Shanghai Jiao Tong University

 Lecture 7 2017Anthony J. Leggett Department of Physics
University of Illinois at Urbana-Champaign, USA and
Director, Center for Complex Physics
Shanghai Jiao Tong University

Recap: at $T=0$ the structure of the MBWF is

$$
\begin{array}{ll}
\Psi=\prod_{k} \Phi_{k} & (\boldsymbol{k} \equiv(\boldsymbol{k} \uparrow,-\boldsymbol{k} \downarrow)) \\
\left.\Phi_{k}=u_{k}\left|00>_{k}+v_{k}\right| 11\right\rangle_{k}
\end{array}
$$

and the specific values of u_{k} and v_{k} were found by minimizing $\langle\widehat{\mathrm{H}}-\mu \widehat{\mathrm{N}}\rangle$.

For $T \neq 0$ we expect intuitively that the description of the many-body system can still be factored into a product of descriptions of the occupation of the individual pair states ($\boldsymbol{k} \uparrow,-\boldsymbol{k} \downarrow$) : technically

$$
\hat{\rho}=\prod_{k} \hat{\rho}_{k} \quad \longleftarrow \quad \text { density matrix }
$$

but now (a) all 4 occupation states will be realized with some probability
(b) quantities like Δ will be T-dependent
(c) at some $T_{C} \sim \Delta(T=0) / k_{B}$ the collective bound state will cease to exist.

Recall: for given $\boldsymbol{k} \equiv(\boldsymbol{k} \uparrow,-\boldsymbol{k} \downarrow) 4$ occupational states

$$
\begin{gathered}
|00\rangle,|11\rangle,|01\rangle,|10\rangle \\
G P \quad E P \quad B P_{1} B P_{2}
\end{gathered}
$$

and ground state has

$$
\psi_{k}=u_{k}|00\rangle+v_{k}|11\rangle \text { corresponding to } \sigma_{k} \| \mathcal{H}_{k}=-\epsilon_{k} \widehat{\mathbf{z}}+
$$ $\Delta \widehat{x}$

with an "energy" $-E_{k} \equiv\left|\mathcal{H}_{k}\right| \equiv\left(\epsilon_{k}^{2}+|\Delta|^{2}\right)^{1 / 2}$. The limit $\Delta \rightarrow 0$ corresponds to the normal GS, and then $E_{k} \rightarrow\left|\epsilon_{k}\right|$. So the energy of the "ground pair" state relative to the normal ground state is

$$
E_{G P}=\left|\epsilon_{k}\right|-E_{k} .
$$

The EP ("excited pair") state is formed by simply reversing the pseudospin k, so that

$$
\psi_{k, E P}=v_{k}^{*}|00\rangle_{k}-u_{k}|11\rangle_{k} \quad \text { (orthogonal to } \psi_{k, G F} \text {) }
$$

This evidently costs an energy $2 E_{k}$, so

$$
E_{E P}=\left|\epsilon_{k}\right|+E_{k}
$$

What about the BP ("broken pair") states $B P_{1,2}$? These each correspond (relative to the N ground state) to kinetic energy ($K E$) $\left|\epsilon_{k}\right|$ and zero PE (no partner to scatter!), hence

$$
E_{B P_{1,2}}=\left|\epsilon_{k}\right|
$$

Thus the relative energies of the various states are

$$
E_{B P}-E_{G P}=E_{k}, \quad E_{E P}-E_{G P}=2 E_{k}
$$

State $B P_{1}\left(B P_{2}\right)$ has "Bogoliubov quasiparticle" in state $\boldsymbol{k} \uparrow(-\boldsymbol{k} \downarrow)$; state EP has quasiparticles in both $\boldsymbol{k} \uparrow$ and $\boldsymbol{k} \downarrow$ (hence $E_{E P}=2 \mathrm{E}_{B P}$). ($\boldsymbol{\Upsilon}$: but EP is really an "excitation of the condensate" whereas $B P_{1,2}$ are not).

Population of states: since all 4 states distinguishable, simple MB-Gibbs statistics applies, i.e. $P_{n} \propto \exp -\beta E_{n}$. Thus (taking $E_{G P}$ as zero of E)

$$
\begin{gathered}
P_{G P}=Z^{-1}, P_{B P} 1=P_{B P 2}=Z^{-1} \exp -\beta E_{k}, P_{E P}=Z^{-1} \exp -2 \beta E_{k} \\
\left(E_{k} \equiv E_{k}(T)\right) \\
Z=1+2 \exp -\beta E_{k}+\exp -2 \beta \epsilon_{k}
\end{gathered}
$$

A quantity of special interest is

$$
\begin{aligned}
F_{k}(T) & \equiv \frac{1}{2}\left\langle\sigma_{x k}\right\rangle(T)=\left(\Delta(T) / 2 E_{k}\right)\left(P_{G P}-P_{E P}\right) \\
& =\left(\Delta(T) / 2 E_{k}(T)\right) \tanh \beta E_{k}(T) / 2
\end{aligned}
$$

Putting this into the equation

$$
\Delta(T)=-V_{0} \sum_{k} F_{k}(T)
$$

we find

$$
\Delta(T)=-V_{0} \sum_{k}\left(\Delta(T) / 2 E_{k}(T) \tanh \beta E_{k}(T) / 2\right)
$$

or in the more general case $\left(V_{0} \longrightarrow V_{k k^{1}}\right)$

$$
\Delta_{k}(T)=-\sum_{k^{\prime}} V_{k k^{\prime}}\left(\Delta_{k^{\prime}}(T) / 2 E_{k^{\prime}}(T)\right) \tanh \beta E_{k^{\prime}}(T) / 2
$$

As T increases from $0, \Delta(T)$ decreases from $\Delta(0)$ to zero at a temperature T_{c} given by the linearized equation
$\Delta_{k}\left(T_{c}\right)=-\sum_{k^{\prime}}\left(V_{k k^{\prime}} \Delta_{k^{\prime}}\left(T_{c}\right) / 2\left|E_{k^{\prime}}\right|\right) \tanh \beta_{c}\left|E_{k^{\prime}}\right| / 2 \quad\left(\beta_{c} \equiv 1 / k_{B} T_{c}\right)$
For the BCS contact potential $\left(V_{k k^{\prime}} \rightarrow V_{0}\right)$ this yields

$$
\left[\mathrm{N}(0) V_{o}\right]^{-1}=\int_{0}^{\epsilon_{c}} \frac{\tanh \beta \epsilon / 2}{\epsilon} d \epsilon=\ln \left(1 \cdot 14 \beta_{c} \epsilon_{c}\right)
$$

so comparing this with zero-T gap equation

$$
\left[\mathrm{N}(0) V_{o}\right]^{-1}=\ln \left(2 \epsilon_{c} / \Delta(T=0)\right)
$$

we have

$$
\Delta(T=0)=1.76 k_{B} T_{C}
$$

reasonably well satisfied for most "classical" superconductors

Examination of the gap equation at arbitrary $T<T_{C}$ shows that it is a function only of T / T_{c}

$$
\begin{aligned}
& \Delta(T)=1.76 k_{B} T_{c} f\left(T / T_{c}\right) \\
& \quad \text { with } f(z) \cong\left(1-z^{4}\right)^{1 / 2}
\end{aligned}
$$

$$
\left(\text { so for } T \rightarrow T_{c}, \Delta(T) \propto\left(1-T / T_{c}\right)^{1 / 2}\right)
$$

Properties of a BCS superconductor at non zero T.

A. Condensate:

As we saw, the (F.T. of the) condensate wave function has the form at $T \neq 0$

$$
\left.F_{k}(T)=(\Delta(T)) / 2 E_{k}(T)\right) \tanh \beta E_{k}(T) / 2
$$

so, in the wave function

$$
F(\boldsymbol{r})=\sum_{k} F_{k} \operatorname{expi} \boldsymbol{k} \cdot \boldsymbol{r}
$$

$\equiv N(0) \int d \epsilon_{k} \frac{\sin k r}{k r} \frac{\Delta(T)}{\left(\epsilon_{k}^{2}+\Delta^{2}(T)\right)^{1 / 2}} \tanh \beta\left(\epsilon_{k}^{2}+\Delta^{2}\right)^{1 / 2} / 2$
the low energy cutoff (which determines the long distance behavior) gradually changes from $\sim \Delta(T=0)$ to $\sim k_{B} T$. Since for $T \lesssim T_{C}$ these are of same order of magnitude, we have approximately

$$
F(r: T) \cong \Delta(T) \cdot N(0) \frac{\sin k_{F} r}{k_{F} r} \exp -r / \xi^{\prime}(T)
$$

where $\xi^{\prime}(T) \sim \xi^{\prime}(0) . i . e .$,
Cooper-pair radius is not sharply T-dependent (in particular, does not diverge for $T \rightarrow T_{C}$ from below).

The number of Cooper pairs,

$$
N_{c}(T) \int|F(\boldsymbol{r}: T)|^{2} d \boldsymbol{r}
$$

is proportional to $\Delta^{2}(T)$, hence for $T \rightarrow T_{C}$

$$
N_{c}(T) \propto\left(1-T / T_{c}\right)
$$

Condensate is very "inert", e.g. cannot be spin-polarized or (usually) flow in a way determined by walls. This applies both to GP and EP states (both have $S=0$, COM momentum $=0$). Hence such responses determined entirely by BP states. However, response is not simply proportional to the probability of occupation of BP states:

Ex: Pauli spin susceptibility
In field $\mathcal{H}, \Delta \mathrm{E}=-\mu_{B} \mathcal{H} \sum_{i} S_{i}^{Z}$. Hence, does not affect $|00\rangle$ or
$|11\rangle$, but
real spin not pseudospin!
shifts energies of BP states,

$$
\Delta E_{B P_{1}}=-\mu_{B} \mathcal{H}, \Delta E_{B P_{2}}=+\mu_{B} \mathcal{H}
$$

Hence:

$$
P_{B P_{1}}=\exp -\beta\left(\mathrm{E}_{k}-\mu_{B} \mathcal{H}\right), \quad P_{B P_{2}}=\exp -\beta\left(\mathrm{E}_{K}+\mu_{B} \mathcal{H}\right)
$$

and
$\left\langle M_{z}\right\rangle \equiv \mu_{B}\left\langle S_{z}\right\rangle$

$$
=\mu_{B}^{2} \sum_{k}\left(Z_{k}^{-1}\right)\left(\exp -\beta\left(\mathrm{E}_{k}-\mu_{B} \mathcal{H}\right)-\exp -\beta\left(\mathrm{E}_{k}+\mu_{B} \mathcal{H}\right)\right.
$$

$$
\text { with } Z_{k}(\mathcal{H})=Z_{k}(0)+0\left(\mathcal{H}^{2}\right)
$$

For $\mu_{8} \mathcal{H} \ll k_{B} T, \Delta(T)$ this gives
$\left\langle M_{z}\right\rangle=\mu_{B}^{2} \mathcal{H} \sum_{k} \frac{d}{d E_{k}}\left(\exp -\beta E_{k}\right) / Z_{k}=\mu_{B}^{2} \mathcal{H} \beta \sum_{k} \operatorname{sech}^{2} \beta E_{k} / 2$
and so

$$
\chi \equiv\left\langle\mathrm{M}_{z}\right\rangle / \mathcal{H}=\mu_{B}^{2}\left(\frac{d n}{d \epsilon}\right) \beta \int_{0}^{\infty} \operatorname{sech}^{2}(\beta E / 2) d \epsilon
$$

In the normal state $(E \rightarrow \epsilon)$ this correctly gives $\chi=\mu_{B}^{2} d n / d \epsilon$, so

$$
\chi(T) / \chi_{n}=\beta \int_{0}^{\infty} \operatorname{sech}^{2}(\beta E(T) / 2) d \epsilon
$$

Note: Reason argument is relatively simple is that energy eigenstates ($\boldsymbol{k} \uparrow$) and $(-\boldsymbol{k} \downarrow)$ carry a spin $+1 / 2(-1 / 2)$
respectively

$T \rightarrow$

The normal density

The "normal density" is defined as the fraction of the electrons which can respond to a (transverse) static vector potential, in following sense:

In presence of vector potential $\boldsymbol{A}(\boldsymbol{r})$

$$
\boldsymbol{p} \rightarrow \boldsymbol{p}-e \mathrm{~A}(r)
$$

So $K E$ becomes

$$
\sum_{i}\left(\hat{p}_{i}-e \mathrm{~A}\left(r_{i}\right)\right)^{2} / 2 m \equiv \sum_{i}\left(\frac{\hat{p}_{i}^{2}}{2 m}-\frac{e}{m} \hat{p}_{i} \cdot \mathrm{~A}+\frac{\mathrm{A}^{2}\left(r_{i}\right)}{m}\right)
$$

(ignore the order of operators)
and the current density $\mathrm{j}(r)$ is

$$
j(\boldsymbol{r})=\frac{1}{2} \sum_{i}\left(\delta\left(\boldsymbol{r}-\boldsymbol{r}_{i}\right)\left(\hat{p}_{i}-e \mathrm{~A}\left(\boldsymbol{r}_{i}\right)\right) / m+H . C .\right)
$$

We already saw that the explicit term in $\boldsymbol{A}\left(r_{i}\right)$ gives rise in the S phase, to the Meissner effect. But in the normal phase it is cancelled by the response of \hat{p}_{i} to the perturbation $p_{i} \cdot \mathrm{~A}\left(r_{i}\right)$.

$$
(\delta j / \delta \mathrm{A})_{\text {pert }}=+\frac{N e^{2}}{m}
$$

So: in S phase at $0<T<T_{C}$ what is perturbative response of \boldsymbol{p} to \boldsymbol{A} ?
(almost) exact analogy to calculation of spin susceptibility:
$|00\rangle$ and $|11\rangle$ have total $P=0$, so cannot respond
$|10\rangle$ has momentum $\boldsymbol{p}=\hbar \boldsymbol{k},|01\rangle$ has $\boldsymbol{p}=-\hbar \boldsymbol{k}$. Hence

$$
\Delta E_{B P_{1}}=-e \hbar \boldsymbol{k} \cdot \boldsymbol{A} / m \quad \Delta E_{B P_{2}}=+e \hbar \boldsymbol{k} \cdot \boldsymbol{A} / m
$$

Total induced momentum is
$\boldsymbol{P}=\sum_{k} \hbar \boldsymbol{k}\left(Z_{k}^{-1}\right)\left(\exp -\beta\left(E_{k}-\frac{e \hbar \boldsymbol{k} \cdot \boldsymbol{A}}{m}\right)-\exp -\beta\left(E_{k}+\frac{e \hbar \boldsymbol{k} \cdot \boldsymbol{A}}{m}\right)\right)$
and for $\hbar k \cdot \boldsymbol{A} \ll k_{B} T, \Delta(T)$ this reduces to
$J \equiv e \frac{\boldsymbol{P}}{m} \cong$
$e^{2} \hbar^{2} \frac{k_{F}^{2}}{3 m} \boldsymbol{A} \sum_{\uparrow^{k}}\left(Z_{k}^{-1}\right) \frac{d}{d E_{k}} \exp -\beta E_{k} \cong e^{2} \frac{p_{F}^{2}}{3 m} \beta \sum_{k} \operatorname{sech}^{2}\left(\beta E_{k} / 2\right) \cdot \boldsymbol{A}$ directional averaging

In N state $(E \rightarrow \epsilon)$ this correctly reduces to $N e^{2} / m$, so ratio (" ρ_{n} / ρ ") of response in S state at temperature T to N-state value is

$$
\rho_{n} / \rho=\beta \int_{0}^{\infty}\left(\operatorname{sech}^{2} \beta E / 2\right) d \epsilon
$$

Yosida function

© χ and ρ_{n} / ρ are untypically simple, because energy

Summary of lecture 7

At $T \neq 0$ the BCS description is still a product over the different pair states $\boldsymbol{k} \equiv|\boldsymbol{k} \uparrow,-\boldsymbol{k} \downarrow\rangle$, but now all four states

$$
\begin{aligned}
& |G P\rangle \equiv u_{k}|00\rangle+v_{k}|11\rangle \\
& |B P 1\rangle \equiv|10\rangle \\
& |B P 2\rangle \equiv|01\rangle \\
& |E P\rangle \equiv v_{k}^{*}|00\rangle-u_{k}|11\rangle
\end{aligned}
$$

are populated, and u_{k} and v_{k} are functions of T. The relative energies of the 4 states are

$$
\left.\begin{array}{l}
E_{B P}(T)-E_{G P}(T)=E_{k}(T) \\
E_{E P}(T)-E_{G P}(T)=2 E_{k}(T)
\end{array}\right\}
$$

The self-consistent equation for the gap is

$$
\Delta_{k}(T)=-\sum_{k^{\prime}} V_{k k^{\prime}}\left(\Delta_{k^{\prime}}(T) / 2 E_{k^{\prime}}(T)\right) \tan h\left(\beta E_{k^{\prime}}(T) / 2\right)
$$

and has a nontrivial $\left(\Delta_{k} \neq 0\right)$ solution only for $T<T_{c}$, where

$$
k_{B} T_{c}=\Delta(T=0) / 1.76
$$

Condensate wave function $F(r: T)$ not strongly T-dependent: no. of Cooper pairs $N_{c}(T) \sim \Delta^{2}(T)$, near $T_{c} \sim\left(1-T / T_{c}\right)$ "Normal component" is essentially BP states: contributes to "simple" quantities ($\chi, P_{n} \ldots$) an amount $Y(T)$, e.g.

$$
\chi(T) / \chi_{n}=Y(T) \equiv \beta \int_{0}^{\beta} \operatorname{sech}^{2}(\beta E(T) / 2) d \epsilon
$$

