 cos 𝜑𝑘

𝜎𝑦𝑘 = 2𝐼𝑚 𝑢𝑘𝜐𝑘
∗ = sin 𝜃𝑘 sin 𝜑𝑘

𝜑𝑘

𝜃𝑘

For simple BCS case in equilibrium, possible without loss of 
generality to choose all 𝜐𝑘 as well as 𝑢𝑘 real ⇒ “spins” lie in 
xz-plane. 𝜎𝑥𝑘 = sin 𝜃𝑘

𝐸𝐹

energy

occupied

empty
𝐸𝐹
energy

𝑁 state
(T = 0)

S state
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Q:  what determines values of 𝑢𝑘 , 𝜐𝑘 for physical GS?

A: Energetics! Because 𝑁 not definite, must minimize not 
෡𝐻 but

෡𝐻 − 𝜇 ෡𝑁 with 𝜇 fixed either by leads or by 

condition ෡𝑁 = 𝑁true

Kinetic energy contribution:

෠𝑇 = 2 ෍

𝑘

ℏ2𝑘2

2𝑚
− 𝜇 ො𝑛𝑘 = ෍

𝑘

2𝜖𝑘 𝜐𝑘
2



𝜖𝑘

Potential energy: tricky!

Pauli principle ⇒ can only scatter into pair state 𝒌 if it 
is empty, i.e. ۧ|0,0 𝑘, or out of it if it is full, ۧ|1,1 𝑘 . So for a 
given process 𝒌 ↑, −𝒌 ↓ ⇒ ۧ|𝒌′ ↑, −𝒌′ ↓ the 

contribution to ෠𝑉 is

෠𝑉
𝑘→𝑘′

= 𝜓𝑓, ෠𝑉𝜓𝑖𝑛 = 𝑉0 × amplitude for ۧ|1,1 𝑘; ۧ|0,0 𝑘′ ×

amplitude* for ۧ|0,0 𝑘; ۧ|1,1 𝑘′

= 𝑉0𝜐𝑘𝑢𝑘′ ∙ 𝑢𝑘𝜐𝑘′
∗ ≡ 𝑉0 𝑢𝑘𝜐𝑘 ∙ 𝑢𝑘′𝜐𝑘′

∗



chemical potential
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Hence

෡𝐻 − 𝜇 ෡𝑁 = ෍

𝑘

2𝜖𝑘 𝜐𝑘
2 + 𝑉0 ෍

𝑘𝑘′

𝑢𝑘𝜐𝑘 𝑢𝑘′𝜐𝑘′
∗

must minimize w.r.t. 𝑢𝑘𝜐𝑘 subject to 𝑢𝑘
2 + 𝜐𝑘

2 = 1.

In Anderson pseudospin representation,

𝜎𝑧𝑘 = 2 𝜐𝑘
2 − 1 , 𝜎𝑥𝑘 = 2𝑢𝑘𝜐𝑘

∗

⇒ apart from constant, ෍

𝑘

𝜖𝑘

෡𝐻 − 𝜇 ෡𝑁 = ෍

𝑘

𝜖𝑘 𝜎𝑧𝑘 +
1

4
𝑉0 ෍

𝑘𝑘′

𝜎𝑥𝑘 𝜎𝑥𝑘′

Let’s define a quantity

Δ ≡ 𝑉0 ෍

𝑘′

𝜎𝑥𝑘′ /2

then spin 𝑘 sits in “magnetic field”

𝜖𝑘

𝐸𝑘

𝜃𝑘

Δℋ = −𝜖𝑘 ො𝒛 + Δෝ𝒙

of magnitude

𝐸𝑘 ≡ 𝜖𝑘
2 + Δ 2 Τ1 2
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𝐸𝑘 ≡ 𝜖𝑘
2 + Δ𝑘

2 Τ1 2

Since in equilibrium the spin points along the (total) field, this 
gives

𝜐𝑘
2 − 𝑢𝑘

2 = cos 𝜃𝑘 = − Τ𝜖𝑘 𝐸𝑘 ,

𝑢𝑘𝜐𝑘 =
1

2
sin 𝜃𝑘 = ΤΔ 2𝐸𝑘 (and 𝑢𝑘

2 + 𝜐𝑘
2 = 1)

𝑢𝑘 =
1

2
1 + Τ𝜖𝑘 𝐸𝑘

Τ1 2

𝜐𝑘 =
1

2
1 − Τ𝜖𝑘 𝐸𝑘

Τ1 2

We still have to fix Δ. Since 𝜎𝑥𝑘′ = sin 𝜃𝑘′ = ΤΔ 𝐸𝑘′ , df. of 
Δ gives

Δ = −𝑉0 ෍

𝑘′

ΤΔ 2𝐸𝑘′

or in the more general case when matrix element for 
scattering 𝑘 ↑, −𝑘 ↓ → 𝑘′ ↑, −𝑘′ ↓ is 𝑉𝑘𝑘′ ,

Δ𝑘 = − ෍

𝑘′

𝑉𝑘𝑘′ ΤΔ𝑘′ 2𝐸𝑘′

with the solution



BCS gap equation
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In original BCS model (𝑉𝑘𝑘′ = 𝑉𝑂, with cutoff ± 𝜖𝑐), gap 
equation reduces to

| = −
1

2
𝑉𝑂 ෍

𝑘

𝜖𝑘
2 + |∆|2 −1

= −1
4𝑉𝑂

𝑑𝑛
𝑑∈ න

−𝜖𝑐

𝜖𝑐
𝑑𝜖‘

𝜖′2 + |∆|2 ൗ1
2

which has no solution for 𝑉𝑂 > 0 (repulsion).  For 𝑉𝑂 < 0
(attraction) 

1 =
1

2
𝑉𝑂

𝑑𝑛

𝑑𝜖
sinh−1 Τ𝜖𝑐 Δ ⟹ ∆= Τ𝜖𝑐 sinh ቆ

1

2
𝑉𝑂

𝑑𝑛

𝑑𝜖

−1

≈ 2𝜖𝑐𝑒𝑥𝑝 − ൗ1
1

2
𝑉𝑂

𝑑𝑛

𝑑𝜖 (often written
∆= 2𝜖𝑐𝑒𝑥𝑝 − Τ1 𝑁 0 𝑉

≡ 1
2 ൯𝑑𝑛

𝑑∈

So: in 𝑆 state at 𝑇 = 𝑂, Anderson pseudospins are

tilted away from z-axis over an energy range ~ ∆ around Fermi 
energy:

⟹

𝐸𝐹 𝐸𝐹

~ ∆

. .

i.e. state of pair (k, –k) is a coherent quantum 

superposition of ۧ|0, 0 𝑘 and ห1, ۧ1 𝑘
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Two important quantities:

(a) Occupation of single-electron states:

~ Δ

𝐸𝐹𝜖𝑘→

𝑛𝑘 ↑
~𝜖−2

(note similarity to thermal smearing – but tails more 
extensive ~𝜖−2) 

(b) The quantity

𝐹𝑘 ≡ 𝑢𝑘𝜐𝑘
∗ =

1

2
𝜎𝑥𝑘 = ΤΔ 2𝐸𝑘

𝐸𝐹

~ Δ

~𝜖−1
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Significance of 𝐹𝑘(or its Fourier transform 𝐹 𝒓 ):

consider more general model, so that

𝑉 𝐵𝐶𝑆 = ෍

𝑘𝑘′

𝑉𝑘𝑘′𝐹𝑘𝐹𝑘′
∗

If we define 𝐹. 𝑇. by 

𝐹 𝒓 ≡
1

𝑉
෍

𝑘

𝐹𝑘 exp 𝑖𝒌 ∙ 𝒓

Compare for problem of 2 particles in free space

𝑉 2𝑝 = න 𝑉 𝑟 𝜓 𝑟 2𝑑𝑟

Hence, at least for the purposes of considering effects of pairing

𝐹 𝒓 plays role of Cooper-pair wave function

(and the quantity

න 𝐹 𝑟 2𝑑𝑟 = ෍

𝑘

𝐹𝑘
2~

𝑑𝑛

𝑑𝜖
න 𝑑𝜖 Δ 2/ 𝜖2 + Δ 2 ~𝑁 Τ∆ 𝐸𝐹

plays the role of “number of Cooper-pairs”.)

then

𝑉 𝐵𝐶𝑆 = න 𝑉 𝑟 𝐹 𝒓 2𝒅𝒓
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General structure of 𝐹 𝒓 :

𝐹 𝑟 ~∆ ෍

𝑘

2𝐸𝑘
−1 exp 𝑖𝒌 ∙ 𝒓

If we smooth the cutoff at ±𝜖𝑐 , then for 𝑟 ≫ 𝑘𝐹
−1, Τ𝑣𝐹 𝜖𝑐, the 

form of 𝐹 is 

𝐹 𝑟 ≅
1

2
∆

𝑑𝑛

𝑑𝜖
∙

𝑠𝑖𝑛𝑘𝐹𝑟

𝑘𝐹𝑟
𝑒𝑥𝑝 − Τ𝑟 𝜉′ 𝜉′ ≡

ℏv𝐹

2 Τ1 2 Δ

wave function of 2 free 
particles at Fermi energy

Thus, pair wave function is “bound” in coordinate space, with 
“radius” ~ℏv𝐹/ Δ (thus exponentially large for V0 → 0)

in practice, 𝜉′~103 − 104 ሶÅ for “classical” superconductors 
hence, ~109 electrons within pair radius – strongly collective 
effect.
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Condensation energy of BCS state 𝑇 = 0 :
using above formulae, can calculate for arbitrary ∆

෠𝑇 = 𝑁 0 ∆2 ℓ𝑛
2𝜖𝑐

Δ
−

1

2

𝑁 0 ≡
1

2

𝑑𝑛

𝑑𝜖
෠𝑉 = −𝑉0𝑁2 0 Δ2ℓ𝑛2 Τ2𝜖𝑐 Δ

Differentiation with respect to Δ of ෠𝑇 + ෠𝑉 gives back gap 
equation, and substituting this value gives a condensation 
energy relative to the normal ground state of 

𝐸𝑐𝑜𝑛𝑑 = −
1

2
𝑁 0 Δ2

Note this is a fraction ~ Τ∆ 𝐸𝐹
2~10−8 of 𝑁 ground state energy!

Alternative (handwaving) derivation: in 𝑆 state, energies of 
Anderson pseudo spins perturbed by amount ~∆ over an energy 
range itself ~∆ around Fermi surface, which contains ~𝑁 0 ∆
states. Hence, total 𝑆 − 𝑁 energy difference ~𝑁 0 ∆2

(    :  doesn’t address cancellation of high-energy divergences.)
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In a Sommerfeld model with weak attraction − 𝑉0 𝛿 𝒓

collective bound state formed, with “characteristic energy” 

Δ~𝑒𝑥𝑝 − Τ−1 𝑁 0 𝑉0 and radius ~ℏv𝐹/Δ. Most of the 

“disturbance” to the normal ground state is confined to an 

energy region of width ~Δ around Fermi surface: Number of 

pairs occupying bound state is ~𝑁 Τ∆ 𝐸𝐹 , and condensation 

energy is ~𝑁 0 ∆2~𝑁 Τ∆2 𝐸𝐹 .

Summary of lecture 6


