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SJTU 8.1
Relation of BCS and GL Theories

Recap: GL is phenomenological theory of superconductivity, 
whose output is a free energy density 𝐹 expressed as a function 
of a (complex scalar) order parameter Ψ 𝑟 : in its original (and 
only subsequently rigorously justified) form 

ℱ Ψ 𝑟 : 𝑇 = 𝛼 𝑇 Ψ 𝑟 2 +
1

2
𝛽 𝑇 Ψ 𝑟 4 +

ℏ2

2𝑚
𝜵 − 2

𝑖𝑒

ℏ
𝐴 𝑟𝑡 Ψ 𝑟

2

+
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2
𝜇0

−1 𝜵 × 𝑨 𝑟
2

with 𝛼 𝑇 = 𝛼0 𝑇 − 𝑇𝑐 , 𝛽 𝑇 = 𝛽0 = 𝑐𝑜𝑛𝑠𝑡.

On the other hand, BCS theory introduces a pair wave 
function 𝐹 𝑟: 𝑇 which has a spatial extent 𝜉′~ℏv𝐹/∆ 0 , and 
an energy gap ∆ 𝑇 .

What is relation between these two descriptions?

Clue:  BCS approach as developed so far assumed pairing 
between 𝒌 ↑ and −𝒌 ↓ , i.e. COM of pairs at rest.  But must 
be possible to generalize to COM in motion (𝒌 + Τ𝒒 2 ↑ paired 
with −𝒌 + Τ𝒒 2 , ↓) even to spatially nonuniform behavior. So 
consider generalization 

𝐹 𝒓 (≡ 𝐹 𝒓1 − 𝒓2 ⟹ 𝐹 𝒓1, 𝒓2 ≡ 𝐹 𝑹, 𝒓 generalized 
pair wave 
functionCOM

relative
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Crudely:
BCS theory discusses the dependence of 𝐹 𝑹, 𝒓 on relative
coordinate 𝒓
GL theory discusses the dependence of 𝐹 𝑹, 𝒓 on COM
coordinate 𝑹.

Expect theory to be “simple” only if scale of variation with 
respect to 𝑹 is large compared to “scale of confinement” in 𝒓, i.e.
to pair radius 𝜉′. This is always true for 𝑇 → 𝑇𝑐 , since scale of 
variation in 𝑹 set by two characteristic lengths of GL theory, 

𝜉𝐺𝐿 𝑇 and 𝜆 𝑇 , both of which diverge as 𝑇𝑐 − 𝑇 − Τ1 2, while 𝜉′

remains finite in this limit.

For 𝑇 well below 𝑇𝑐 , 𝜉𝐺𝐿 𝑇 and 𝜆 𝑇 can become ≲ 𝜉′,  
so scale of variation in 𝑹 can become ≲ 𝜉′. Theory is then 
very messy – do not attempt to cover here. 

Define quite generally:

Ψ 𝑹 ≡ 𝐹 𝑹, 𝒓 𝒓=0

i.e. GL order parameter is simply COM wave function of Cooper 
pairs. (but with normalization which may be different from that 
in lecture 4)

[Technical Definition of 𝐹 𝒓1, 𝒓2 : 

(a) probability amplitude to add an electron of spin ↑ at 𝒓1, 
and one of spin ↓ at 𝒓2 to ground state (thermal 
equilibrium state) of 𝑁-particle system and reach ground 
state (thermal equilibrium state) of 𝑁 + 2 –particle system.

(b) eigenfunction of 2 – particle density matrix 
ො𝜌2 𝒓𝟏𝜎1𝒓𝟐𝜎2: 𝒓𝟏

′ 𝜎1
′𝒓𝟐

′ 𝜎2
′ corresponding to single 

macroscopic eigenvalue].
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Q:  Can we derive GL from (generalized) BCS?

A: Yes! (Gor’kov, 1959 – but needs Green’s function techniques)

1. Consider spatially uniform case, i.e. 𝐹 𝑹, 𝒓 ≠ 𝑓 𝑹 , so 
that from our definition

Ψ 𝑹 = const. ≡ Ψ ≡ 𝐹 𝒓 = 𝑶 ≡ 

𝑘

𝐹𝑘 𝐹𝑘 ≡ 𝑢𝑘𝜐𝑘
∗

where however 𝐹𝑘 need not necessarily take its thermal 
equilibrium value. What is the (free) energy associated 
with a given value of Ψ?  

(a)  Potential energy: this is just the pairing energy

𝑉 𝑝𝑎𝑖𝑟 = −𝑉𝑜 

𝑘𝑘′

𝐹𝑘 𝐹𝑘′
∗ ≡ −𝑉𝑜 Ψ 2.

so always favors nonzero (and large) value of Ψ.

(b) Kinetic energy: a bit more tricky. Up to a constant, 
𝐾𝐸 = σ𝑘 2𝜖𝑘 𝜎𝑧𝑘 . Evidently, since 𝝈𝑘 ≼ 1, increasing 

𝐹𝑘 ≡
1

2
𝜎𝑥𝑘 will decrease 𝜎𝑧𝑘 from its 𝑁-state value 

(sqr 𝜖𝑘) and thus increase 𝐾𝐸.  In fact for a single spin 𝒌,

Δ𝑇𝑘 = 2 𝜖𝑘 ቀ1 − 1 − 4 𝐹𝑘
2 Τ1 2 = 𝜖𝑘 4 𝐹𝑘

2 + 2 𝐹𝑘
4 + ⋯

so it is plausible that the quantity Δ𝑇 ≡ σ𝑘 Δ 𝑇𝑘 will have a 
similar expansion in terms of Ψ 2: (with the Ψ 2 term +v𝑒).

A simplified approach: start from BCS model Hamiltonian 
𝑉𝑘𝑘′ = −𝑉𝑜

𝜎𝑥𝑘

𝜎𝑧𝑘 𝝈𝑘



SJTU 8.4

c)  Entropy: or rather general grounds expect this to be a 
decreasing function of Ψ 2, so if it is analytic expect again 
terms in Ψ 2 and Ψ 4.

Quantitative calculation*: gives precise values for coefficients 
𝛼 𝑇 and 𝛽 𝑇 as well as for 𝑇𝑐.

𝛼 𝑇 = 𝑁 0
Τ𝑇 𝑇𝑐−1

𝑉0
2 , 𝛽 𝑇 =

1

2

7𝜁 3

8𝜋2

𝑁 0

𝑘𝐵𝑇𝑐 2 𝑉0
4

and so if we write 𝐹 in terms of a normalized order 
parameter ෩Δ ≡ 𝑉0 Ψ, then 

𝐹 ෩Δ, 𝑇 =

𝐹0 𝑇 + 𝑁 0 − 1 −
𝑇

𝑇𝑐

෩Δ
2

+
1

2

7𝜁 3

8𝜋2

1

𝑘𝐵𝑇𝑐
2

෩Δ
4

+ ⋯

and  differentiation with respect to ෩Δ gives back the BCS 
result 

Δ 𝑇 𝑇→𝑇𝑐
= 3.08𝑘𝐵𝑇𝑐 1 − Τ𝑇 𝑇𝑐

Τ1 2

* See e.g. AJL, Quantum Liquids, section 5
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2. The gradient term in the GL free energy:

To derive this, let’s consider the case of uniform flow of the 
condensate, so that 

Ψ 𝒓: 𝑻 = Ψ𝑒𝑞 𝑇 exp 𝑖 𝜑 𝑟

It’s useful to define a quantity with the units of velocity:

𝝊𝑠 =
ℏ

2𝑚
𝜵𝜑 “superfluid velocity”

(note that 𝜵 × 𝝊𝑠 ≡ 0, ׯ 𝒗𝑠 ∙ 𝒅ℓ = Τ𝑛ℎ 2𝑚). From 

symmetry assume that for small v𝑠 extra energy due to the 
flow is proportional to v𝑠

2, so define superfluid density 𝜌𝑠 by

Δ𝐹𝑓𝑙𝑜𝑤 𝑇 =
1

2
𝜌𝑠 𝑇 v𝑠

2

Imagine now a thought-experiment in which we start with 
everything at rest, and “boost” both condensate and normal 
component to a frame moving with velocity 𝐯. For the normal 
component this is achieved by applying a vector potential 
𝑨 = Τ𝑚𝐯 𝑒;  the required momentum P is by definition 

𝜌𝑛 Τ𝑇 𝜌 𝑁𝑚𝐯, and the extra 𝐾𝐸 is 
1

2
𝜌𝑛 𝑇 v𝑛

2 ≡
1

2
𝜌𝑛v2.  On 

the other hand, the extra energy acquired by boosting the 

condensate to velocity 𝐯 is, as above, 
1

2
𝜌𝑠v𝑠

2 ≡
1

2
𝜌𝑠v2. Since the 

total energy due to the boost must by Galilean invariance be 
1

2
𝜌v2, we have 

𝜌𝑛 𝑇 + 𝜌𝑠 𝑇 = 𝜌

and thus by result of Lecture 7

𝜌𝑠 𝑇 = 𝜌 1 − 𝑌 𝑇 ≅ 𝜌 7𝜁 Τ3 4𝜋 𝑘𝐵𝑇𝑐
2 ∆2 𝑇

𝑇 → 𝑇𝑐
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If now we write the gradient term in the GL free energy in 
the form (for 𝐴 = 0)

∆𝐹𝑓𝑙𝑜𝑤 𝑇 = 𝛾 𝑇 𝛻Ψ 2 = 𝛾 𝑇 Ψ𝑒𝑞 𝑇
2

𝛻𝜑 2

by comparing this with 
1

2
𝜌𝑠 𝑇 v𝑠

2, we have the normalization-

independent relation  

𝛾 𝑇 =
ℏ2

8𝑚2

𝜌𝑠 𝑇

Ψ 2 𝑇

and in particular if we choose the normalization Ψ 𝑇 = Δ 𝑇 .

𝛾 𝑇 ≡ 𝜌
𝑛ℏ2

4𝑚

7𝜁 3

8𝜋2 𝑘𝐵𝑇𝑐
2 ≡

𝑛ℏ2

4𝑚
𝛽 = 𝑐𝑜𝑛𝑠𝑡. as 𝑇 → 𝑇𝑐

Generalizations:

effect of vector potential:  𝜵 → 𝛻 − 2
𝑖𝑒

ℏ
𝑨 𝑟

(since Cooper 
pair has charge 
2𝑒)

spatially varying case: provide scale of variation ≫ pair radius
able to replace

ℱ Ψ: 𝑇 → ℱ Ψ 𝑟 : 𝑇

⟹ complete GL free energy, QED

↑: have assumed (rather than demonstrated) that correct form
of gradient term in const 𝛻Ψ 2 ≡ const ( Ψ 2 𝛻𝜑 2+(𝛻 Ψ )2)


