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SJTU 7.1BCS theory 𝑇 ≠ 0

Recap:  at  𝑇 = 0 the structure of the MBWF is 

Ψ =ෑ

𝑘

Φ𝑘

Φ𝑘 = 𝑢𝑘|00 >𝑘 + 𝜐𝑘| ۧ11 𝑘

𝒌 ≡ 𝒌 ↑,−𝒌 ↓

and the specific values of 𝑢𝑘 and 𝜐𝑘 were found by minimizing 
Η − 𝜇Ν .

For 𝑇 ≠ 0 we expect intuitively that the description of the 
many-body system can still be factored into a product of 
descriptions of the occupation of the individual pair states 
𝒌 ↑, −𝒌 ↓ : technically

ො𝜌 =ෑ

𝑘

ො𝜌𝑘 density matrix

but now   (a) all 4 occupation states will be realized with some 

probability 

(b) quantities like Δ will be 𝑇 –dependent

(c)  at some 𝑇𝑐~ Τ∆ 𝑇 = 0 𝑘𝐵 the collective bound 
state will cease to exist. 



SJTU 7.2

Recall: for given 𝒌 ≡ 𝒌 ↑,−𝒌 ↓ 4 occupational states

ۧ|00 ۧ, |11 , ۧ|01 , ۧ|10
𝐺𝑃 𝐸𝑃 𝐵𝑃1 𝐵𝑃2

and ground state has

𝜓𝑘 = 𝑢𝑘| ۧ00 + 𝜐𝑘| ۧ11 corresponding to 𝝈𝑘 ∥ 𝓗𝑘 = −𝜖𝑘ො𝒛 +
𝛥ෝ𝒙

with an “energy” −𝐸𝑘≡ ℋ𝑘 ≡ 𝜖𝑘
2 + Δ 2 Τ1 2

. The limit Δ → 0

corresponds to the normal GS, and then 𝐸𝑘 → 𝜖𝑘 . So the energy of 
the “ground pair” state relative to the normal ground state is

𝐸𝐺𝑃 = 𝜖𝑘 − 𝐸𝑘.

The EP ( “excited pair”) state is formed by simply reversing the 
pseudospin 𝑘, so that

𝜓𝑘,𝐸𝑃 = 𝜐𝑘
∗| ۧ00 𝑘 − 𝑢𝑘| ۧ11 𝑘

This evidently costs an energy 2𝐸𝑘, so
𝐸𝐸𝑃 = 𝜖𝑘 + 𝐸𝑘

What about the BP (“broken pair”) states 𝐵𝑃1,2? These each 
correspond (relative to the 𝑁 ground state) to kinetic energy 𝐾𝐸
𝜖𝑘 and zero PE (no partner to scatter!), hence 

𝐸𝐵𝑃1,2 = 𝜖𝑘

Thus the relative energies of the various states are

𝐸𝐵𝑃 − 𝐸𝐺𝑃 = 𝐸𝑘,    𝐸𝐸𝑃 − 𝐸𝐺𝑃 = 2𝐸𝑘

(orthogonal to 𝜓𝑘,𝐺𝐹)



SJTU 7.3Conventional language:

State 𝐵𝑃1 𝐵𝑃2 has “Bogoliubov quasiparticle” in state 
𝒌 ↑ −𝒌 ↓ ; state ΕΡ has quasiparticles in both 𝒌 ↑ and 𝒌 ↓
(hence 𝐸𝐸𝑃 = 2Ε𝐵𝑃).  (     : but ΕΡ is really an “excitation of the 
condensate” whereas 𝐵𝑃1,2 are not).

Population of states:  since all 4 states distinguishable, simple 
MB-Gibbs statistics applies, i.e. 𝑃𝑛 ∝ 𝑒𝑥𝑝 − 𝛽𝐸𝑛. Thus (taking 𝐸𝐺𝑃
as zero of 𝐸)

𝑍 = 1 + 2𝑒𝑥𝑝 − 𝛽𝐸𝑘 + 𝑒𝑥𝑝 − 2𝛽𝜖𝑘
A quantity of special interest is

𝐹𝑘 𝑇 ≡
1

2
𝜎𝑥𝑘 𝑇 = ΤΔ 𝑇 2𝐸𝑘 𝑃𝐺𝑃 − 𝑃𝐸𝑃

= Δ 𝑇 /2𝐸𝑘 𝑇 𝑡𝑎𝑛ℎ𝛽𝐸𝑘 𝑇 /2

Putting this into the equation

Δ 𝑇 = −𝑉0

𝑘

𝐹𝑘 𝑇

we find

Δ 𝑇 = −𝑉0

𝑘

Δ 𝑇 /2𝐸𝑘 𝑇 𝑡𝑎𝑛ℎ𝛽𝐸𝑘 Τ𝑇 2

or in the more general case 𝑉0 ⟶ 𝑉𝑘𝑘1

Δ𝑘 𝑇 = −

𝑘′

𝑉𝑘𝑘′ Δ𝑘′ Τ𝑇 2𝐸𝑘′ 𝑇 𝑡𝑎𝑛ℎ𝛽𝐸𝑘′ Τ𝑇 2

Finite-temperature BCS gap equation

𝑃𝐺𝑃 = 𝑍−1, 𝑃𝐵𝑃1 = 𝑃𝐵𝑃2 = 𝑍−1𝑒𝑥𝑝 − 𝛽𝐸𝑘 , 𝑃𝐸𝑃 = 𝑍−1𝑒𝑥𝑝 − 2𝛽𝐸𝑘
𝐸𝑘 ≡ 𝐸𝑘 𝑇
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As 𝑇 increases from 0, Δ 𝑇 decreases from Δ 0 to zero at a 
temperature 𝑇𝑐 given by the linearized equation

Δ𝑘 𝑇𝑐 = −

𝑘′

𝑉𝑘𝑘′Δ𝑘′ Τ𝑇𝑐 2 𝐸𝑘′ 𝑡𝑎𝑛ℎ𝛽𝑐 Τ𝐸𝑘′ 2

For the BCS contact potential 𝑉𝑘𝑘′ → 𝑉0 this yields

Ν 0 𝑉𝑜
−1 = න

0

𝜖𝑐
𝑡𝑎𝑛ℎ𝛽 Τ𝜖 2

𝜖
𝑑𝜖 = ℓ𝑛 1 ∙ 14𝛽𝑐𝜖𝑐

so comparing this with zero-𝑇 gap equation

Ν 0 𝑉𝑜
−1 = ℓ𝑛(2𝜖𝑐/Δ 𝑇 = 0)

we have

Δ 𝑇 = 0 = 1.76𝑘𝐵𝑇𝑐

reasonably well satisfied for most “classical” superconductors

Examination of the gap equation at arbitrary 𝑇 < 𝑇𝑐 shows that 
it is a function only of Τ𝑇 𝑇𝑐

Δ 𝑇 = 1.76𝑘𝐵𝑇𝑐𝑓 𝑇/𝑇𝑐

(so for  𝑇 → 𝑇𝑐 , ∆ 𝑇 ∝ 1 − Τ𝑇 𝑇𝑐
Τ1 2)

with 𝑓 𝑧 ≅ 1 − 𝑧4 Τ1 2

𝛽𝑐 ≡ Τ1 𝑘𝐵𝑇𝑐
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Properties of a BCS superconductor at non zero 𝑇.

A. Condensate:
As we saw, the (F.T. of the) condensate wave function has 
the form at 𝑇 ≠ 0

𝐹𝑘 𝑇 = ∆ 𝑇 /2𝐸𝑘 𝑇 )𝑡𝑎𝑛ℎ𝛽𝐸𝑘 Τ𝑇 2

so, in the wave function

𝐹 𝒓 =

𝑘

𝐹𝑘𝑒𝑥𝑝𝑖𝒌 ∙ 𝒓

≡ 𝑁 0 න𝑑𝜖𝑘
sin 𝑘𝑟

𝑘𝑟

Δ 𝑇

𝜖𝑘
2 + Δ2 𝑇

Τ1 2
𝑡𝑎𝑛ℎ ൗ𝛽 𝜖𝑘

2 + Δ2
Τ1 2

2

the low energy cutoff (which determines the long distance 
behavior) gradually changes from ~Δ 𝑇 = 0 to ~𝑘𝐵𝑇. Since 
for 𝑇 ≲ 𝑇𝑐 these are of same order of magnitude, we have 
approximately

𝐹 𝑟: 𝑇 ≅ Δ 𝑇 ∙ 𝑁 0
sin 𝑘𝐹𝑟

𝑘𝐹𝑟
𝑒𝑥𝑝 − Τ𝑟 𝜉′ 𝑇

where 𝜉′ 𝑇 ~𝜉′ 0 . 𝑖. 𝑒. ,

Cooper-pair radius is not sharply 𝑇-dependent
(in particular, does not diverge for 𝑇 → 𝑇𝑐 from below).

The number of Cooper pairs,

𝑁𝑐 𝑇 න 𝐹 𝒓: 𝑇 2𝑑𝒓

is proportional to ∆2 𝑇 , hence for 𝑇 → 𝑇𝑐

𝑁𝑐 𝑇 ∝ 1 − Τ𝑇 𝑇𝑐



SJTU 7.6B. The Normal Component

Condensate is very “inert”, e.g. cannot be spin-polarized or 
(usually) flow in a way determined by walls. This applies both to GP 
and EP states (both have 𝑆 = 0, COM momentum = 0). Hence such 
responses determined entirely by BP states. However, response is 
not simply proportional to the probability of occupation of BP states:

Ex: Pauli spin susceptibility

𝓗,ΔΕ = −𝜇𝐵ℋ

𝑖

𝑆𝑖
𝑧In field . Hence, does not affect | ۧ00 or



real spin not pseudospin!

shifts energies of BP states,

Δ𝐸𝐵𝑃1 = −𝜇𝐵ℋ, Δ𝐸𝐵𝑃2 = +𝜇𝐵ℋ

Hence:

and

𝑀𝑧 ≡ 𝜇𝐵 𝑆𝑧

= 𝜇𝐵
2 

𝑘

𝑍𝑘
−1 (𝑒𝑥𝑝 − 𝛽 Ε𝑘 − 𝜇𝐵ℋ − 𝑒𝑥𝑝 − 𝛽 Ε𝑘 + 𝜇𝐵ℋ .

with 𝑍𝑘 ℋ = 𝑍𝑘 0 + 0 ℋ2

| ۧ11 , but 

𝑃𝐵𝑃1 = 𝑒𝑥𝑝 − 𝛽 Ε𝑘 − 𝜇𝐵ℋ , 𝑃𝐵𝑃2 = 𝑒𝑥𝑝 − 𝛽 Ε𝐾 + 𝜇𝐵ℋ
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For 𝜇8ℋ ≪ 𝑘𝐵𝑇, ∆ 𝑇 this gives

𝑀𝑧 = 𝜇𝐵
2ℋ

𝑘

𝑑

𝑑𝐸𝑘
൘𝑒𝑥𝑝 − 𝛽𝐸𝑘 𝑍𝑘 = 𝜇𝐵

2ℋ𝛽

𝑘

𝑠𝑒𝑐ℎ2𝛽 Τ𝐸𝑘 2

and so

𝜒 ≡ ΤΜ𝑧 ℋ = 𝜇𝐵
2 𝑑𝑛

𝑑𝜖
𝛽 0

∞
𝑠𝑒𝑐ℎ2 Τ𝛽𝐸 2 𝑑𝜖

In the normal state 𝐸 → 𝜖 this correctly gives 𝜒 = 𝜇𝐵
2 Τ𝑑𝑛 𝑑𝜖, so

൘𝜒 𝑇 𝜒𝑛 = 𝛽න

0

∞

𝑠𝑒𝑐ℎ2 𝛽𝐸 Τ𝑇 2 𝑑𝜖



“Yosida function”

Note: Reason argument is 
relatively simple is that 
energy eigenstates 𝒌 ↑
and −𝒌 ↓ carry a spin 
+ Τ1 2 (− Τ1 2)
respectively

Τ𝜒 𝜒𝑘
1

𝑇𝑐

𝑇 →
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The normal density

The “normal density” is defined as the fraction of the electrons 
which can respond to a (transverse) static vector potential, in 
following sense:

In presence of vector potential 𝜜 𝒓

𝒑 → 𝒑 − 𝑒Α 𝑟

So 𝐾𝐸 becomes



𝑖

ൗƸ𝑝𝑖 − 𝑒Α 𝑟𝑖
2
2𝑚 ≡

𝑖

Ƹ𝑝𝑖
2

2𝑚
−
𝑒

𝑚
Ƹ𝑝𝑖 ∙ Α +

Α2 𝑟𝑖
𝑚

(ignore the order 
of operators)

and the current density j 𝑟 𝑖𝑠

𝑗 𝒓 =
1

2


𝑖

𝛿 𝒓 − 𝒓𝑖 ΤƸ𝑝𝑖 − 𝑒Α 𝒓𝑖 𝑚 +𝐻. 𝐶.

We already saw that the explicit term in 𝑨(𝑟𝑖) gives rise in 
the 𝑆 phase, to the Meissner effect. But in the normal 
phase it is cancelled by the response of Ƹ𝑝𝑖 to the 
perturbation 𝑝𝑖 ∙ Α 𝑟𝑖 .

Τ𝛿𝑗 𝛿Α 𝑝𝑒𝑟𝑡 = +
𝑁𝑒2

𝑚
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So: in 𝑆 phase at 0 < 𝑇 < 𝑇𝑐 what is perturbative response of 
𝒑 to 𝜜?

(almost) exact analogy to calculation of spin susceptibility: 
| ۧ00 and | ۧ11 have total 𝑷 = 0, so cannot respond
| ۧ10 has momentum 𝒑 = ℏ𝒌, | ۧ01 has 𝒑 = −ℏ𝒌. Hence

Δ𝐸𝐵𝑃1 = −𝑒ℏ𝒌 ∙ Τ𝑨 𝑚 Δ𝐸𝐵𝑃2 = +𝑒ℏ𝒌 ∙ Τ𝑨 𝑚

Total induced momentum is 

𝑷 =

𝑘

ℏ𝒌 𝑍𝑘
−1 𝑒𝑥𝑝 − 𝛽 𝐸𝑘 −

𝑒ℏ𝒌 ∙ 𝑨

𝑚
− 𝑒𝑥𝑝 − 𝛽 𝐸𝑘 +

𝑒ℏ𝒌 ∙ 𝑨

𝑚

and for ℏ𝑘 ∙ 𝑨 ≪ 𝑘𝐵𝑇, ∆ 𝑇 this reduces to 

𝐽 ≡ 𝑒
𝑷

𝑚
≅

𝑒2ℏ2
𝑘𝐹
2

3𝑚
𝑨

𝑘

𝑍𝑘
−1 𝑑

𝑑𝐸𝑘
𝑒𝑥𝑝 − 𝛽𝐸𝑘 ≅ 𝑒2

𝑝𝐹
2

3𝑚
𝛽

𝑘

𝑠𝑒𝑐ℎ2 Τ𝛽𝐸𝑘 2 ∙ 𝑨

directional averaging

In 𝑁 state 𝐸 → 𝜖 this correctly reduces to Τ𝑁𝑒2 𝑚, so ratio 
(“ Τ𝜌𝑛 𝜌”)of response in 𝑆 state at temperature 𝑇 to 𝑁 −state 
value is 

Τ𝜌𝑛 𝜌 = 𝛽න

0

∞

𝑠𝑒𝑐ℎ2 Τ𝛽𝐸 2 𝑑𝜖

𝜒 and Τ𝜌𝑛 𝜌 are untypically simple, because energy 
eigenstates are also eigenstates of 𝝈 and 𝒑.



Yosida function
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Summary of lecture 7

At 𝑇 ≠ 0 the BCS description is still a product over the 
different pair states 𝒌 ≡ |𝒌 ↑, −𝒌 ۧ↓ , but now all four states

|𝐸 ۧ𝑃 ≡ 𝑣𝑘
∗|0 ۧ0 − 𝑢𝑘|1 ۧ1

|𝐵 ۧ𝑃2 ≡ |0 ۧ1

are populated, and 𝑢𝑘 and 𝑣𝑘 are functions of 𝑇. The relative 
energies of the 4 states are

𝐸𝐵𝑃 𝑇 − 𝐸𝐺𝑃 𝑇 = 𝐸𝑘 𝑇

𝐸𝐸𝑃 𝑇 − 𝐸𝐺𝑃 𝑇 = 2𝐸𝑘 𝑇
𝐸𝑘 𝑇 ≡ 𝜖𝑘

2 + Δ𝑘 𝑇 2 1/2

The self-consistent equation for the gap is 

Δ𝑘 𝑇 = −

𝑘′

𝑉𝑘𝑘′ Δ𝑘′ 𝑇 /2𝐸𝑘′ 𝑇 tanh 𝛽𝐸𝑘′ 𝑇 /2

and has a nontrivial Δ𝑘 ≠ 0 solution only for 𝑇 < 𝑇𝑐, where 

Condensate wave function 𝐹 𝑟: 𝑇 not strongly 𝑇-dependent: 
no. of Cooper pairs 𝑁𝑐 𝑇 ~Δ2 𝑇 , near 𝑇𝑐~ 1 − 𝑇/𝑇𝑐
“Normal component” is essentially BP states: contributes to 
“simple” quantities 𝜒, 𝑃𝑛… an amount 𝑌 𝑇 , e.g.

𝜒𝑛 = 𝑌 𝑇 ≡ 𝛽න
0

𝛽

secℎ2 𝛽𝐸 𝑇 /2 𝑑𝜖𝜒 𝑇 /

𝑘𝐵𝑇𝑐 = Δ 𝑇 = 0 /1.76

|𝐺 ۧ𝑃 ≡ 𝑢𝑘|0 ۧ0 + 𝑣𝑘|1 ۧ1

|𝐵 ۧ𝑃1 ≡ |1 ۧ0


