SHANGHAI JIAO TONG UNIVERSITY LECTURE 8 2017

Anthony J. Leggett

Department of Physics University of Illinois at Urbana-Champaign, USA and Director, Center for Complex Physics Shanghai Jiao Tong University

1

Relation of BCS and GL Theories

Recap: GL is phenomenological theory of superconductivity, whose output is a free energy density F expressed as a function of a (complex scalar) order parameter $\Psi(r)$: in its original (and only subsequently rigorously justified) form

$$\mathcal{F}\{\Psi(r):T\} = \alpha(T)|\Psi(r)|^2 + \frac{1}{2}\beta(T)|\Psi(r)|^4 + \frac{\hbar^2}{2m} \left| \boldsymbol{\nabla} - 2\frac{ie}{\hbar}A(rt)\Psi(r) \right|^2 + \frac{1}{2}\mu_0^{-1} \left(\boldsymbol{\nabla} \times \boldsymbol{A}(r) \right)^2$$

with $\alpha(T) = \alpha_0(T - T_c), \beta(T) = \beta_0 = const.$

On the other hand, BCS theory introduces a pair wave function F(r;T) which has a spatial extent $\xi' \sim \hbar v_F / \Delta(0)$, and an energy gap $\Delta(T)$.

What is relation between these two descriptions?

Clue: BCS approach as developed so far assumed pairing between $(\mathbf{k}\uparrow)$ and $(-\mathbf{k}\downarrow)$, *i.e.* COM of pairs at rest. But must be possible to generalize to COM in motion $(\mathbf{k} + \mathbf{q}/2\uparrow)$ paired with $-\mathbf{k} + \mathbf{q}/2$, \downarrow) even to spatially nonuniform behavior. So consider generalization

$$F(\mathbf{r}) (\equiv F(\mathbf{r}_1 - \mathbf{r}_2) \Rightarrow F(\mathbf{r}_1, \mathbf{r}_2) \equiv F(\mathbf{R}, \mathbf{r}) \longleftarrow \text{generalized}$$
pair wave function relative

[Technical Definition of $F(r_1, r_2)$:

- (a) probability amplitude to add an electron of spin ↑ at r₁, and one of spin ↓ at r₂ to ground state (thermal equilibrium state) of N-particle system and reach ground state (thermal equilibrium state) of N + 2 -particle system.
- (b) eigenfunction of 2 particle density matrix $\hat{\rho}_2(r_1\sigma_1r_2\sigma_2:r'_1\sigma'_1r'_2\sigma'_2)$ corresponding to single macroscopic eigenvalue].

Crudely:

- BCS theory discusses the dependence of $F(\mathbf{R}, \mathbf{r})$ on relative coordinate \mathbf{r}
- GL theory discusses the dependence of $F(\mathbf{R}, \mathbf{r})$ on COM coordinate \mathbf{R} .

Expect theory to be "simple" only if scale of variation with respect to **R** is large compared to "scale of confinement" in **r**, *i.e.* to pair radius ξ' . This is always true for $T \to T_c$, since scale of variation in **R** set by two characteristic lengths of GL theory, $\xi_{GL}(T)$ and $\lambda(T)$, both of which diverge as $(T_c - T)^{-1/2}$, while ξ' remains finite in this limit.

For *T* well below T_c , $\xi_{GL}(T)$ and $\lambda(T)$ can become $\leq \xi'$, so scale of variation in **R** can become $\leq \xi'$. Theory is then very messy – do not attempt to cover here.

Define quite generally:

 $\Psi(\boldsymbol{R}) \equiv F(\boldsymbol{R},\boldsymbol{r})_{\boldsymbol{r}=\boldsymbol{0}}$

i.e. GL order parameter is simply COM wave function of Cooper pairs. (but with normalization which may be different from that in lecture 4)

- Q: Can we derive GL from (generalized) BCS?
- A: Yes! (Gor'kov, 1959 but needs Green's function techniques)

A simplified approach: start from BCS model Hamiltonian $(V_{kk'} = -V_o)$

1. Consider spatially uniform case, *i.e.* $F(\mathbf{R}, \mathbf{r}) \neq f(\mathbf{R})$, so that from our definition

$$\Psi(\mathbf{R}) = \text{const.} \equiv \Psi \equiv F(\mathbf{r} = \mathbf{0}) \equiv \sum_{k} F_{k} \qquad (F_{k} \equiv \langle u_{k} v_{k}^{*} \rangle)$$

where however F_k need not necessarily take its thermal equilibrium value. What is the (free) energy associated with a given value of Ψ ?

(a) Potential energy: this is just the pairing energy

$$\langle V \rangle_{pair} = -V_o \sum_{kk'} F_k F_{k'}^* \equiv -V_o |\Psi|^2. \qquad \langle \sigma_{zk} \rangle \qquad \langle \sigma_k \rangle$$

so always favors nonzero (and large) value of $\boldsymbol{\Psi}.$

(b) Kinetic energy: a bit more tricky. Up to a constant, $KE = \sum_{k} 2\epsilon_k \langle \sigma_{zk} \rangle$. Evidently, since $|\langle \boldsymbol{\sigma}_k \rangle| \leq 1$, increasing $F_k \left(\equiv \frac{1}{2} \langle \sigma_{xk} \rangle \right)$ will decrease $|\langle \sigma_{zk} \rangle|$ from its *N*-state value (sqr ϵ_k) and thus increase *KE*. In fact for a single spin \boldsymbol{k} ,

$$\Delta T_k = 2|\epsilon_k| \left(1 - (1 - 4|F_k|^2)^{1/2} = |\epsilon_k| (4|F_k|^2 + 2|F_k|^4 + \cdots) \right)$$

so it is plausible that the quantity $\Delta T \equiv \sum_k \Delta T_k$ will have a similar expansion in terms of $|\Psi|^2$: (with the $|\Psi|^2$ term +ve).

 $\langle \sigma_{xk} \rangle$

c) Entropy: or rather general grounds expect this to be a decreasing function of $|\Psi|^2$, so if it is analytic expect again terms in $|\Psi|^2$ and $|\Psi|^4$.

Quantitative calculation^{*}: gives precise values for coefficients $\alpha(T)$ and $\beta(T)$ as well as for T_c .

$$\alpha(T) = N(0) \frac{(T/T_c - 1)}{|V_0|^2}, \qquad \beta(T) = \frac{1}{2} \frac{7\zeta(3)}{8\pi^2} \frac{N(0)}{(k_B T^c)^2 |V_0|^4}$$

and so if we write F in terms of a normalized order parameter $\widetilde{\Delta} \equiv |V_0|\Psi$, then

$$F(\widetilde{\Delta}, T) = F_0(T) + N(0) \left\{ -\left(1 - \frac{T}{T_c}\right) |\widetilde{\Delta}|^2 + \frac{1}{2} \frac{7\zeta(3)}{8\pi^2} \frac{1}{(k_B T_c)^2} |\widetilde{\Delta}|^4 + \cdots \right\}$$

and differentiation with respect to $\widetilde{\Delta}$ gives back the BCS result

$$\Delta(T)_{T \to T_c} = 3.08k_B T_c (1 - T/T_c)^{1/2}$$

* See *e.g.* AJL, Quantum Liquids, section 5

2. The gradient term in the GL free energy:

To derive this, let's consider the case of uniform flow of the condensate, so that

$$\Psi(\boldsymbol{r};\boldsymbol{T}) = |\Psi_{eq}(T)| \exp i \varphi(r)$$

It's useful to define a quantity with the units of velocity:

(note that $\nabla \times \boldsymbol{v}_s \equiv 0, \oint \boldsymbol{v}_s \cdot \boldsymbol{d}\ell = nh/2m$). From symmetry assume that for small v_s extra energy due to the flow is proportional to v_s^2 , so define superfluid density ρ_s by

$$\Delta F_{flow}(T) = \frac{1}{2}\rho_s(T)\mathbf{v}_s^2$$

Imagine now a thought-experiment in which we start with everything at rest, and "boost" both condensate and normal component to a frame moving with velocity **v**. For the normal component this is achieved by applying a vector potential $A = m\mathbf{v}/e$; the required momentum P is by definition $(\rho_n(T)/\rho)Nm\mathbf{v}$, and the extra KE is $\frac{1}{2}\rho_n(T)\mathbf{v}_n^2 \equiv \frac{1}{2}\rho_n\mathbf{v}^2$. On the other hand, the extra energy acquired by boosting the condensate to velocity **v** is, as above, $\frac{1}{2}\rho_s\mathbf{v}_s^2 \equiv \frac{1}{2}\rho_s\mathbf{v}^2$. Since the total energy due to the boost must by Galilean invariance be $\frac{1}{2}\rho\mathbf{v}^2$, we have $\rho_n(T) + \rho_s(T) = \rho$

and thus by result of Lecture 7

 $\rho_s(T) = \rho \left(1 - Y(T) \right) \cong \rho(7\zeta(3)/4\pi (k_B T_c)^2) \Delta^2(T)$

$$T \to T_c$$

If now we write the gradient term in the GL free energy in the form (for A = 0)

$$\Delta F_{flow}(T) = \gamma(T) |\nabla \Psi|^2 = \gamma(T) |\Psi_{eq}(T)|^2 (\nabla \varphi)^2$$

by comparing this with $\frac{1}{2}\rho_s(T)v_s^2$, we have the normalizationindependent relation

$$\gamma(T) = \frac{\hbar^2}{8m^2} \frac{\rho_s(T)}{|\Psi|^2(T)}$$

and in particular if we choose the normalization $\Psi(T) = \Delta(T)$.

$$\gamma(T) \equiv \rho \frac{n\hbar^2}{4m} \frac{7\zeta(3)}{8\pi^2 (k_B T_c)^2} \left(\equiv \frac{n\hbar^2}{4m} \beta \right) = const. \text{ as } T \to T_c$$

Generalizations:
effect of vector potential: $\nabla \to \nabla - 2 \frac{ie}{\hbar} A(r)$ (since
pair line)
2e)

(since Cooper pair has charge 2e)

spatially varying case: provide scale of variation \gg pair radius able to replace

 $\mathcal{F}(\Psi:T) \rightarrow \mathcal{F}\{\Psi(r):T\}$ \implies complete GL free energy, QED

↑: have assumed (rather than demonstrated) that correct form of gradient term in const $|\nabla \Psi|^2 \equiv \text{const}(|\Psi|^2(\nabla \varphi)^2 + (\nabla |\Psi|)^2)$